
13th International Symposium on Turbulence and Shear Flow Phenomena (TSFP13)
Montreal, Canada, June 25–28, 2024

RESOLVENT ANALYSIS OF SEPARATED FLOWS OVER NACA0012
WINGS: REYNOLDS NUMBER EFFECTS

L. Victoria Rolandi, Luke Smith and Kunihiko Taira
Department of Mechanical and Aerospace Engineering

University of California, Los Angeles
vrolandi@ucla.edu, lsmith1@g.ucla.edu, ktaira@seas.ucla.edu

ABSTRACT
Separated flow over wings can lead to drag increase, lift

decrease and aerodynamic efficiency reduction. In this study,
we use biglobal and triglobal resolvent analysis (Trefethen
et al., 1993; Jovanović & Bamieh, 2005) to investigate how
Reynolds numbers between 600 and 10,000 affect separated
flows over two- and three-dimensional NACA0012 wings. It
is essential to understand the effects of Reynolds numbers to
accurately model and control turbulent flows. In particular,
we focus on the similarities in separated flow structures across
the range of Reynolds numbers. In this analysis, the base
flow is the time-averaged flow obtained from direct numeri-
cal simulations and wall-resolved large eddy simulations. For
the biglobal case, spanwise averaging is also applied. Par-
ticular emphasis is placed on uncovering the influence of the
Reynolds number on the response and forcing modes as well
as the energy gain associated with different frequencies.

RESOLVENT ANALYSIS
Let us consider the linear dynamics under forcing

∂q
∂ t

= L q+ f, (1)

where L ∈ Rn×n is the linearized Navier–Stokes opera-
tor about the time and spanwise-averaged base flow, q =
(ρ,ρu,ρe) ∈ Rn is the state vector and f ∈ Rn collects the
nonlinear terms and the external forcing inputs (McKeon &
Sharma, 2010). Here, n is proportional to the size of the spa-
tial grid. The response (q) and forcing (f) can be decomposed
through a temporal Fourier transform

q(x, t) =
∫

∞

−∞

q̂ω (x)e−iωtdω,

f(x, t) =
∫

∞

−∞

f̂ω (x)e−iωtdω

(2)

providing for each angular frequency ω the following input-
output relationship:

q̂ω (x) = (−iωI−L )−1 f̂ω (x) = Hω f̂ω (x), (3)

where Hω ∈ Cn×n is the resolvent operator that acts as a trans-
fer function between the forcing and the response at frequency
ω . Performing singular value decomposition of the resolvent

operator, while retaining only the first m ≪ n singular values
and singular right and left vectors, we find an approximation
of Hω :

Hω ≈ UΣV∗. (4)

Here, the columns of U = [u1,u2, ...,um] and V =
[v1,v2, ...,vm] represent the response and forcing modes, re-
spectively, while Σ = diag(σ1,σ2, ...,σm) contains the gains of
the corresponding forcing-response pairs, which maximize the
energy norm (Chu, 1965; George & Sujith, 2011).

If the linear dynamics is unstable, we consider the dis-
counted resolvent analysis (Jovanovic, 2004). In this case, the
operator has the form:

Hω = (−iωI+ γ −L )−1, (5)

where γ is the discount parameter that must satisfy γ > λr with
λr indicating the largest growth rate of L . The discounted
formulation is equivalent to considering the dynamics over a
finite time horizon tγ =U∞2π/cγ , where U∞ is the freestream
velocity and c the chord of the wing.

COMPUTATIONAL SET-UP
Biglobal

We simulate the spanwise periodic flow around a
NACA0012 airfoil at an angle of attack of 14◦ for Reynolds
numbers within the range Re ∈ [1000;10000] and Mach num-
ber M∞ = 0.1. The base flows, averaged over time and in the
spanwise direction, are simulated with direct numerical sim-
ulations (for Re ≤ 2500) and wall-resolved large eddy sim-
ulations (for Re > 2500), for which we employ the Vreman
subgrid-scale model (Vreman, 2004). A spanwise domain
length Lz of one airfoil chord length is used to capture three-
dimensional features in the simulations. The nonlinear simu-
lations use a no-slip adiabatic boundary condition on the sur-
face of the airfoil, uniform constant velocity, pressure, and
temperature at the inlet and on the upper and lower sides,
a zero-pressure-gradient at the outlet, and periodic boundary
conditions on the lateral sides. The direct numerical simula-
tions conducted at Re = 1000 are verified with previous works
(Gupta et al., 2023; Rolandi et al., 2022).

Triglobal
We also simulate the three-dimensional flow around a

NACA0012 finite wing with a semi-aspect ratio of sAR = 2
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Figure 1. Instantaneous spanwise periodic flow around a NACA0012 airfoil at α = 14◦ and different Reynolds numbers. Flow field
visualized with isocontour of Q-criterion colored by streamwise velocity.

Figure 2. Gain variation over forcing frequency at Re =

10000. Influence of discount parameter γ on σ1 illustrated in
grayscale. Response mode at St = 0.78 and 2.7 considering
tγ = 41 visualized with isocontours of streamwise velocity.

at an angle of attack of α = 14◦ for Re ∈ [600;2500] and
M∞ = 0.1. The wing features a rounded tip. The boundary
conditions for the nonlinear simulations include a no-slip
adiabatic boundary condition on the wing surface, uniform
constant velocity, pressure, and temperature at the inlet, a
sponge condition at the outlet and a symmetry condition at the
wing root (z = 0) allows for the simulation of only half of the
computational domain.

To conduct the biglobal resolvent analysis, the time-
and spanwise-averaged base flow is interpolated onto a two-
dimensional grid, whereas for the triglobal analysis, the time-
averaged base flow is interpolated onto a three-dimensional
grid. The interpolated base flows are then used to compute
the linear operator. The singular value decomposition of the
resolvent operator is performed using Krylov subspace projec-
tion methods. Since the linear operator exhibit unstable lead-
ing eigenvalues, discounted resolvent analysis is considered.
Both the calculation of the base flow and resolvent analysis are
performed with the compressible flow solver CharLES (Kha-
lighi et al., 2011) coupled with the PETSc and SLEPc libraries
(Balay et al., 2020; Roman et al., 2016) for performing the
singular value decomposition.

BIGLOBAL RESOLVENT ANALYSIS
The unsteady spanwise periodic flows of the cases studied

are illustrated in Fig. 1. At an angle of attack of 14◦ and a
Reynolds number of Re = 1000, the flow has transitioned to

a three-dimensional flow with a characteristic spanwise length
of approximately ≈ c/3. As the Reynolds number increases,
the characteristic spanwise wavelength shortens and the flow
becomes progressively more chaotic.

Discount Effects
Fig. 2 presents the gain variation of the first singular

value as a function of the forcing frequency St = ω/2π at
Re= 10000 and spanwise wavenumber β = 0 for different dis-
count parameters corresponding to tγ ∈ [5;41]. The variation
of the discount parameter γ reveals two distinct peaks: one at
St ≈ 2.7 and the other at St ≈ 0.78. The peak at St ≈ 2.7 is as-
sociated with shorter finite horizon times (larger γ values), re-
flecting early dynamics. From the modal structure depicted in
the bottom right of the figure, we can see that this frequency is
linked to flow mechanisms within the separated shear region.
The second peak, at St ≈ 0.78 arises at longer horizon time
tγ . Indeed, this frequency also corresponds to the frequency
of the leading eigenvalue computed from linear stability anal-
ysis. From the modal structure at St ≈ 0.78, we observe that
this frequency is linked to the wake dynamics. For the subse-
quent analysis, we employ a discount parameter of γ = 1.2.

Reynolds number effects
In Fig. 3, the streamwise velocity fields of the response

and forcing modes, along with the wavemaker of the first sin-
gular modes, are depicted for Reynolds numbers Re = 1000
and 10000. The wavemaker is calculated as the dot prod-
uct between the response and forcing modes. At the lowest
frequency, there is a significant difference between the two
Reynolds numbers in the three flow fields presented. Particu-
larly, the higher Reynolds number exhibits a thinning of mode
structures over the base flow shear layer, which remains ev-
ident in the response mode flow field up to St ≈ 1. Despite
the differences in the shear layer, the response modes for both
cases share similarities in the wake region for Strouhal num-
bers St ≤ 1. As St increases, both response mode structures
shift toward the shear layer regions, displaying greater similar-
ities within this region. The similarities in the response modal
structures at constant forcing frequency across the Reynolds
numbers originate from the characteristic streamwise wave-
length in the modal structures which strongly correlates to the
forcing frequency.

For the Strouhal number range considered, there is impor-
tant difference in the forcing modes. At the higher Reynolds
number, the forcing mode develops upstream, whereas at the
lower Reynolds number case, the forcing mode structures are
more concentrated in the shear layer region. This difference is
also evident in the wavemaker flow field, which indicates the
overlap of the response and forcing mode pairs. For the higher
Reynolds number case, elongated thin predominant structures
are observed over the shear layer and they weaken as St in-
creases. In contrast, for the lower Reynolds number case, the
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Figure 3. The primary streamwise velocity response modes (orange frames), streamwise velocity forcing modes (blue frames) and
wavemakers (black frames) at spanwise wavenumber β = 0, Reynolds numbers Re = 1000 and 10000 over different Strouhal numbers.

Figure 4. Gain distribution over frequency at different
Reynolds numbers and spanwise wavenumber β = 0.

wavemaker intensifies in the shear layer.
The gain distribution over the forcing frequency for dif-

ferent Reynolds numbers is illustrated in Fig. 4. As the forc-
ing frequency increases, the maximum gain also rises, though
the peak becomes less pronounced with higher Reynolds num-
bers. The bump observed around St ≈ 0.7 for Re ≥ 2500 and
the highest peak at Re = 1000 correspond to frequencies asso-
ciated with the leading eigenvalue of the linear operators.

The influence of spanwise wavenumber β on gain distri-
bution is illustrated in Fig. 5. In this figure, we show the gain
distributions for the leading three singular values (σ1,σ2, and
σ3) on the β −St plane for Reynolds numbers Re = 1000 and
10000. For reference, the shedding frequencies (peak frequen-
cies of the lift coefficient spectra) are also marked with black
dashed lines. In both Reynolds number cases, the overall dis-
tributions of σ1,σ2, and σ3 display similarities. For σ1, the

maximum gain occurs at β = 0, with a slight increase in gain at
the lowest Strouhal number for the Re = 1000 case at β ≈ 3π .
In contrast, σ2 shows a peak at β ≈ 2π for both Reynolds num-
bers. The peak shifts toward lower Strouhal numbers as β in-
creases. A similar trend is observed for σ3, where again the
peak shifts toward lower Strouhal numbers as β increases. In
the Re = 1000 case, the gain peaks of σ1 and σ2 align with the
shedding frequency. However, in the Re = 10000 case, only
the maximum of σ2 and σ3 align with the shedding frequency,
while σ1 aligns with frequencies related to the shear mecha-
nisms, exhibiting a maximum at higher St. This is due to the
fact that shear regions are known to host nonmodal growths
(Schmid, 2007). Therefore, over short time, we observe higher
gain from these mechanisms.

TRIGLOBAL RESOLVENT ANALYSIS
The instantaneous flow fields for the cases studied are pre-

sented in Fig. 6. As the Reynolds number increases, the span-
wise length scales of the flow structures within the wake be-
come shorter.

Reynolds number effects
Figure 7(a) illustrates the gain variation of the three lead-

ing singular values over the forcing frequencies. The gain
increases with the Reynolds number, and similarly to the
biglobal case, the frequency at which maximum gain occurs
also rises. Additionally, the frequency of the maximum gain
shows slight variations among the three singular values (σ1,
σ2 and σ3) at fixed Reynolds number and they are in the same
order of magnitude. This is different from the biglobal case,
where the the first singular value σ1 was significantly larger
compared to the higher order singular values, σ2 and σ3.

Figure 7(b) presents the streamwise velocity contours of
the forcing and response modes for Re = 600 and 2500 at
the different forcing frequencies highlighted in Fig. 7(a). The
black dotted line marks the centerline at the root of the wing
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(a)

(b)

Figure 5. Distributions of the first three dominant gains over the β − St plane at (a) Re = 1000 and (b) Re = 10000. Black dashed
lines indicate the dominant frequency peaks associated with lift coefficients.

Figure 6. Iso-surface of Q-criterion colored by streamwise velocity of the flow around a finite wing of semi-aspect ratio sAR = 2 at
α = 14◦ and Re = 600, 1000 and Re = 2500.

at z = 0. As the forcing frequency increases, the characteristic
length of the modal structure shorten.

By examining the spanwise positions of maximum inten-
sity for the forcing and response modes, we find that at the
lowest Reynolds number, the response mode is inboard rela-
tive to the forcing mode, indicating a misalignment between
the two. However, as the Reynolds number increases, the forc-
ing and response modes become aligned along the streamwise
direction. For both scenarios, an increase in forcing frequency
shifts the forcing and response modes from the inboard re-
gion toward the outboard region, in agreement with findings
at lower Reynolds numbers from Ribeiro et al. (2023). In par-
ticular, for the Re = 2500 case, we observe the forcing and
response structures shifting in the tip region.

The modal structures also exhibit a sweep relative to the
wing-span. This angle is denoted as Λ and is measured on
the xz-plane at y = 0. The variation of Λ is shown in Fig. 8
for Re = 600 and 2500. At a forcing frequency of St = 0,
the modal structures align with the streamwise direction, Λ =
90◦. As the forcing frequency increases, Λ decreases. For both
Reynolds numbers, the frequency at which Λ= 0◦ corresponds
to the frequency of maximum gain (St ≈ 0.6 for Re = 600 and
St ≈ 1.1 for Re= 2500), revealing that structures parallel to the
wing-span are those that are the most amplified. As the forcing

frequency continues to rise, the angle becomes negative, with
the modal structures moving towards the tip region.

The variation of Λ also highlights the mode switching
over the forcing frequency. In the Re = 2500 case, indeed,
we observe a clear discontinuity at St ≈ 2, which is associ-
ated with mode switching. Tip vortex mode structures show a
sweep angle of Λ = 45◦. Another discontinuity along the vari-
ation of the sweep angle variation occurs at St = 0.5 for both
Reynolds numbers. Notably, this frequency might be related to
the semi-aspect ratio length (as sAR = 2 = 1/0.5). However,
further exploration of other aspect ratios is needed to confirm
this assumption.

CONCLUSIONS
In this study, we perform biglobal and triglobal resolvent

analysis to investigate the effects of Reynolds number on the
separated flow around two- and three-dimensional NACA0012
wings at an angle of attack 14◦. Energy gains and mode struc-
tures are computed at different forcing frequencies and com-
pared with respect to the Reynolds number.

In the biglobal case, the modes present prevalent shear-
region or wake-region structures depending on the forcing
frequency. Also, we find similarities in the response modal
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(a) (b)

Figure 7. (a) Variation of the first three dominant gains over forcing frequency at different Reynolds numbers. (b) First response and
forcing modes at frequencies indicated by the dots in (a) for Reynolds number Re = 600 and 2500. Visualization of isosurfaces of
streamwise velocity superposed to translucent isosurface of Q-criterion of the base flow.

Figure 8. Sweep angle of the forcing and response mode structure with respect to the wing-span. Variation over forcing frequency at
Reynolds numbers Re = 600 and 2500.

structures at the same forcing frequencies, due to the fact that
the characteristic streamwise wavelength only depends on the
forcing frequency and not on the Reynolds number. How-
ever, the forcing modes are different among the Reynolds num-
bers considered, since they tend to develop upstream as the
Reynolds number is increased, due to the convective nature of
these modes.

In the triglobal resolvent analysis, the modes are charac-
terized by finer structures as they move outboard toward the tip
vortex region. Also, we find that the sweep angle of the modal
structures with respect to the wing-span is strongly correlated
with the maximum gain. For all Reynolds numbers consid-
ered, the maximum gain is indeed achieved by structures that
are parallel to the wing-span direction.

As a continuation of this study, we aim to extend the
triglobal resolvent analysis to higher Reynolds number cases,

and possibly investigate different semi-aspect ratios and swept
wings.
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