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ABSTRACT
In this study, we conduct direct numerical simulations

of magnetohydrodynamic turbulent channel flows, employ-
ing an inductionless assumption that keeps the magnetic fields
constant due to low magnetic Reynolds number assumptions.
We utilize pseudospectral methods alongside high-order basis
splines for these simulations. Our analysis focuses on the in-
fluence of magnetic fields at a Reynolds number (Re) up to
20,000, examining the effects of various magnetic strengths
quantified by Hartmann numbers (Ha). We explore changes in
flow structure, Reynolds stress components, spectral densities,
and budget equations for Reynolds normal stresses.

The results demonstrate that increasing Ha significantly
alters flow behavior by reducing turbulence and promoting
re-laminarization. Spectral analysis using polar-logarithmic
coordinates indicates that higher Ha values suppress large-
scale motions while emphasizing streamwise elongated mo-
tions. Analysis of the budget equations shows that while vis-
cous transport and dissipation remain consistent across differ-
ent Ha values, turbulent transport and production terms vary
significantly. The magnetic field’s contribution to the bud-
get terms is nearly negligible. The decrease in production is
identified as the primary mechanism by which magnetic fields
suppress turbulence in these magnetohydrodynamic channel
flows.

INTRODUCTION
While research on turbulent flows has extensively con-

tributed to our understanding, our grasp of this complex phe-
nomenon remains incomplete, especially when these flows in-
teract with other physical processes like heat transfer or chem-
ical reactions. Such interactions are exemplified in the domain
of magnetohydrodynamics (MHD), where electrically con-
ducting fluids engage with electromagnetic fields. Although
MHD turbulence might not be evident in daily experiences, it
is crucial in fields such as astrophysics, geophysics, and vari-
ous engineering applications, significantly impacting our way
of life (Biskamp, 2003; Davidson, 2015; Al-Habahbeh et al.,
2016).

A critical application of MHD wall-bounded turbulence is
in nuclear fusion reactors, where fusion energy is seen as the
next frontier in energy production, offering substantial bene-
fits in terms of fuel reserves, safety, and environmental im-
pact (FESAC). However, this area faces significant techno-
logical challenges. For instance, liquid metals, which have
high thermal diffusivity and low viscosity, must be managed

within insulated conduits under strong magnetic fields (Fed-
erici et al., 2019; Smolentsev, 2021). Here, the Reynolds num-
ber (Re) is typically around 105, and the Hartmann number
(Ha), which measures the strength of electromagnetic versus
viscous forces, is on the order of 104. Such conditions lead to
MHD pressure drops due to Lorenz forces opposing the flow,
creating challenges in maintaining high flow rates essential for
optimizing the efficiency of the liquid metal blanket within
the constraints of structural strength (Abdou et al., 2015; Mis-
trangelo & Bühler, 2017; Mistrangelo et al., 2021).

Previous studies have illuminated various aspects of
MHD turbulence. For example, Zikanov & Thess (1998)
demonstrated how strong magnetic fields transform fully
developed homogeneous isotropic turbulence into two-
dimensional turbulence. Further, studies by Lee & Choi
(2001); Satake et al. (2006) involved direct numerical simu-
lations (DNS) of MHD channel flows under uniform magnetic
fields. Lee & Choi (2001) noted that wall-normal magnetic
fields are more effective than streamwise or spanwise fields in
reducing turbulent fluctuations. Moreover, research by Satake
et al. (2006); Boeck et al. (2007); Pothérat & Kornet (2015)
showed that increasing Ha leads to a reduction in large-scale
structures in MHD turbulent channel flows. On the other hand,
Krasnov et al. (2008) observed that magnetic fields aligned in
the spanwise direction can reduce drag, contrasting with re-
sults from flows under wall-normal magnetic fields. Despite
extensive research, the lifecycle of turbulence in MHD wall-
bounded flows—from production to dissipation—remains un-
clear.

This study serves as preliminary work aimed at under-
standing the lifecycle of turbulence in MHD wall-bounded
flows, focusing particularly on the fundamental impact of ap-
plied magnetic fields on electrically conductive flows at high
Re and moderate Ha, and analyzing the spectral behavior of
Reynolds stress and its evolution.

METHOD
In this study, we perform Direct Numerical Simula-

tions (DNS) of incompressible magnetohydrodynamic wall-
bounded turbulence (MHDWBT) within the canonical chan-
nel flow geometry. We made the assumption of a low mag-
netic Reynolds number, allowing us to disregard the alteration
of magnetic fields caused by fluid motion.

The governing equations describing the velocity field, de-
noted as u, in the presence of a constant magnetic field B for
incompressible conductive flows can be found in Zikanov &
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Thess (1998); Lee & Choi (2001); Satake et al. (2006).
For this study, we conduct DNS of incompressible mag-

netohydrodynamic wall-bounded turbulence (MHDWBT) in
the canonical channel flow geometry. Based on the low mag-
netic Reynolds number assumption, we ignored the change of
magnetic fields induced by fluid flows. The governing equa-
tions of the velocity field, u with a constant magnetic field,
B, of incompressible conductive flows are as described in
Zikanov & Thess (1998); Lee & Choi (2001); Satake et al.
(2006).

∇ ·u = 0 (1a)

∂u
∂ t

=−(u ·∇)u−∇p+
Ha2

Re
(J×B)+ν∇

2u (1b)

Here J, Re, and Ha are current density, Reynolds number, and
Hartmann number, respectively. The density, half width of the
channel and bulk velocity are fixed at unity for brevity, i.e.
Re = 1/ν , as is the magnetic field magnitude. Also, Ha =
2|B|

√
σ/ν where σ is electric conductivity. Note that Ha2/Re

is Stuart number, N . The relationship between J and u are
obtained from Ohm’s law and Gauss’ law,

J =−∇φ +(u×B), ∇
2
φ = B · (∇×u) = B ·ω (2)

where φ is the electric potential. For computational efficiency,
we employed the velocity-vorticity formulation, a method that
has been utilized in numerous DNS studies of channel flows
(Kim et al., 1987). Our in-house simulation code, previ-
ously employed for DNS investigations of channel flows at a
Reynolds number of approximately Reτ ≈ 5200 (Lee & Moser,
2015), underwent necessary modifications. In the calculation
of spatial derivatives, we applied the Fourier-Galerkin method
in the streamwise and spanwise directions, while utilizing a
seventh-order basis spline method in the wall-normal direc-
tion. Further details about our simulation code can be found
in references Lee et al. (2013, 2014). To validate the modified
simulation code, we conducted a comparison of statistics with
identical simulation cases conducted by Satake et al. (2006).

Table 1. This is an example of a table.

Re ReH
τ Nx Ny Nz

2857 182 1024 192 512

10000 544 1536 384 1024

20000 1000 2304 512 2048

In this study, we investigate the impact of constant mag-
netic fields applied in the wall-normal direction on turbu-
lent flows at various combinations of Res and Has. Specifi-
cally, we selected three bulk Reynolds numbers: Re = 2857,
Re = 10000, and Re = 20000, which correspond to friction
Reynolds numbers Reτ of 182, 544, and 1000, respectively,
when Ha = 0. The computational grid size is detailed in
Table 1. For each Re, we consider five different cases with
Ha values of 1, 3, 10, 30, and 100. The simulations com-
mence with velocity fields representing fully developed turbu-
lent channel flows at Ha = 0. We gather statistical data after
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Figure 1. Mean velocity profiles

the initial transient state has subsided. To ensure the reliabil-
ity of our results, we assess the convergence of statistics using
total shear stress, and we find that the statistical error remains
below 0.2% for all cases.

RESULTS
In this study, all statistical quantities and the wall-normal

distance are normalized using their respective friction veloci-
ties and viscous length scales corresponding to each Re, in the
absence of an applied magnetic field (Ha = 0).

Figure 1 presents the mean profiles of streamwise velocity
for all simulation cases. Typically, the influence of increasing
Ha begins in the channel’s central region, where the gradient
of the mean velocity becomes significantly flattened. In sce-
narios where Ha greatly exceeds Re, the mean velocity profile
tends toward uniformity across almost the entire channel, ex-
cept near the walls where it increases linearly with the wall-
normal distance. Due to the expanded region of the flattened
velocity profile, there is a requirement for a rapid velocity
change near the walls. Consequently, this results in a higher
mean velocity gradient at the walls in the presence of mag-
netic fields, leading to an increase in net skin friction. It is
noteworthy that the characteristic behavior of the “logarithmic
region,” characterized by y∂y⟨U⟩= 0, is absent in these cases,
likely due to the relatively low Re and the significant impact of
magnetic fields on the outer flow dynamics. When Ha is suf-
ficiently high, the region where the mean velocity is constant
expands even to the near-wall region, where the mean velocity
linearly increases with y. Under such conditions, turbulence
is completely suppressed, and the flow becomes laminar. This
analytic description of the mean velocity for laminar flow is
known as the Hartmann solution (Hartmann, 1937; Shercliff,
1953), which is invariant with respect to Re.

u(y) =
Ha

tanh(Ha)−Ha

[
cosh(yHa)
cosh(Ha)

−1
]

(3)

The variations in figure 1 across different Res are due to dif-
ferent normalization factors.

Figure 2 illustrates the profiles of the non-zero compo-
nents of Reynolds stress. Generally, high Ha significantly
reduce turbulent fluctuations, suggesting a re-laminarization
of the flow. At moderate Ha levels, magnetic fields effec-
tively suppress turbulence in the outer flow regions. For ex-
ample, in flows with Ha = 30 and Re = 20000, u′2 is signif-
icantly reduced in the outer region, with only a slight reduc-
tion near the wall. The impact of the magnetic field is par-
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Figure 2. Reynolds stress profiles

ticularly pronounced on v′2 and w′2, enhancing anisotropy in
the near-wall region as u′2 remains relatively stronger until the
flow re-laminarizes. Nonetheless, all components of Reynolds
stress peak at the same location unless the flow is completely
re-laminarized.

Furthermore, Reynolds shear stress shows a strong depen-
dence on the strength of the magnetic fields. In channel flow
geometry, the balance between mean shear stress, Reynolds
shear stress, and magnetic stresses is required to maintain the
total stress as a linear function of y. The observed changes in
Reynolds stress suggest an increase in magnetic shear stress

in the outer flow region, especially since the mean shear stress
there is minimal. This finding aligns with observations by Sa-
take et al. (2006) at low Res.

Figure 3 shows the streamwise velocity at the wall-normal
position where ⟨u′2⟩ peaks, specifically at (y/δ )ReH

τ = 15 for
Re = 20000. In the absence of a magnetic field (Ha = 0),
fine-scale structures are clustered yet exhibit fluctuations on a
larger scale. Conversely, at Ha= 30, the small-scale structures
are more organized and show minimal large-scale fluctuations,
indicating that magnetic fields suppress large-scale motions. It
is noted that at Ha = 0, large-scale structures in the near-wall
region reflect those of the outer flow, as reported by Marusic
et al. (2010); Lee & Moser (2019). With the suppression of
large-scale motion in the outer flow, this near-wall imprint is
diminished. A more detailed analysis using spectral densities
could provide a clearer explanation.

Figures 4 present the two-dimensional spectral density of
Reynolds normal stresses at their peak values, focusing on
flows with Re = 20000, where large-scale contributions are
most pronounced. Traditional kx and kz premultiplied two-
dimensional spectra indicate that the contributions from large-
scale motions are diminished, although the contributions at
kx = 0 or kz = 0 remain significant. To address this, we employ
polar-logarithmic coordinates as suggested by Lee & Moser
(2019).

In this format, the two-dimensional spectral density
E(kx,kz) is transformed into rescaled spectral density E# in
polar-logarithmic coordinates, defined as follows:

E#(k#
x ,k

#
z ) =

k2E(kx,kz)

ξ
, (4a)

k#
x =

ξ kx

k
, k#

z =
ξ kz

k
, (4b)

k =
√

k2
x + k2

z , ξ = ln
(

k
kref

)
. (4c)

where kref is a reference wavenumber, set at k+ref = 1/5000 for
this study. It is important to note that the integration of E# over
k#

x and k#
z is equivalent to the integration of E over kx and kz:

⟨uiu j⟩=
∫∫

Ei j(kx,kz)dkxdkz =
∫∫

E#
i j(k

#
x ,k

#
z )dk#

x dk#
z (5)

In figures 4a and d, E#
u′2 shows that energies are predom-

inantly concentrated in streamwise elongated motions, with
peaks at λ+ = 100 and kx ≈ 0, reflecting the spacing between
streaky structures observed in figure 3. The large-scale con-
tribution is distinctly visible in figure 4a but absent in fig-
ure 4d. Interestingly, although the peak value in figure 4d for
the small-scale region is stronger than that in figure 4a, the in-
tegrated value, ⟨u′2⟩(y+ = 15), is higher in the flow without a
magnetic field (Ha = 0) than with Ha = 30. Figures 4b and
e, which display E#

v′2 , show no significant contribution from
large-scale motions beyond λ+ = 1000 in either case. The
overall spectral distribution of ⟨v′2⟩(y = 91) is similar between
different Ha levels, although the intensity is much reduced at
Ha= 30. Finally, figures 4c and f illustrate the spectral density
of E#

w′2 . In flows with Ha = 30, the contributions from large-
scale motions are moderate, and the strength in the small-scale
region is also weaker compared to the flow at Ha = 0.

Finally, we analyzed the budget equations for ⟨u′2⟩. Fol-
lowing the conventional definitions of each term as suggested
by Mansour (1988) for flows with Ha = 0, we introduce an
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Figure 3. Streamwise velocity at where ⟨u′2⟩ is maximum

additional term to account for the effects of magnetic fields
in these flows. Since a constant magnetic field is applied in
the wall-normal direction, the resultant magnetic field term is
expressed as follows:

Mu′2 =
Ha2

Re

(
2
〈

u′
∂φ ′

∂ z

〉
−2⟨u′2⟩

)
(6)

The other terms are defined as follows: P - production, T -
turbulent transport in the wall-normal direction, D - viscous
transport in the wall-normal direction, Π - pressure strain, and
ε - viscous dissipation. Figure 5 presents y-premultiplied bud-
get terms for flows at Re = 20000 with Ha = 0 and Ha = 30.

In both cases, the viscous transport and dissipation show
no noticeable difference. However, the turbulent transport
terms differ in the outer-flow region; at Ha = 0, some energy
is transported to the outer flows, whereas turbulent transport
at Ha = 30 only reaches up to y+(= ReH

τ y/δ ) = 200. Inter-
estingly, the effect of Mu′2 is almost negligible across the en-
tire region. Based on the definition in (6), this suggests that
⟨u′∂zφ

′⟩ ≈ ⟨u′2⟩ and ∂zφ
′ ≈ u′, though the implications of this

remain unclear.

The production term shows the greatest influence of mag-
netic fields. P denotes the interaction between turbulent fluc-
tuations and the mean-velocity gradient. In canonical channel

flow geometry, P is defined as:

P =−⟨u′v′⟩∂ ⟨u⟩
∂y

(7)

As depicted in figure 1, applied magnetic fields effectively flat-
ten the mean-velocity gradient. Moreover, as shown in fig-
ure 2d, the Reynolds shear stress, ⟨u′v′⟩, in the outer flow re-
gion decreases with increasing Ha. Consequently, the produc-
tion of ⟨u′2⟩ in the outer flows decreases with Ha. This reduc-
tion also affects the inter-component energy transfer from ⟨u′⟩
to ⟨v′2⟩ and ⟨w′2⟩ in the outer flow region, leading to decreased
values of these quantities with increasing Ha across all cases.

CONCLUSION
In this study, we present results from DNS of MHD wall-

bounded turbulence, showing how magnetic fields suppress
large-scale motions in the outer flows and modify turbulence
structures near the wall. These findings are consistent with ear-
lier research, including studies by Satake et al. (2006); Boeck
et al. (2007). Notably, two-dimensional spectral density anal-
ysis indicates that magnetic fields intensify small-scale streaky
motions in the near-wall flows.

Additionally, the direct impact of magnetic fields on tur-
bulence, as depicted in the budget equations, appears mini-
mal. This may be attributed to the simulations’ assumption of
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constant magnetic fields, which results in a linear interaction
between the magnetic and velocity fields. However, in real-
istic scenarios, turbulent flows can induce fluctuations in the
magnetic field, leading to nonlinear coupling between these
fluctuations and flow turbulence. This implies that the influ-
ence of magnetic field fluctuations might be more critical than
constant fields, potentially amplifying the effects of magnetic
interactions on turbulence dynamics.

Lastly, this study serves as an initial exploration into the
spectral analysis of budget equations in MHD channel flows.
We observed an unexpected strengthening of ⟨u′2⟩ under mag-
netic fields in the spectral domain, suggesting that the spectral
behavior of each term in the budget equation may differ, even
though the integrated budget terms appear similar. This in-

dicates that further detailed investigation is necessary to fully
understand these dynamics.
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