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ABSTRACT
By implementing the immersed boundary method, nu-

merical investigation into heat transfer and flow structure has
been conducted in turbulent thermal convection between hori-
zontal porous walls heated from below and cooled from above.
We perform direct numerical simulation with high-order com-
pact schemes for turbulent convection at the Rayleigh number
Ra = 106–3×108. It is found that at low Ra, the Nusselt num-
ber Nu in the bulk region scales with Ra1/3 as in the classical
state, whereas at high Ra, Nu scales with Ra1/2, implying the
ultimate state in which the vertical heat flux is independent
of thermal conductivity, i.e., the so-called anomalous thermal
conduction. At low Ra, vertical (wall-normal) fluid motion
is not excited in the near-wall region despite wall porosity, so
that the classical state can be observed. At high Ra, large-scale
thermal plumes appear even near the walls to significantly in-
tensify the wall heat flux, leading to the ultimate state. In be-
tween these two distinct scaling ranges of Ra, more interest-
ingly, we find super-ultimate behaviour Nu ∼ Ra. This super-
ultimate scaling is considered to be a consequence of full exci-
tation of large-scale thermal plumes comparable with those in
the ultimate state at high Ra and of less energy dissipation in
the flow through porous media than in the ultimate state at high
Ra. Extension of the super-ultimate behaviour to a higher-Ra
range is also discussed.

Introduction
The canonical thermal flow system known as Rayleigh-

Bénard convection is brought about by buoyancy in a hori-
zontal fluid layer that is heated from below and cooled from
above. The Rayleigh number and the Prandtl number, respec-
tively defined as Ra = gα∆T H3/(νκ) and Pr = ν/κ , are im-
portant dimensionless parameters in this flow system, where
g, α , κ , and ν stand for the acceleration of gravity, volumetric
expansion coefficient, thermal diffusivity, and kinematic vis-
cosity, respectively. The intensity of a heat flux is measured in
relation to thermal conduction using the Nusselt number Nu.
Long discussed has been the power law Nu ∼ Raγ , where dif-
ferent values of the exponent γ show different states in this
system. The classical scaling Nu ∼ Ra1/3 widely observed in
experiments and numerical simulations was derived by Malkus

(1954) and Priestley (1954) using instability and dimensional
analyses. Kraichnan (1962), on the other hand, forecasted an
asymptotic final regime as Nu ∼ Pr1/2Ra1/2 with a logarithm
correction resulting from turbulent boundary layers. The most
important implication is that in the ultimate state, heat trans-
port cannot be dependent on kinematic viscosity or thermal
diffusivity. By using numerical and experimental methods,
several attempts have been made to reach the ultimate scaling;
however, the effects of the wall even with surface roughness
have been known to hinder heat transport from demonstrating
the ultimate scaling (see e.g. Zhu et al., 2019).

Kawano et al. (2021) has recently accomplished the ul-
timate scaling at large Rayleigh numbers in turbulent ther-
mal convection between Darcy-type permeable walls on which
the vertical velocity is given by the pressure fluctuation p as
w =±β p/ρ with a positive constant β (Jiménez et al., 2001).
Motivated by Kawano et al. (2021)’s introduction of perme-
able walls, we have investigated turbulent thermal convection
between porous walls, and in this more realistic configuration,
we have also achieved the ultimate heat transfer (Meng et al.,
2022). In this study, we report that the super-ultimate heat
transfer Nu ∼ Ra can be attained in the intermediate range of
Ra between the classical and ultimate regimes. We discuss the
mechanism governing this super-ultimate transition in light of
the observed phenomena and their relevance to the idealised
configuration of Darcy-type permeable walls, which may pro-
vide us with additional insight into the extension of the super-
ultimate heat transfer to a higher-Ra range.

Governing equations and flow configuration
Our governing equations are the Boussinesq equations

which are the incompressible Navier–Stokes equations with
the Oberbeck-Boussinesq approximation and the energy equa-
tion. To assure quasi-spectral precision, a staggered finite-
difference algorithm Incompact3D developed by Laizet &
Lamballais (2009) and Laizet & Li (2011) based on high-order
compact schemes has been utilized. The detailed effects gener-
ated by the geometric structures in this flow system are created
using the immersed boundary method. We use the free-fall ve-
locity U f = (gα∆T H)1/2 (∆T and H being a temperature dif-
ference and a distance between the porous walls, respectively)
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as a reference velocity. In this study, the Rayleigh number is
changed in the range Ra = 106–3×108 for Pr = 1.

The Boussinesq equations, which employs the Oberbeck-
Boussinesq approximation in the Navier-Stokes equation are
our governing equations,

∂uuu
∂ t

+(uuu ·∇)uuu =− 1
ρ

∇p+ν∇
2uuu+gαT eeez + fff b (1)

∇ ·uuu = 0 (2)

∂T
∂ t

+(uuu ·∇)T = κ∇
2T +qb (3)

in which, uuu(xxx, t) = ueeex + veeey + weeez and T (xxx, t) denote the
velocity field and temperature field respectively. The veloc-
ity field and temperature field in this case follow the peri-
odic boundary conditions in the horizontal x- and y-directions
with the same length as Lx = Ly = H. The fff b and qb denote
the force field and heat source term on account of the imple-
mented immersed boundary method, respectively. We use the
buoyancy-induced terminal velocity, U f = (gα∆T H)1/2 as a
reference velocity scale. Pr and Ra are control parameters in
the system and the Pr is set to unity in this study. Moreover, the
aspect ratio i.e., the ratio of the horizontal extent to the height
is also a control parameter. The boundary conditions for com-
putational domain of liquid parts have been set as blow,

u(z = 0) = u(z = 3H) = w(z = 0) = w(z = 3H) = 0 (4)

T (z = 0) = T (z = 3H) = 0 (5)

and the boundary conditions for the solid parts are imposed as
no-slip and isothermal,

u = v = w = 0 (6)

T (z < H|solid) = ∆T (7)

T (z > 2H|solid) = 0 (8)

The intensity of the convection will be quantified in terms
of the heat flux resulting from the temperature difference be-
tween the top and bottom walls given by Nusselt number Nu,

Nu =
−κ

d⟨T ⟩xyt
dz + ⟨wT ⟩xyt

κ∆T/H
(9)

where < ·>xyt denotes the horizontal and time average on the
variables at the center of domain.
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Figure 1: The geometry of porous walls and flow config-
uration. The lower, hotter (or upper, cooler) porous me-
dia and bottom (or top) wall are coloured red (or blue).
The fluid is coloured grey.

The geometry and flow configuration are shown in Fig-
ure 1. The velocity and the temperature are supposed to be
periodic in the horizontal x- and y-directions with the same pe-
riodicity Lx = Ly = H. The lower, hotter (or upper, cooler)
porous wall with temperature T = ∆T (or T = 0) possesses a
10×10 matrix of vertical square holes in the periodic box. The
hole width is 0.08H. There is a plenum chamber with a height
0.08H between the lower (or upper) porous wall and the bot-
tom (or top) wall with the consistent temperature T = ∆T (or
T = 0).

Scaling property and energy dissipation
It is seen from Figure 2 that by introducing porosity in the

walls, the ultimate scaling Nu ∼ Ra1/2 can be achieved at high
Rayleigh number Ra ≳ 108. At low Rayleigh number around
Ra = 106, on the other hand, Nu is nearly consistent with that
in the conventional non-porous case and exhibits the classical
scaling Nu ∼ Ra1/3, indicating that the wall porosity has no
significant effect on heat transfer.

The most remarkable observation in Figure 2 is that super-
ultimate transient Nu ∼ Ra appears in between the classical
and the ultimate regimes, significantly exceeding the ultimate
scaling Nu ∼ Ra1/2.

We have confirmed that at higher Ra ≳ 107 large-scale
thermal plumes are induced by the wall porosity and highly
intensify thermal convection and hence heat transfer (figure
not shown). The induced large-scale thermal structures fully
extend from one porous wall to the other, so that they are char-
acterised in terms of the length scale H and the temperature
scale ∆T . Those large-scale strong thermal plumes are the key
to the achievement of the (super-) ultimate state.

Figure 3 displays the average local dissipation inside the
near-wall region, which is known to be the primary contribu-
tor to the overall energy dissipation in the system. From this
image, it is evident that the dissipation diminishes as the Ra
drops for lower values of Ra. The behaviour of normalized
dissipation is typically laminar. For higher values of Ra, the
dissipation shown in Figure 3 also increases as Ra grows. The
shift in behaviour can be related to the formation of dissipa-
tive vortical structures surrounding the porous surface. At a
Reynolds number of 108, the energy dissipation in the system
is sufficient to prevent the velocity fluctuation from exceeding
U f , but it does scale with U f , resulting in the ultimate scaling.
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Figure 2: Nusselt number Nu as a function of Rayleigh
number Ra. The blue and red lines represent the clas-
sical scaling Nu ∼ Ra1/3 and the ultimate scaling Nu ∼
Ra1/2, respectively. The black dashed line denotes the
super-ultimate scaling Nu ∼ Ra. The red filled and open
circles represent Nu in the bulk region and the chamber
region, respectively, in the porous wall case. The blue
circles denote Nu in the non-porous wall case. The sky-
blue squares are taken from the experimental data in a
non-porous cylindrical cell (Chavanne et al., 2001).

The presence and distribution of vortical structures can
provide as evidence for the three stages of classical, transition,
and ultimate, as they represent variations in the energy dissipa-
tion rate not only along the wall but also in the holes. As men-
tioned in the study by Meng et al. (2022), when the ultimate
scaling limit is exceeded (Nu ∼ Ra), specifically at Ra values
of 1×107 and 7×107, it is observed that energy dissipation is
distributed within the porous medium, while the vortical struc-
ture does not contribute significantly. This lack of vortical dis-
sipation leads to an actual dissipation rate that exceeds Taylor’s
dissipation law, ϵ∼U3

f /H. At a Rayleigh number of 1.8×108,
the porous medium experiences the penetration of smoother
vortical structures. This penetration is crucial for ensuring ad-
equate energy dissipation within the system. Specifically, the
overall energy dissipation rate of the system will be equiva-
lent to Taylor’s dissipation rate. As Ra increases to 3× 108,
the simultaneous occurrence of energy dissipation and vorti-
cal structures indicates that the stretching of the vortical struc-
ture becomes the primary mechanism for dissipating energy in
the system. Furthermore, the vortical structures become dom-
inant within the region where energy dissipation occurs in the
porous holes. This occurrence is as well consistent with the re-
sult represented in Figure 3, indicating that the dissipation of
the entire system has reached a saturated state, as the process
of transitioning to the final state has been finished.

The transition process can also be interpreted with the
help of the scaling relationships between the RMS of verti-
cal velocity, energy dissipation rate normalized with U3

f /H
in the bulk region from z = −0.5H to z = 0.5H. We have
confirmed from the relationships these values that, as whole
the system enters the transition process, Ra ≥ 2 × 107, the
RMS of vertical velocity normalized by U f can be scaled
with Ra1/2, w/U f ∼ Ra1/2. Meanwhile, the energy dissipa-
tion rate normalized with U3

f /H can also be scaled with Ra1/2,

ϵ/(U3
f /H)∼ Ra1/2. The scaling relationship between Nu and
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Figure 3: The value of local energy dissipation normal-
ized with U3

f /H as a function of the Rayleigh number in
the near-wall region from z =−0.55H to z =−0.45H.

Ra can be easily obtained as below,

Nu ∼ H
κ∆T

Tw ∼ H
κ∆T

TU f Ra1/2 ∼ Ra1/2Ra1/2 ∼ Ra (10)

in which, the Nu ∼ Ra scaling law in transition process is con-
sistent with the results in Figure 2.

Discussion and outlook
Let us recall Kawano et al. (2021)’s argument on the ul-

timate state between idealised permeable walls on which w =
±β p/ρ are imposed. If we suppose that the flow through the
wall holes is laminar, we have β ∼ d2/(νℓ), d and ℓ being the
hole size and the hole length, respectively. The dimensionless
form of this estimate is βU f ∼ (d/H)2(ℓ/H)−1Pr−1/2Ra1/2.
In the present configuration of fixed geometry for Pr = 1, the
porous walls are more permeable as βU f ∼ Ra1/2 with in-
creasing Ra. The energy budget in the idealised permeable
wall case is given by

gα⟨wT ⟩xyzt = ϵ+
2

βH

〈
w2

〉
xyt

∣∣∣∣
w
− 1

H

〈
w3

〉
xyt

∣∣∣∣
w

(11)

where ϵ is energy dissipation. The left-hand side represents
buoyancy power, while the second and the third terms on the
right-hand side denote pressure power on the permeable walls
and outflow kinetic energy (which has been found to be in-
significant) across the permeable walls, respectively. In the
ultimate state, the pressure power on the permeable walls has
been found to be comparable with the buoyancy power and the
energy dissipation. Taking the velocity scale of the large-scale
thermal structures as W , we have

W 2

βH
∼ gαW∆T ∼ ϵ (12)

implying that

W ∼ βU2
f (13)

In the present configuration for fixed geometry represented by
βU f ∼ Ra1/2 as discussed above, therefore, we obtain the ve-
locity scale and the energy dissipation in the super-ultimate
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Figure 4: (a) Root-mean-square (rms) vertical velocity
wrms in the bulk region normalised by U f . (b) En-
ergy dissipation rate ϵ in the bulk region normalised by
U3

f /H. The black dashed lines denote the super-ultimate
scaling (a) wrms/U f ∼ Ra1/2 and (b) ϵ/(U3

f /H)∼ Ra1/2.

state as

W ∼ Ra1/2U f (14)

ϵ∼ Ra1/2
U3

f

H
. (15)

Now, the turbulent heat flux in the super-ultimate state is es-
timated as W∆T ∼ Ra1/2U f ∆T , suggesting that the corre-
sponding Nusselt number is given by Nu∼W∆T/(κ∆T/H)∼

Ra1/2(U f ∆T/κ∆T/H) ∼ Pr1/2Ra. This argument can inter-
pret the super-ultimate transient Nu ∼ Ra in Figure 2 as well
as wrms/U f ∼ Ra1/2 and ϵ/(U3

f /H)∼ Ra1/2 in Figure 4.

At high Ra ≳ 108, flow separation and resulting dissipa-
tive vortices lead to a significant local pressure drop in the en-
trance (or exit) of the holes. Consequently, we have seen the
saturation down to the ultimate state Nu ∼ Ra1/2 in Figure 2.
However, the above argument suggests that if we implement
longer (or smaller) holes in the walls so that the local pressure
drop may be much smaller than a friction pressure drop, then
the super-ultimate behaviour can be extended to a higher-Ra
range.
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