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ABSTRACT
Turbulent heat transfer in a pipe flow subjected to ax-

ial system rotation is studied using direct numerical simula-
tion (DNS) for a wide range of rotation numbers varying from
Rob = 0 to 20. At moderate and high rotation numbers, the
axial system rotation tends to reduce the mean temperature,
temperature variance and axial turbulent heat flux, while in-
crease the Nusselt number and suppress the turbulent scalar
energy (TSE) level of the flow. Two types of flow structures
are involved in the heat convection process. The first type is
hairpin structures of the turbulent boundary layer developing
over the pipe wall. The second type is the Taylor columns only
appearing at relative high rotation numbers. Owing to the axial
system rotation, the pressure diffusion-redistribution and Cori-
olis production terms dominate the transport of turbulent heat
fluxes. As the rotation number increases, the streaky thermal
structures become increasingly elongated in the near-wall re-
gion of the pipe, resulting in heat transfer enhancement at high
rotation numbers.

INTRODUCTION
Turbulent heat transfer in an axially-rotating pipe flow is

a challenging problem which is frequently encountered in en-
gineering applications such as rotating heat exchangers and ro-
tary machines. In an axially-rotating circular pipe flow, Corio-
lis forces arise which further induce large secondary flow mo-
tions in the cross-stream direction. The energetic secondary
flows influence considerably not only the flow statistics and
coherent structures but also the performance of turbulent heat
transfer.

Compared with the study of turbulent heat transfer
through a stationary (non-rotating) circular pipe flow, the num-
ber of experimental and numerical investigations of turbulent
heat convection in an axially-rotating pipe flow is rather lim-
ited in the literature. Cannon & Kays (1969) conducted the
first experiment to investigate the effects of axial rotation on
turbulent heat transfer in a circular pipe flow. They observed
that the system rotation suppressed turbulent velocity fluctu-
ations in the near-wall region of the pipe. As the rotation
number increased, the turbulent flow became increasingly lam-
inarized as the convective heat transfer rate decreased. Re-
ich & Beer (1989) measured turbulent heat and fluid flow in
an axially-rotating pipe flow using laser Doppler velocime-
try (LDV). They observed that the friction factor and Nus-
selt number reduced considerably with an increasing rotation
number. Satake & Kunugi (2002) performed direct numeri-
cal simulation (DNS) to study a heated axially-rotating pipe
flow under a uniform peripheral wall heat flux condition. In
their research, the effects of axial system rotation were investi-
gated through various turbulence statistics of the velocity and

temperature fields. Ould-Rousis et al. (2010) compared DNS
and large-eddy simulation (LES) results of the turbulent heat
transfer in an axially-rotating pipe flow under identical ther-
mal boundary conditions. They observed that the axial and
azimuthal turbulent heat fluxes significantly reduced and aug-
mented, respectively, as the rotation number increased. By
contrast, the axial system rotation had only a slight influence
on the radial component of turbulent heat flux. Bousbai et al.
(2013) conducted LES to investigate the effects of axial system
rotation on the turbulent heat convection in a pipe flow. They
observed that the degree of intermittency as indicated by the
skewness and flatness factors of the temperature fluctuations
tended to increase near the pipe wall as the rotation number
increased.

Based on a thorough literature review, it is noticed that de-
tailed DNS studies of turbulent heat convection in an axially-
rotating turbulent pipe flow are still rather scarce, and in-depth
understanding of the effects of Coriolis forces on the tempera-
ture statistics and thermal structures needs to be developed. In
view of this knowledge gap, we aim to conduct a systematic
DNS study of turbulent heat transfer in a circular pipe sub-
jected to axial system rotation for a wide range of rotation
numbers, which is the first objective of this research.

Furthermore, among a few available DNS studies of
axially-rotating pipe flows in the literature, the longest pipe
was that used in Orlandi & Ebstein (2000), which had a pipe
length of Lz = 25R (or, 7.96πR), where R is the pipe radius. In
order to reasonably capture the energetic axial eddy motions
and precisely reproduce the physical process of heat convec-
tion, very long pipes are used in our DNS, which constitutes
the second objective of this research. The range of pipe lengths
of this research is Lz = 30πR-180πR, such that the shortest
and longest pipes are 3.77 and 22.62 times of that used in the
DNS of Orlandi & Ebstein (2000). Comparatively speaking,
the long pipes used in our current DNS studies demand a sig-
nificant increase of the computational efforts.

TEST CASE AND NUMERICAL ALGORITHM
Figure 1 shows the computational domain under axial sys-

tem rotation at a counterclockwise angular speed Ωz. The ra-
dial, azimuthal and axial coordinates of the cylindrical coordi-
nate system are denoted using r, β and z, and the correspond-
ing velocity components are denoted as ur, uβ and uz, respec-
tively. Depending upon the rotation number, the pipe length
varies from Lz = 30πR (at Rob = 0) to 180πR (at Rob = 20)
to ensure that energetic turbulent eddy motions are reasonably
captured in the z-direction. The specific pipe lengths in regard
to different rotation numbers are given in Tab. 1. The pipe
flow is fully developed at Reynolds number of Reτ = 180 and
Prandtl number of Pr = 1. In total, eight test cases of rotation
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Figure 1. Schematic of the computational domain of an
axially-rotating circular pipe in cylindrical coordinate system.
Fr and Fβ are two Coriolis force components in radial and az-
imuthal directions, respectively. The pipe flow is cooled along
the axial direction by imposing a constant wall heat flux (q̇w)
on the curved wall.

Table 1. Summary of eight rotating cases tested.

Case # 1 2 3 4 5 6 7 8

Rob 0 1 2 4 6 10 14 20
Lz 30πR 30πR 30πR 60πR 60πR 90πR 120πR 180πR
Nz 3600 3600 3600 5400 5400 6000 6400 7200
∆z+ 4.712 4.712 4.712 6.283 6.283 8.482 10.603 14.137

numbers ranging from Rob = 0 to 20 are compared. Periodic
boundary condition and no-slip condition are applied to the
z-direction and on the pipe surface, respectively. A uniform
peripheral wall heat flux (q̇w) boundary condition is imposed
on the pipe wall for cooling the flow. Here, Rob = 2ΩzR/Ub
and Reτ = uτ R/ν , where Ub is the bulk mean velocity, uτ is
the wall friction velocity, and ν is the kinematic viscosity of
the fluid. The governing equations for an incompressible flow
with respect to an axial rotating reference frame are

∇ · u⃗ = 0 , (1)
∂ u⃗
∂ t

+ u⃗ ·∇u⃗ =−Πêz −
1
ρ

∇p+ν∇
2u⃗+ F⃗ , (2)

∂θ

∂ t
+ u⃗ ·∇θ =−uz

dTw

dz
+α∇

2
θ , (3)

where u⃗, ρ , α , p and θ are the velocity, density, thermal diffu-
sivity, pressure and deficit temperature (defined as θ = T −Tw)
of the fluid, respectively. Π and dTw/dz represent the constant
mean axial pressure and temperature gradients, respectively.
Specifically, dTw/dz = dθb/dz = 2q̇w/(ρCpUbR), where Tw
is the local mean peripheral temperature at wall, θb is the bulk
mean temperature, and Cp is the specific heat capacity of the
fluid. As shown schematically in Fig. 1, in response to the ax-
ial rotation, two components of the Coriolis force F⃗ appear in
the r- and β -directions, i.e., Fr =−2Ωzuβ and Fβ = 2Ωzur.

The DNS was performed with a spectral-element code
so-called “Semtex” by Blackburn & Sherwin (2004). The
quadrilateral spectral-element method was applied which di-
vides the cross-section of the pipe into 420 finite elements,
with each element further discretized spatially with 8th-order
Gauss-Lobatto-Legendre Lagrange interpolants. As is shown
in Tab. 1, depending upon the rotation number, the physical
quantities were expanded into the spectral space using Fourier
series with Nz = 3600-7200 modes in the z-direction. There-
fore, the total grid points varied from Ntot = 97 to 194 mil-
lion. The grid spacing in three directions are ∆z+ = 4.712-
14.137, ∆r+ = 0.123-3.595, and R∆β+ = 0.813-5.133, re-
spectively. All simulations were held at a constant time step
of ∆t+ = u2

τ ∆t/ν = 0.0122. Here, the friction velocity is de-
fined as uτ =

√
−ΠR/2. For each tested case, 300 instanta-

neous snapshots over 40 large-eddy turnover times (LETOTs,
defined as R/uτ ) with 1.4-2.8 TB data were generated on the
supercomputers of the Digital Research Alliance of Canada.

In analogy with a turbulent boundary-layer flow over a
flat plate, a dimensionless coordinate is applied for study-
ing the thermal behavior of the flow in the circular pipe, i.e.,

〈θ
〉

(a) Mean temperature ⟨θ⟩+

〈θ
θ

〉

(b) Temperature variance ⟨θ ′θ ′⟩+

Figure 2. Profiles of mean temperature ⟨θ⟩+ and temper-
ature variance ⟨θ ′θ ′⟩+ at eight different rotation numbers for
Rob = 0-20. All values are non-dimensionalized by θτ .

y def
= 1− r/R. Moreover, In order to non-dimensionalize the

temperature statistics, the wall friction temperature needs to
be introduced which is defined as θτ =−q̇w/(ρCpuτ ).

RESULTS AND DISCUSSIONS
Figure 2 compares the profiles of the mean tempera-

ture ⟨θ⟩+ and temperature variance ⟨θ ′θ ′⟩+ with respect to
the wall normal distance y at eight different rotation num-
bers. Here, ⟨·⟩ denote averaging over the time and over the
homogeneous directions. Clearly, the profiles of ⟨θ⟩+ and
⟨θ ′θ ′⟩+ are axial-symmetric, varying non-monotonically with
Rob. As shown in Fig. 2(a), the peak value of ⟨θ⟩+ aug-
ments by 23.77% at the pipe center as the rotation number
increases from Rob = 0 to 1. As Rob further increases to 20,
the peak magnitude decreases considerably, which is 44.54%
lower than that of Rob = 0. In Fig. 2(b), the profile of ⟨θ ′θ ′⟩+
peaks at y = 0.093 for the non-rotating pipe flow. Owing to
the system rotation imposed, the peak of ⟨θ ′θ ′⟩+ increases
at y = 0.127 at Rob = 2, and then reduces monotonically at
the pipe center at Rob = 20. It is evident that the peak posi-
tion tends to shift toward the pipe center when as the rotation
number increases from Rob = 0 to 20. Meanwhile, the profile
of ⟨θ ′θ ′⟩+ turns into a single-peak pattern from a dual-peak
pattern in the entire r-direction. Clearly, the system rotation
behaves to suppress the TSE level in the near-wall region of
the pipe.

Figure 3 shows the bulk mean temperature θ
+
b , volumed-

averaged TSE k+
θ

and Nusselt number Nu/Nure f as a function
of rotation number Rob. Their definitions read as

θb =
2

UbR2

∫ R

0
⟨uz⟩⟨θ⟩r dr , (4)

kθ =
2

R2

∫ R

0
⟨θ ′

θ
′⟩r dr , (5)

Nu =
hD
K

=
2R
θb

∂ ⟨θ⟩
∂y

∣∣∣∣
y=0

, (6)
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θ

(a) Bulk mean temperature θ
+
b

θ

(b) Volume-averaged TSE k+
θ

(c) Nusselt number Nu/Nure f

Figure 3. Profiles of bulk mean temperature θ
+
b , volume-

averaged TSE k+
θ

and Nusselt number Nu/Nure f with respect
to rotation number Rob. In panels (a,b), the values of θ

+
b and

k+
θ

have been non-dimensionalized by θτ . In panel (c), all
values are further treated by dividing Nure f determined from
the Gnielinski correlation.

respectively. Here, h is the convective heat transfer coefficient,
and K is the thermal conductivity of the fluid. In Fig. 3(a),
the profile of θ

+
b peaks at Rob = 1, with a magnitude that is

29.38% higher than that of Rob = 0. As Rob increases beyond
1, the value of θ

+
b reduces dramatically. From Fig. 3(b), it

is seen that the profile of k+
θ

increases considerably with Rob
and reaches its maximum at Rob = 6. As Rob continues to
increase to 20, the value of k+

θ
decreases by 15.62% in com-

parison with that of Rob = 0. It is clear from Fig. 3(b) that the
mechanism of the axial system rotation is to inject TSE into the
pipe flow if Rob ≤ 6. However, once Rob is higher than 6, the
system rotation tends to suppress the TSE level. In Fig. 3(c),
the Nusselt number Nu is further treated by dividing Nure f de-
termined from the Gnielinski correlation. The minimum value
of Nu is observed at Rob = 1, which is 15.5% lower than that
of Rob = 0. When Rob increases beyond 1, the value of Nu
enhances dramatically, and reaches its maximum at Rob = 20,
with a magnitude that is 89.4% higher than that of Rob = 0.
From Figs. 3(a-c), it is evident that the axial system rotation

〈
θ

〉

(a) Axial component ⟨u′zθ ′⟩+

〈
θ

〉

(b) Radial component ⟨u′rθ ′⟩+

−
〈

β
θ

〉

(c) Azimuthal component ⟨u′
β

θ ′⟩+

Figure 4. Profiles of turbulent heat fluxes ⟨u′zθ ′⟩+, ⟨u′rθ ′⟩+
and ⟨u′

β
θ ′⟩+ at eight different rotation numbers for Rob = 0-

20. All values are non-dimensionalized by uτ and θτ .

tends to promote the thermal energy transport at high rotation
numbers.

Figure 4 compares the turbulent heat fluxes ⟨u′zθ ′⟩+,
⟨u′rθ ′⟩+, and ⟨u′

β
θ ′⟩+ at eight rotation numbers tested. All

profiles are axial-symmetric about the pipe center (y = 1.0). In
Fig. 4(a), the magnitude of ⟨u′zθ ′⟩+ varies non-monotonically
in the near-wall region with Rob, and reaches its maximum at
y = 0.093 at Rob = 1. As Rob further increases to 20, the sys-
tem rotation tends to lessen the magnitude of ⟨u′zθ ′⟩+. Mean-
while, the profile of ⟨u′zθ ′⟩+ evolves from a dual-peak to a
quadruple-peak pattern along a diameter. From Fig. 4(b), the
profile of ⟨u′rθ ′⟩+ is strictly linear and symmetric about the
pipe center at Rob = 0. However, as soon as the system ro-
tation is imposed, the profile of ⟨u′rθ ′⟩+ deviates from this
linear characteristic. The maximum value of ⟨u′rθ ′⟩+ is ob-
served at y = 0.187 at Rob = 6. In Fig. 4(c), ⟨u′

β
θ ′⟩+ is trivial

at Rob = 0, but its magnitude varies non-monotonically with
Rob. At Rob = 4, the magnitude of ⟨u′

β
θ ′⟩+ reaches its max-

imum at y = 0.058. Moreover, the shape of ⟨u′rθ ′⟩+ remains
stable and crosses zero five times over a diameter (in the entire
r-direction) if Rob ≥ 10.
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−〈 θ 〉

−〈 θ 〉

−〈 θ 〉

Figure 5. Budget profiles of radial heat flux q+r at three rota-
tion numbers Rob = 0, 6 and 20. qvis+

r and −⟨u′rθ ′⟩+ represent
viscous and turbulent heat fluxes, respectively. All radial heat
fluxes are non-dimensionalized by uτ and θτ .

By applying turbulence decomposition (i.e., θ = ⟨θ⟩+θ ′)
to the thermal energy equation (3), the following radial heat
flux decomposition can be obtained

qtot+
r = qvis+

r −⟨u′rθ
′⟩+ =

2
1− y

∫ 1

y

⟨uz⟩
Ub

(y−1) dy , (7)

where qtot
r and qvis

r represent total heat flux and viscous heat
flux (expressed as α∂ ⟨θ⟩/∂ r) of the radial direction, respec-
tively. Figure 7 shows the decomposition of the radial heat flux
at three different rotation numbers Rob = 0, 6 and 20. Clearly,
all three profiles of −⟨u′rθ ′⟩+, qtot+

r and qvis+
r are sensitive to

the rotation number, although the Coriolis force (as indicated
by Ωz) does not explicitly show in Eq. (7). The influence of
the axial system rotation on the transport of thermal energy is
through the convection of the fluid flow.

Figure 6 compares the premultiplied axial cross-spectrum
of axial, radial and azimuthal velocity-temperature fluctua-
tions k+z Q̃+

z , k+z Q̃+
r and k+z Q̃+

β
calculated along the streamwise

direction at wall-normal positions y = 0.093, 0.187 and 0.058,
respectively. The 1D axial cross-spectrum is defined as

Q̃i(kz) = Re
{

û′i
∗
θ̂ ′
}

, (8)

where an overbar represents temporal averaging, and operator
Re{·} and superscript “*” denote the real part and conjugate of
a complex number, respectively. A hat denotes Fourier trans-
form in the axial direction of an arbitrary variable φ(r,β ,kz, t),
i.e.

φ̂(r,β ,kz, t) =
1
Lz

∫ Lz

0
φ(r,β ,z, t)e− i

¯
kzzdz , (9)

where i
¯
=

√
−1 is the imaginary unit and kz = nzk0z is the

axial wavenumber, with nz ∈ [−Nz/2, Nz/2− 1] being an in-
teger and kz0 = 2π/Lz being the smallest positive wavenum-
ber. The axial wavelength is defined as λz = 2π/kz, non-
dimensionalized as λ+

z = λzuτ/ν .
It is clear from Fig. 6(a) that the mode of the dome peak

of k+z Q̃+
z (corresponding to the characteristic length scale of

the most energetic eddies) is located within λ+
z ∈ [450,2400]

in the near-wall region of the non-rotating pipe flow. It re-
sults from the hairpin structures of the boundary layer devel-
oping over the pipe wall. In response to the axial system ro-
tation, the dome peak reaches its maximum at Rob = 1 within
λ+

z ∈ [610,2400]. As Rob increases from 1 to 20, the dome
peak reduces dramatically, and its mode further moves toward
the larger wavelengths. It is known that the axial system rota-
tion induces counterclockwise-rotating secondary-flow struc-
tures in the pipe flows known as Taylor columns (at relatively
high rotation numbers), which elongate in the axial direction

λ

π π π π π

(a) Axial component at y = 0.093

λ

(b) Radial component at y = 0.187

λ

−
β

(c) Azimuthal component at y = 0.058

Figure 6. Profiles of premultiplied axial cross-spectrum of
axial, radial and azimuthal velocity-temperature fluctuations
k+z Q̃+

z , k+z Q̃+
r and k+z Q̃+

β
at eight different rotation numbers

for Rob = 0-20, calculated along the streamwise direction at
wall-normal position y = 0.093, 0.187 and 0.058, respectively.

and spin in the azimuthal direction. Consequently, additional
peaks appear at the large wavelengths as Rob increases above
4. Clearly, from Fig. 6(a), the axial system rotation tends to
weaken the TSE level at high rotation numbers. Similar obser-
vations also made in the profiles of k+z Q̃+

r and k+z Q̃+
β

shown in

Figs. 6(b) and (c), respectively. The additional peaks of k+z Q̃+
r

and k+z Q̃+
β

occur for Rob ≥ 4. At very high rotation numbers,

the magnitudes of k+z Q̃+
r and k+z Q̃+

β
become substantially at-

tenuated.
To refine our investigation into the rotating impacts on

the turbulent heat fluxes ⟨u′iθ ′⟩, its transport equation can be
further studied, viz.

∂ ⟨u′iθ ′⟩
∂ t

=Ci +Pi +Pt
i +Dt

i +Dp
i +Dm

i +Pc
i = 0 , (10)

where Ci, Pi, Pt
i , Dt

i , Dp
i , Dm

i and Pc
i represent the con-

vection, turbulent production, turbulent production generated
from the constant mean axial driving temperature gradient,
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〈
θ

〉

(a) Rob = 0

〈
θ

〉

(b) Rob = 20

Figure 7. Budget balance of axial turbulent heat flux
⟨u′zθ ′⟩+ of the non-rotating (Rob = 0) and rotating (Rob = 20)
flows. All budget terms are non-dimensionalized by u2

τ θτ/R.

turbulent diffusion, pressure diffusion-redistribution, molec-
ular diffusion-dissipation and Coriolis production terms, re-
spectively. As is shown in Fig. 1, there are only two Cori-
olis force components in the radial and azimuthal directions.
Therefore, only the transport equations of ⟨u′rθ ′⟩ and ⟨u′

β
θ ′⟩

have the Coriolis production terms, i.e., Pc
r =−2Ωz⟨u′β θ ′⟩ and

Pc
β
= 2Ωz⟨u′rθ ′⟩.

Figure 7 shows the budget balance of the axial turbu-
lent flux ⟨u′zθ ′⟩+ of the non-rotating (Rob = 0) and rotating
(Rob = 2) pipe flows. As is shown in Fig. 7(a), the budget bal-
ance of ⟨u′zθ ′⟩+ is mostly dominated by turbulent production
P+

z and molecular diffusion-dissipation Dm+
z in the near-wall

region of the non-rotating pipe flow. More specifically, P+
z

and Dm+
z behave as source and sink terms, respectively. By

contrast, at Rob = 20, the mechanisms of molecular diffusion-
dissipation Dm+

z and pressure diffusion-redistribution Dp+
z are

weakened and strengthened, respectively, by the axial system
rotation. Consequently, Dm+

z and Dp+
z become comparable in

magnitude and both function as sink terms in the near-wall re-
gion of the pipe.

Figure 8 compares the budget balance of the radial tur-
bulent heat flux ⟨u′rθ ′⟩+ at three different rotation numbers
Rob = 0, 6 and 20. For the non-rotating pipe flow, turbulent
production P+

r and pressure diffusion-redistribution Dp+
r dom-

inate the budget balance of ⟨u′zθ ′⟩+ in the y-direction, acting as
source and sink terms, respectively. However, as Rob increases
to 6, Coriolis production Pc+

r acts as the most dominant source
term (surpassing P+

r ) to balance with Dp+
r . As Rob further in-

creases to 20, it is interesting to observe that the functions of
Pc+

r and Dp+
r are reversed in region y ∈ [0.127,0.578]. It is

interesting to observe that at Rob = 6 and 20, Pc+
r and Dp+

r
balance each other so well as if they are a mirror reflection of
each other. It is clear that the magnitude of Dp+

r increases al-
most ninefold in the near-wall region of the pipe at Rob = 6
and 20 compared with those of the non-rotating pipe flow in

〈
θ

〉

(a) Rob = 0

〈
θ

〉

(b) Rob = 6

〈
θ

〉

(c) Rob = 20

Figure 8. Budget balance of radial turbulent heat flux
⟨u′rθ ′⟩+ of the non-rotating (Rob = 0) and rotating (Rob = 6
and 20) flows. All budget terms are non-dimensionalized by
u2

τ θτ/R.

order to neutralize the significant impact of Pc+
r .

Figure 9 compares the budget balance of the azimuthal
turbulent heat flux ⟨u′

β
θ ′⟩+ for two rotating flow cases (Rob =

1 and 20). At Rob = 1, the budget balance of ⟨u′
β

θ ′⟩+ is mostly

dominated by Coriolis production Pc+
β

and pressure diffusion-

redistribution Dp+
β

. However, at Rob = 20, the dominance of

Pc+
β

and Dp+
β

become the most strongly expressed in the trans-
port of ⟨u′

β
θ ′⟩+. Their magnitudes increase almost fifteenfold

in the near-wall region in comparison with those of the rotating
pipe flow at Rob = 1.

Figure 10 compares streaky thermal structures in the β -z
plane at y = 0.127 for Rob = 0, 1 and 20, in a domain that is
arbitrarily selected with z/R ∈ [0,10]. At Rob = 0, the thermal
streaks shown by the positively- and negatively-valued θ ′+ al-
ternate in the β -direction. As Rob increases to 6, the strengths
of those streaks enhance in response to the axial system rota-
tion. However, as Rob reaches 20, the positively-valued ther-
mal streaks reduce significantly, while the negatively-valued
thermal streaks stretch along the z-direction and tilt slightly
along the β -direction, leading to an interruption of the forma-
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β

β

β

β

β

〈
β
θ

〉

β

β

(a) Rob = 1

〈
β
θ

〉

(b) Rob = 20

Figure 9. Budget balance of azimuthal turbulent heat flux
⟨u′

β
θ ′⟩+ for two flow cases (Rob = 1 and 20). All budget terms

are non-dimensionalized by u2
τ θτ/R.

tion of hairpin structures.

CONCLUSIONS
Turbulent heat transfer confined within a circular pipe

flow subjected to axial rotation has been studied using DNS.
In order to thoroughly investigate the Coriolis force impacts on
the temperature field, a wide range of rotation numbers vary-
ing from Rob = 0 to 20 have been examined. In response to
the axial system rotation, a maximum of ⟨θ⟩+ is observed at
Rob = 1. As Rob further increases, the system rotation tends
to reduce ⟨θ⟩+ in magnitude. Furthermore, the magnitudes of
both ⟨θ ′θ ′⟩+ and ⟨u′zθ ′⟩+ decrease while the Nusselt number
increases with an increasing value of Rob, indicating that the
system rotation functions to suppress the TSE level of the flow.

For the premultiplied turbulent thermal spectra, the dome
peak occurs due to the hairpin structures of the boundary layer
developing over the pipe wall. The magnitude of the premulti-
plied cross-spectrum k+z Q̃+

z reaches its maximum at Rob = 1.
As Rob continues to increase, its peak value reduces dramat-
ically and its mode moves toward larger wavelengths. It is
interesting that additional peaks occur when Rob ≥ 4, which is
created by the Taylor columns associated with the axial system
rotation imposed.

In the budget balance of turbulent heat fluxes of the
axially-rotating pipe flows, the Coriolis force (as indicated by
Ωz) does not directly influence ⟨u′zθ ′⟩+. For both ⟨u′rθ ′⟩+
and ⟨u′zβ ′⟩+, the most dominant terms are the Coriolis produc-
tion (as a source exceeding turbulent production) and pressure-
diffusion redistribution (as a sink). These terms in ⟨u′rθ ′⟩+ and
⟨u′

β
θ ′⟩+ balance each other so well as if they are a mirror re-

flection of each other.
It is interesting to observe that in response to the system

rotation imposed, the near-wall thermal streaky structures ex-
tend in the z-direction and tilt in the β - direction, resulting in
a restriction on the formation of the hairpin structures.

(a) Rob = 0

(b) Rob = 1

(c) Rob = 20

Figure 10. Contours of instantaneous temperature fluctua-
tion θ ′+ in the β -z plane at wall normal position y = 0.127
for the non-rotating (Rob = 0) and rotating (Rob = 1 and 20)
flows.

REFERENCES
Blackburn, H. M. & Sherwin, S. J. 2004 Formulation of

a Galerkin spectral element-Fourier method for three-
dimensional incompressible flows in cylindrical geome-
tries. J. Comp Phys. 197 (2), 759–778.

Bousbai, M., Ould-Rouiss, M., Mazouz, A. & Mataoui, A.
2013 Turbulent heat transfer characteristics of water flow
in a rotating pipe. Heat Mass Transf. 49 (4), 469–484.

Cannon, J. N. & Kays, W. M. 1969 Heat transfer to a fluid
flowing inside a pipe rotating about its longitudinal axis. J.
Heat Transf. 91 (1), 135–139.

Orlandi, P. & Ebstein, D. 2000 Turbulent budgets in rotating
pipes by DNS. Int. J. Heat Fluid Flow 21, 499–505.

Ould-Rousis, M., Dries, A. & Mazouz, A. 2010 Numerical
predictions of turbulent heat transfer for air flow in rotating
pipe. Int. J. Heat Fluid Flow 31 (4), 507–517.

Reich, G. & Beer, H. 1989 Fluid flow and heat transfer in an
axially rotating pipe - I. Effect of rotation on turbulent pipe
flow. Int. J. Heat Mass Transf. 32 (3), 551–562.

Satake, S. & Kunugi, T. 2002 Direct numerical simulation
of turbulent heat transfer in an axially rotating pipe flow:
Reynolds shear stress and scalar flux budgets. Int. J. Numer.
Meth. Heat Fluid Flow 12 (8), 985–1008.

6


