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ABSTRACT
This work concerns stably stratified atmospheric bound-

ary layers (ABL), which form mostly over night due to surface
radiative cooling. Downward transport of heat towards the sur-
face produces negative buoyancy flux and suppresses turbu-
lent motions. Weakly stably stratified boundary layers are de-
scribed under the Monin-Obukhov similarity theory (MOST),
in which the characteristic length scale is the Obukhov length
L, constructed based on turbulent momentum and heat fluxes.
However, as the stratification increases the Monin-Obukhov
theory describes boundary layer less well. The present paper
focuses on local similarity theories provided by invariant solu-
tions, defined under the Lie–group theory, of a set of govern-
ing equations for turbulence statistics. In addition to the local
Obukhov length, the derived invariant solutions also depend
on non-dimensionalized time. We present experimental veri-
fication of the derived formulas and show that they improve
parametrization of the strongly stratified ABL.

MONIN-OBUKHOV SIMILARITY THEORY
Similarity theories are a key methodology for analyz-

ing flows in the ABL. They seek universal relationships be-
tween different physical variables describing the phenomenon,
without explicitly solving the governing equations. The first
and most celebrated similarity theory of ABLs was proposed
by Monin & Obukhov (1954). Those authors defined the
Obukhov length scale

L =− 1
κ

|uw0|3/2

wb0
=

1
κ

u2
∗

b∗
(1)

where uw0 and wb0 are the surface values of momentum and
buoyancy fluxes, respectively. The buoyancy, b, is defined as

b = g(θ −θ0(z))/θm, (2)

where θ −θ0(z) denotes deviation of the potential temperature,
θ , from a steady reference state and θm is a vertical average.

In MOST, the scales, L, u∗ = |uw0|1/2, and u∗b∗ =
−wb0, represent the external conditions used for non-
dimensionalization. Turbulence statistics are expressed as
functions of the stability parameter, ξ = z/L. In particular,
the non-dimensional mean wind and buoyancy gradients in the
stable ABL are parametrized as follows

κz
u∗

dū
dz

= φm(ξ ) = 1+5ξ , (3)

κz
b∗

db̄
dz

= φh(ξ ) = 1+5ξ . (4)

Close to the surface and/or at windy conditions ξ is small and
φm ≈ φh ≈ 1. This corresponds to the logarithmic solution for
the mean wind and mean buoyancy. Under the strong stratifi-
cation both functions should become linear φm ≈ φh ≈ 5z/L.
In the case with weak stability, the MOST is believed to work
well within the surface layer, over which the fluxes are approx-
imately constant with height. However, both uw and wb be-
come functions of height above the surface layer. Nieuswtadt
(1954) reformulated the MOST by introducing the local length
scale

Λ =− 1
κ

uw3/2

wb
(5)

as a similarity scale. The local scaling is valid only for strong,
continuous turbulence. These conditions are not fulfilled in
very stable ABLs, which consist of layered structures, repre-
senting turbulence intermittency with a ‘sporadic’ character.
In such case non-stationarity of the statistics plays an impor-
tant role and should be accounted for in the parametrization
schemes.

GOVERNING EQUATIONS AND INVARIANT SO-
LUTIONS

We consider flows in the ABL governed by the Navier-
Stokes system under the Boussinesq approximation and in the
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inviscid limit. We perform ensemble averaging of the govern-
ing equations, assume horizontal homogeneity and assume that
the Coriolis force is balanced by the horizontal pressure gradi-
ents. Under those assumptions, the averaged system reads

∂u
∂ t

+
∂uw
∂ z

= 0, (6)

∂w2

∂ z
=− 1

ρ0

∂ p
∂ z + b̄, (7)

∂b
∂ t

+
∂wb
∂ z

= 0, (8)

where x is the direction of the mean wind, z is the vertical
direction, ρ0 is a constant mean density, and p is the mean
pressure.

Unlike in standard approaches to the parametrization of
the ABL, we do not focus on dimensional analyses alone, but
investigate mathematical properties of the governing system of
equations (6)–(8). Our first approach along this line was to use
the technique of nondimensionalization Yano & Wacławczyk
(2022). Next, in Yano & Wacławczyk (2023) the method of
symmetry transformations was used. Symmetries are defined
as transformations of variables which leave this system invari-
ant. These new variables will be denoted by the symbol ∗. Of
particular importance for deriving scaling laws in ABL are the
space and time translations z∗ = z+ z0, t∗ = t + t0 and scaling
symmetry groups, namely the scaling of space and time

t∗ = t, z∗ = eaz z, ū∗ = eaz u, p∗ = e2az p, (9)

uw∗ = e2az uw, w2∗ = e2az w2, wb∗ = wb, b̄∗ = b

t∗ = eat t, z∗ = z, u∗ = e−at u, p∗ = e−2at p, (10)

uw∗ = e−2at uw, w2∗ = e−2at w2, wb∗ = e−at wb, b̄∗ = b

and additional scaling group of b in neutral flows (i.e. when
temperature can be considered a passive scalar)

t∗ = t, z∗ = z, u∗ = u, b∗ = eab b, (11)

uw∗ = uw, w2∗ = w2, wb∗ = eab wb.

When the buoyancy plays an active role in the momentum
equation (7) the scaling group parameter ab becomes depen-
dent on the time and space scaling (Yano & Wacławczyk,
2023)

ab = az −2at . (12)

We also consider the additional statistical scaling (Oberlack
& Rosteck, 2010; Oberlack et al., 2022) which has no corre-
spondence among symmetries of the Navier-Stokes equations,
however averaged equations (6)–(8) are invariant under this
scaling group

t∗ = t, z∗ = z, ū∗ = eas u, p∗ = eas p, (13)

uw∗ = eas uw, w2∗ = eas w2, wb∗ = eas wb, b̄∗ = eas b

Wacławczyk et al. (2014) related the statistical scaling to the
phenomenon of intermittency, understood as alternating oc-
curence of laminar and turbulent flows, where

γ = eas (14)

plays the role of the intermittency parameter and (13) repre-
sents the conditional statistics for turbulent flow multiplied by
the weighting factor γ . Such intermittent flows occur in the
very stable ABLs, where turbulent motions are suppressed due
to the negative buoyancy flux.

We derived solutions of the governing system which re-
main invariant under the given set of scaling transformations
(Wacławczyk et al., 2023). The key point is that under the
Lie symmetry analysis, velocity, buoyancy and fluxes do not
scale independently, but are related with each other through
the scaling parameters β = at/az and χ = as/az. When buoy-
ancy plays an active role, the derived invariant solutions take
the following form

t − t0 = Xt |z− z0|β (15)

ū−u0 = Cu(Xt) |z− z0|1−β+χ , (16)

b̄−b0 = Cb(Xt) |z− z0|1−2β+χ , (17)

uw−uw0 = C1(Xt) |z− z0|2−2β+χ , (18)

w2 −w2
0 = C2(Xt) |z− z0|2−2β+χ , (19)

wb−wb0 = C3(Xt) |z− z0|2−3β+χ . (20)

The system is expected to approach these solutions, far enough
from boundaries and when initial conditions has been forgot-
ten.

NON-DIMENSIONAL WIND VELOCITY AND
BUOYANCY GRADIENTS

In the outer part of the ABL statistics of turbulence are
affected by the boundary layer heigth h. Hence, we assume
that z0 = h = const in Eqs. (15)–(20). Moreover, we take u0 =
ū(h) and b0 = b̄(h) as external velocity and buoyancy scales.
Nieuswtadt (1954) predicted that at z= h the fluxes are close to
zero. For this reason we assume uw0 = 0, w2

0 = 0 and wb0 = 0.
Then, solutions (15)–(20), when written in terms of φm and φh
read

φm =
κz√
|uw|

dū
dz

= z
Λ

(
1− z

h
)χ F

( u0
h X̃t

)
, (21)

φh = κz

√
|uw|

−wb
db̄
dz

= z
Λ

(
1− z

h
)χ H

( u0
h X̃t

)
. (22)

where X̃t = (t − t0)(1 − z/h)−β . The ratio u0/h was intro-
duced for dimensional consistency. Close to the surface the
ratio z/h ≪ 1 and Λ ≈ L. If, additionally, dependence on time
is neglected, Eqs. (21) and (22) reduce to

φm ∝
z
L
= ξ , φh ∝

z
L
= ξ , (23)

which is a limit of Eqs. (3) and (4) at strong stratifications.
Further from the surface if, χ ̸= 0 and/or the non-

dimensional functions depend on X̃t , the heigth of the bound-
ary layer h will affect the scaling, as the second length scale
apart from Λ. According to predictions (18) and (19) the ratio
of momentum fluxes and the variance of vertical fluctuations
should not depend on χ but only on X̃t

uw

w2
= G

(u0

h
X̃t

)
. (24)
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Another variable which does not depend on χ is the tur-
bulent turbulent Prandtl number

Prt =
φh

φm
=

H
F

= K
(u0

h
X̃t

)
̸= const. (25)

When the transiency effects become important Prt will not be
constant. This result is in contrast to the predictions of the
standard MOST with the functions (3) and (4), where Prt =
φh/φm = 1.

In Wacławczyk et al. (2023) it was assumed that Eq. (24)
can be inverted, such that the turbulent Prandtl number be-
comes a function of the ratio uw/w2 instead of X̃t

Prt =
φh

φm
= K′

(
uw

w2

)
. (26)

As an important direct consequence from Eqs. (21) and
(22), we also derive the Richardson number:

Ri =
db̄
dz

(
dū
dz

)−2
=
(

1− z
h

)−χ H
F2 , (27)

It can also be observed that non-zero intermittency scaling χ =
as/az ̸= 0 introduces dependence of the Richardson number Ri
on height in Eq. (27), whereas the classical MOST predicts a
constant Ri at large stratifications.

To represent φm and φh in terms of the Richardson and
Prandtl numbers, Eq. (27) should be solved for (1 − z/h)χ .
After introducing the result into Eqs. (21) and (22) we obtain

φm = z
Λ

1
Ri Prt

(
uw
w2

)
, (28)

φh =
z
Λ

1
Ri Pr2

t

(
uw
w2

)
. (29)

Eqs. (28), (29) reduce to (3) and (4) in the surface layer, where
Λ ≈ L and under the assumption Prt = 1. When the conditions
are close to neutral, ξ ∝ Ri, such that φm ≈ φh ≈ 1. For strong
stratifications the MO theory predicts Ri = 0.2 = const. Then
φm = φh ≈ 5z/Λ ≈ 5ξ in the surface layer.

RESULTS
In our analysis we use measurement data from the Sur-

face Heat Budget of the Arctic Ocean (SHEBA) experi-
ment (Persson et al., 2002). The campaign took place
from Oct 1997 to Oct 1998 on board of a Canadian ice-
breaker. Turbulent fluxes and mean meteorological data
were collected at five levels on a 20m tower. Turbulent
covariances available in the database were calculated with
the 1–h averaging window. The data available in the open
database (https://data.eol.ucar.edu/project/SHEBA) were
post–processed as outlined in Grachev et al. (2005). In partic-
ular, the low–frequency components of covariances were re-
moved to filter–out the effect of gravity waves.

The measurement carried out on the Arctic offers several
advantages over those on the mid-latitudes. During the polar
night, a long–lasting stable atmospheric boundary layer can be
quasi stationary, such that h ≈ const. Moreover, a surface cov-
ered with snow and ice is usually flat, uniform, and with no
large-scale slopes. Thus, no influence of katabatic flows needs
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Figure 1. Time series of Prt and uw/w2 measured at approx-
imately 8m above the ice level.

to be considered. SHEBA database is widely used until now in
many studies devoted to the stable ABL. In spite of many ad-
vantages, data suffered from unavoidable measurement uncer-
tianties and convergence errors due to finite time of averaging.
Moreover, due to instrumental issues part of the data is miss-
ing. As an illustration, figure 1 presents the sample time series
of the turbulent Prandtl number and the ratio uw/w2 measured
at approximately 8m above the ice level. The scatter of results
is considerable, however, the lines seem to be correlated. In
such case transiency of Prt can be parametrized by consider-
ing Prt a function of uw/w2 as assumed in Eq. (26).

It was found in Wacławczyk et al. (2023) that for SHEBA
data the best power-law fit of function K′ in Eq. (26) is

K′ = 1.1(uw/w2)0.7. (30)

However, this approximation works well at strong stratifica-
tions. In weakly stratified or neutral ABL the relative errors
of wb and db̄/dz measurements are very large. As a result the
scatter of results for Ri and Prt is considerable. For this rea-
son, treating ξ = z/L as a measure of stratification, we filtered
out data with ξ < 0.2 which are expected to follow the MOST
quite well. We plot the remaining data of the turbulent Prandtl
number as a function of uw/w2 in figure 2, together with the fit
(30). As predicted by Eq. (26), Prt is not constant. It clearly
decreases with decreasing uw/w2.

Figures 3 and 4 present the non-dimensional mean wind
and mean buoyancy gradients φm and φh. They are plotted as
functions of ξ/Ri, as suggested by formulas (28) and (29) un-
der the assumption Prt = 1. For some of the data points this
assumption is justified. However, data with large ξ/Ri (which
correlates with large stratifications) increasingly deviate from
linear functions. Moreover, data measured at weak stratifica-
tions follow rather different power-laws, namely

φm ∝ (ξ/Ri)1/3, φh ∝ (ξ/Ri)−1 (31)

By substituting definitions of ξ , Ri, φm and φh it can be shown
that these formulas reduce to dū/dz ∝ u∗/z and db̄/dz ∝ b∗/z,
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Figure 2. Turbulent Prandtl number as a function of uw/w2

for data with ξ > 0.2. Red line is the best-fit power-law func-
tion (30).
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Figure 3. Non-dimensional wind velocity gradient as a func-
tion of the parameter ξ/Ri.

that is, to logarithmic solutions. It is expected that at weak
stratifications ξ ∝ Ri. However, this condition is not fulfilled
exactly due to large relative errors of wb and db̄/dz, resulting
in large estimation uncertainties of Ri and L. As a result φm
and φh do not follow the formulas (28) and (29).

CONCLUSIONS
This work shows that new, interesting results can be de-

rived when considering symmetries of the equations governing
flows in the stable ABL. They are used to derive invariants, i.e.
functions which do not change their forms after a transforma-
tion of variables. The invariants play an important role in the
description and parametrization of turbulent flows. In the case
of stably stratified ABL, the condition (12) becomes crucial. It
represents the mutual dependence of velocity and temperature
fields, when temperature plays an active role in the dynamics
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Figure 4. Non-dimensional buoyancy gradient as a function
of the parameter ξ/Ri.

of ABL. This condition leads to the linear solution in the sta-
ble ABL, predicted by the MOST, see Yano & Wacławczyk
(2023) and Eq. (23).

However, as discussed by Grachev et al. (2005), at large
stratifications the measurement data increasingly deviate from
the MOST predictions. In particular, the scaling of the non-
dimensional functions φm and φh is closer to ∼ ξ 0.3. This is
explained as the influence of external (or global) intermittency
in the stable ABL caused by local collapses of turbulence. In
this work we account for the intermittency by using the statis-
tical scaling group (13). This scaling introduces dependence
of φm and φh on the height of the boundary layer h in Eqs.
(21) and (22). Dependence on h also enters through the vari-
able X̃t . It follows that the local Obukhov length Λ is not the
only length-scale which parametrizes ABL at large stratifica-
tions. On the other hand, the turbulent Prandtl number Prt in
Eq. (25) and the ratio uw/w2 in Eq. (24) do not depend on χ

but only on X̃t .
The derived dependence on non-dimensionalized time is

intriguing, as the non-stationarity becomes important espe-
cially at large stratifications due to intermittent structure of
ABL. Using the SHEBA data we presented sample time series
of uw/w2 and Prt with a visible correlation between the two
variables, in spite of considerable scatter of results due to mea-
surement errors and insufficient convergence of statistics. The
result suggest that the non-stationarity can be parametrized by
presenting Prt as a function of uw/w2. Veryfying the derived
formulas with other databases and/or against results of numer-
ical experiments is a promising direction for a further study.

In future studies we also plan to account for the horizon-
tal transports and the effect of Coriolis force. The presence
of Coriolis force will possibly modify symmetries of the con-
sidered equations. Taking it into account may improve pre-
dictions at very large stratifications, where the ABL height is
relatively small, and the statistics of the whole ABL are influ-
enced by the Earth’s rotation.

Hopefully, derived invariant functions will improve
parametrizations of the stable atmospheric boundary layers
and provide the basis for turbulence closures which account
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for the intermittent structure of ABL.
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