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ABSTRACT
Structure formation in magnetohydrodynamic (MHD)

turbulence can be modeled as a modulational instability (MI)
of the fluctuations comprising the background turbulence. We
focus on the early stages of structure formation and consider
simple backgrounds in order to develop a tractable model. Un-
like typical calculations of MI, we retain not only the first but
all modulational harmonics. This allows us to examine the va-
lidity of the popular quasilinear (QL) closure which truncates
the modulational spectrum after the first harmonic. For ideal
incompressible MHD, we find that the QL closure can be quan-
titatively accurate in some regimes; yet, in adjacent regimes it
fails to predict the modulational dynamics even qualitatively,
predicting MIs when the system is, in fact, modulationally sta-
ble. In those regimes, the dynamics is dominated by prop-
agating spectral waves (PSWs), which ballistically transport
energy along the spectrum. This effectively introduces dis-
sipation to ideal MHD, thereby reducing the instability rate
or eliminating MI entirely. PSWs correspond to modulational
eigenmodes with flat energy spectra (up to dissipative scales),
so the total modulational energy grows linearly in time as the
energy front propagates down the spectrum at the group ve-
locity of the PSW. That said, this picture is specific to ideal
MHD, and adding corrections to the governing equations (e.g.
dissipation, dispersive effects) tends to suppress PSWs and re-
instate the validity of the QL closure.

INTRODUCTION
Coherent-structure formation from turbulence is ubiqui-

tous in nature, intrinsically compelling, and one of the precious
few aspects of turbulence that are relatively yielding to analyt-
ical efforts (Hussain, 1986; Smolyakov et al., 2000; Krashen-
nikov et al., 2008). For magnetohydrodynamic (MHD) turbu-
lence (Biskamp, 2003; Beresnyak, 2019; Schekochihin, 2022)
and the turbulent-dynamo problem (Brandenburg et al., 2012;
Tobias, 2021; Rincon et al., 2016), this has spawned a vast

body of work known as mean-field electrodynamics (Rädler,
2007; Moffatt, 1978; Brandenburg, 2018). In such approaches,
the velocity and magnetic fields are split into fluctuations and
mean fields; then, various closures are implemented to obtain
the mean-field evolution in response to the fluctuations (Black-
man & Field, 2002; Kraichnan, 1977; Nicklaus & Stix, 1988).

In this paper, we are concerned with the popular quasi-
linear approximation (QLA) (also known as the first-order
smoothing (Krause & Rädler, 1980) or second-order correla-
tion approximation (Rädler, 1982)), which assumes that the
mean-field evolution is determined only by second-order cor-
relations of the fluctuations (Dodin, 2022). Despite its limited
regime of formal validity, the QLA endures in its popularity as
a workhorse that is too convenient to cast aside in analytical
calculations (Squire & Bhattacharjee, 2015; Masada & Sano,
2014; Gopalakrishnan & Singh, 2023). Furthermore, in some
cases, QL calculations have been found to produce good agree-
ment with direct numerical simulations (DNS) even outside of
their formal validity domain (Käpylä et al., 2006). It is there-
fore important to understand when, and how exactly, the QLA
fails. Answering this question requires exploring a mean-field
model that retains high-order correlations.

Here, we explore structure formation in MHD turbulence
as a modulational instability (Zakharov & Ostrovsky, 2009)
(MI) of the flow-velocity and magnetic-field fluctuations com-
prising the background turbulence, using an ‘extended’ quasi-
linear theory (XQL) that treats the primary structure as fixed
but includes the entire spectrum of modulational harmonics,
i.e. the high-order correlations. Due to size limitations, only
the main results will be presented, but further details can be
found in an extended version of this paper (Jin & Dodin, 2024).

MODEL
Base Model: 2-D Ideal Incompressible MHD

As a base model, we assume ideal incompressible MHD
with homogeneous mass density ρ = const. The correspond-
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ing governing equations written in the Elsässer variables,
zzz± .

= vvv±bbb, are

∂tzzz± =−(zzz∓ ·∇)zzz±−∇p. (1)

Here vvv is the fluid velocity; bbb .
= BBB/

√
4πρ is the mag-

netic field BBB in units of the local Alfvén velocity; and
p .
= (P+B2/8π)/ρ is the normalized total pressure, with P

being the kinetic pressure. Due to incompressibility and mag-
netic Gauss’s law, one also has ∇ · zzz± = 0. Although we do
not explicitly include the viscosity and resistivity, they are tac-
itly retained in our discussion of spectral propagation and its
associated anomalous dissipation.

We also adopt a two -dimensional (2-D) model in which
zzz± lie in the (x,y) plane and ∂z = 0, such that we need only
keep track of the z-component of the Elsässer vorticities,
w± .

= [∇× zzz±]z = ∂xz±y −∂yz±x . Then, (1) can be replaced
with a scalar equation for w±, which leads to the following
equations for the Fourier coefficients w±

kkk (t):

∂tw±
kkk = ∑

kkk1,kkk2

T (kkk1,kkk2)w∓
kkk1

w±
kkk2

δkkk,kkk2+kkk1 , (2)

where T (kkk1,kkk2)
.
=

[eeez·(kkk2×kkk1)]
k2

1k2
2

(kkk2 + kkk1) · kkk2 are the coupling
coefficients, and δ is the Kronecker delta.

Although the dynamo effect is not possible in 2-D (an
anti-dynamo theorem by Zeldovich (1957)), (2) hosts a rich va-
riety of modulational dynamics in which energy can be trans-
ferred between primary fluctuations and mean structures, and
between velocity and magnetic fields, as shown in figure 1.
(The corresponding notation is introduced below.)

Coupling Dominated by a Primary Structure.
Let us explore modulational stability of a spatial struc-

ture with a given wavevector kkk = ppp to a perturbation with a
wavevector qqq, where ppp ·qqq = 0. Let us also assume w±

ppp =O(1),
w±

qqq+nppp =O(ε), and same for any other w±
kkk ̸=ppp, where ε ≪ 1 is

a small parameter. Then, by linearizing (2) in ε , one obtains
the following chain of equations:

∂tw±
kkk ≈ T (ppp,kkk−)w∓

ppp w±
kkk−

+T (−ppp,kkk+)w∓
−pppw±

kkk+

+T (kkk−, ppp)w∓
kkk−

w±
ppp +T (kkk+,−ppp)w∓

kkk+
w±
−ppp, (3)

where kkk±
.
= kkk± ppp and kkk = qqq+nppp with integer n. For all other

kkk, one obtains ∂tw±
kkk ≈ 0. In particular, this means that w±

ppp
can be considered fixed; i.e. A± .

= w±
ppp ≈ const. In terms of the

Elsässer fields, this corresponds to a primary structure

zzz± =− 2
p
A± sin(py+θ

±)eeex, (4)

where A± .
= |A±| and θ± .

= argA±.
The modulational and primary energy densities are re-

spectively:

Emod
.
= ∑

kkk=qqq+nppp
Ekkk = ∑

n

ρ

4

|w+
qqq+nppp|2 + |w−

qqq+nppp|2

q2 +n2 p2 , (5a)

Epri
.
= Eppp =

ρ

4
|w+

ppp |2 + |w−
ppp |2

p2 , (5b)

where ‘c.c.’ stands for ‘complex conjugate’.
Our approximate equations conserve the total energy

density Etot = Epri +Emod exactly within the approximation.
(For brevity, from now on we will refer to the energy den-
sities simply as energies.) We will assume that the initial
modulational energy is negligible, so Etot = ρA2/4p2, where
A2 .

= (A+)2 +(A−)2.

Extended quasilinear theory. In order to
reduce the number of free parameters, let us take
A+ =A− (a more general version can be found in
Jin & Dodin (2024)), introduce the dimensionless time,
τ
.
=A t, and perform a variable transformation w±

qqq+nppp 7→ y±n :
w±

qqq+nppp =A
√

(q2/p2 +n2)exp
(

in θ++θ−

2

)
y±n .

Then, (3) becomes

ẏyyn = GGG−
n yyyn−1 +GGG+

n yyyn+1, (6a)

GGG±
n

.
=

1√
2

(
α±

n e∓iθ β±
n e±iθ

β±
n e∓iθ α±

n e±iθ

)
, (6b)

α
±
n

.
=∓r

r2 +n(n±1)√
(r2 +n2)(r2 +(n±1)2)

, (6c)

β
±
n

.
=−r

n√
(r2 +n2)(r2 +(n±1)2)

, (6d)

where the dot denotes ∂τ , and yyyn
.
= (y−n ,y

+
n )

⊺ is a two-
component column vector (the symbol ⊺ denotes transposi-
tion). The parameter r .

= q/p represents the relative scales of
the modulation and primary structure, while θ

.
= (θ+−θ−)/2

determines the relative weights of the kinetic and magnetic-
field energy in the primary-mode (|bbbppp|2/|vvvppp|2 = tan2 θ .) At
θ < π/2, one has a velocity-dominated primary mode
(VDPM); that is, the kinetic energy of the primary mode is
larger than the corresponding magnetic energy, and vice versa
at θ > π/2 (BDPMs). The parameters r, and θ entirely deter-
mine the dynamics of (6), while A and p determine only its
characteristic temporal and spatial scales, respectively.

Throughout this work, we use (6) and (13a) to study the
nature of collective oscillations in the chain of modulational
harmonics, which can be understood as Floquet modes of the
linearised system. The nth elementary cell of the chain con-
sists of two coupled oscillators characterised by y+n and y−n ,
respectively. Unstable global modes of this system (i.e. MIs)
lead to structure formation on top of the primary structure.

To emulate a simple modulation, in DNS of (6), we will
use initial conditions of the form:

y±n (τ = 0) =

{
ε exp(iξ±

n ), n =±1,
0, n ̸=±1.

(7)

Here, ε is a constant small amplitude, and ξn are parame-
ters that change the polarization of the initial conditions while
keeping the initial energy fixed. (The specific values of ξ±

n are
given in the captions of figures showing results of DNS.)

Energy equations. At second order in ε , one ob-
tains the following equations for the energy densities:

Emod
.
=

Emod

Etot
= ∑

n
|y+n |2 + |y−n |2 ≡ ∑

n
En, (8)

Ėn = (I+n +F+
n )+(I−n +F−

n )+ c.c., (9)
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Figure 1. DNS of modulational dynamics of (1) seeded at τ = 0 with random noise. Figures (a), (c), and (e) correspond to a modu-
lationally unstable primary mode (4) with θ± =±π/6, and (b), (d), and (f) correspond to a modulationally stable primary mode with
θ± =±π/3. Figures (a) and (b) show z+x (t,y), (c) and (d) show z+y (t,x), and (e) and (f) show the corresponding energy breakdown.
Specifically, Ev = Ev/Etot is the normalised kinetic energy, Eb = Eb/Etot is the normalised magnetic energy, Emod is the normalised
modulational-mode energy (9), and Epri is the normalised primary-mode energy (10). The colour bar shows the field amplitudes nor-
malised to A/p. The spatial coordinates are normalised to 1/p.

Ėpri
.
=

Ėpri

Etot
=−∑

n
I+n + I−n + c.c., (10)

where I±n and F±
n are given by

I±n = (β−
n e±iθ y∓n−1 +β

+
n e∓iθ y∓n+1)y

±∗
n , (11)

F±
n = (α−

n e∓iθ y±n−1 +α
+
n e±iθ y±n+1)y

±∗
n . (12)

The terms F±
n represent the energy flux that is carried

along the modulation spectrum and is conserved within each
sub-channel, y± (∑n F±

n = 0). In contrast, the I±n terms can be
understood as energy exchange between the modulational and
primary modes in that they appear in both (10) and (9) with
opposite signs. The important features to note in (11) is that
the energy injection into harmonic n is proportional both to the
approximate local energy density, as well as a coupling coeffi-
cient, |β±

n | ∼ 1/|n|. The former implies that injection can form
positive feedback loops to drive MIs, while the latter enforces
that such injection is localized at small n.

Relationship to quasilinear approximation.
The QLA amounts to a truncation of (6) at the first harmonic
(i.e. setting all yyy|n|>1 = 0). We will see that the modulational
dynamics of the truncated system can be qualitatively different
from those predicted by nonlinear MHD (1) and XQL (6). The
latter two are in agreement as long as the underlying order-
ing assumption (|w±

qqq+nppp|/|w±
ppp | ∼O(ε)) holds, i.e. XQL and

its fully nonlinear base model have identical linear properties
such as growth rates. In the remainder of this work, we discuss
to what extent such truncations can be adequate and compare
our analytical results to DNS of (6), in lieu of (1).

RESULTS
Modulational Instabilities

Equation (6) can be written as a vector equation

ẏyy = MMMyyy, (13a)

MMM .
=



. . .
... . .

.

0 GGG+
−2 0 0 0

GGG−
−1 0 GGG+

−1 0 0
. . . 0 GGG−

0 0 GGG+
0 0 . . .

0 0 GGG−
1 0 GGG+

1
0 0 0 GGG−

2 0

. .
. ...

. . .


, (13b)

where yyy .
= (. . . ,yyy−1,yyy0,yyy1 . . .)

⊺ is an infinite-dimensional
block vector consisting of yyyn, and MMM is an infinite-dimensional
block matrix. The modulational modes of the linearized sys-
tem are solutions of (13a) of the form yyy = YYY exp(−iωt) with
constant polarization vectors YYY and frequencies ω . Corre-
spondingly, MIs are modes with Imω > 0.

One can also consider (13a) as a Schrödinger equation
with a Hamiltonian iMMM. This Hamiltonian is not Hermitian,
because modulations are parametrically coupled with the pri-
mary mode (through which energy can be either gained or lost)
and dissipate at n → ∞. At the same time, this Hamiltonian
is invariant under the time-reversal transformation (i →−i)
and the parity transformation in the spectral space (n →−n,
θ →−θ ). This makes the system (6) PT -symmetric (Bender,
2005). Depending on the balance of sources and sinks, such
systems can support modes with entirely real frequencies (un-
broken PT symmetry) and pairs of modes whose frequencies
are mutually complex-conjugate (broken PT symmetry). This
will be discussed further the section on spectral waves.

The QLA yields a truncated system that can be analyti-

3



13th International Symposium on Turbulence and Shear Flow Phenomena (TSFP13)
Montreal, Canada, June 25–28, 2024

Figure 2. (a) The growth rate Γ (of the most unstable mode)
versus the normalised wavenumber r at θ = 0 as found by QL
(blue) and XQL (6) (black markers). (b) Same as (a) for Γ

versus θ at r = 0.5. (c) Mode structures of MIs supported by
VDPMs, |Yn| versus n, at r = 0.5 for various θ . (d) Same as
(c) for oscillatory modes supported by BDPMs. (The upper in-
dex in |Y±

n | is omitted because |Y+
n |= |Y−

n |.) The asymptotes
are indicated by the dotted lines. These results are obtained
through DNS of (6) and normalised such that |Y0|= 1.

cally solved, yielding the following dispersion relation:

ω
2 =

r2

1+ r2

(
r2 ±|cos2θ |

)
, (14)

where the unstable mode corresponds to the − sign. At θ = 0,
this reduces to the familiar Kelvin–Helmholtz instability, so
(14) can be identified as its MHD generalization. Figures 2(a-
b) compare (14) to the growth rates obtained via DNS of the
XQL system (6). It can be seen that although the QLA pro-
vides good approximations of the MI growth rates for VDPMs,
it systematically produces false positives for instability for
BDPMs. In particular, it predicts a symmetric (in θ ) set of in-
stabilities for BDPMs, while DNS of XQL reveals stable (real
ω) modes. XQL also reveals that the underlying mode struc-
tures are fundamentally different in the two cases–MIs corre-
spond to modulational eigenmodes that fall off exponentially
in |n| while the stable modes supported by BDPMs have flat
mode structures, as shown in figures 2(c-d). The dynamics
driving these oscillatory modes, and their relationship to sta-
bility are the focus of the following sections.

Spectral Waves
Asymptotic form. At |n| → ∞, the coupling coef-

ficients have the following limits: α±
n →∓q/p and β±

n → 0.
Then, (6) reduces to a set of decoupled propagation equations:

ẏ±n =
r√
2

(
e∓iθ y±n−1 − e±iθ y±n+1

)
. (15)

Equation (15) has solutions of the form
y±n = Y± exp(−iωτ + iK±n), where Y± = const. The
spectral wavenumber K± is defined within the Brillouin zone
K ∈ (−π,π), and ω satisfies

ω =
√

2r sinκ
±, κ

± .
= K±±θ . (16)

Figure 3. (a) The dependence of the global-mode frequency
ω > 0 on θ for various r. The dashed lines are the inferred
solutions (17). (b) |Y+

n | (blue) and |Y−
n | (orange) for the mode

with ω > 0. The eigenmode amplitudes for the ω < 0 mode
are identical with the roles of |Y+

n | and |Y−
n | switched.

These solutions are understood as propagating spectral waves
(PSWs), which carry energy along the spectrum (in the y±n
channel) at the spectral group velocity, v±g =

√
2r cosκ±.

Global modulational modes. In principle, spec-
tral waves with any K± (modulo the Brillouin zone) can exist
at large |n|, for a given modulational system parametrized by r
and θ . However, there are also special PSWs with frequency ω

that correspond to that of a global modulational mode (eigen-
modes of (13a)), which we find through DNS of (6) to be

ω =±
√

2r cosθ . (17)

These resonant PSWs are self-sustained as the asymptotic tails
of the flat (|YYY n| ∼ const.) BDPM eigenmodes shown in fig-
ure 2(d). The global mode frequencies and the corresponding
detailed mode structure are shown in figure 3.

As these modes are formally of infinite energy (due to
their flat energy profile and unbounded extent within (6)), they
can never be fully realized. In practice, they will be cut off in
n by dissipative scales, or in time by depletion of the primary
mode. This process is the focus of the following section.

Effective dissipation and stability. Since a
PSW mode carries energy towards |n| → ∞, eventually, a large
enough |n| is reached where the energy is dissipated regardless
of how small the viscosity and resistivity are. Thus, a PSW
exhibits an effective, or ‘anomalous’, dissipation rate γ that
is independent of ν and η in the limit ν ,η → 0. This effect is
different from the anomalous dissipation caused by eddy–eddy
collisions in turbulence (for example, see Donzis et al. (2005))
in that the energy transport caused by a PSW is ballistic.

As shown in figure 3(b), a global PSW at large |n| has
a flat mode structure, i.e. a structure with En independent of
n (see (9)). This structure establishes itself as an expanding
‘shelf’ whose edges (wave fronts) propagate across the spec-
trum to n →±∞ at the group velocity vg. Since the height of
the shelf, En, remains constant, this process drains energy from
the primary mode linearly in time, as shown in figure 4.

Figure 5 shows the corresponding anomalous dissipation
rate normalised to the seed energy, along with its determining
factors – the system-dependent PSW group velocity vg and the
average spectral energy density En, which is determined by
the initial conditions. It can be seen that, for the MI unsta-
ble VDPMs (θ < π/4), spectral waves are relatively slow and
have a small amplitude. The transition to modulational stabil-
ity occurs at |vg| ∼ Γ. This condition can be understood as a
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Figure 4. DNS of (6) showing global-mode PSWs for
r = 0.5, θ = π/3: (a) Rey+n /ε for a PSW seeded by the ini-
tial conditions (7) with ξ

±
d = d exp(±iπ/4) (colour bar). The

dashed lines indicate the fronts propagating at: (i) the max-
imum spectral speed

√
2r and (ii) the group velocity of the

mode. The field between these dashed lines consists of tran-
sients. (b) The total energy of the modulation, Emod, versus τ

(black), along with its kinetic (red) and magnetic (blue) com-
ponents. (c) The profiles of the spectral energy density at
τ = 100, 150, 200. The horizontal dashed line indicates the
average spectral energy density En, where the average is taken
over the PSW period and over n between the energy fronts.

threshold beyond which (i.e. at |vg|≳ Γ) PSWs provide a suf-
ficiently fast escape route for the energy injected at small |n|,
such that the positive feedback loops (see (11)) supporting MIs
can no longer be sustained. In the context of PT symmetry,
the spectral group velocity can be understood as the effective
coupling between the links in the oscillator chain, connecting
the energy injection from the primary mode at small n to the
energy sink at n → ∞. As |vg| increases with θ , the system
transitions from broken to unbroken PT symmetry.

Modulational Modes Beyond Ideal MHD
As discussed in the previous sections, the existence of

PSWs undermines the standard QLA in application to ideal
incompressible MHD. Given the ubiquity of QL modeling in
the literature, it may seem concerning that the QLA can fail
so spectacularly. Interestingly, though, the QLA is somewhat
more robust beyond the ideal-MHD limit, both due to conser-
vative corrections and dissipation.

Let us discuss the former first. Without attempting to de-
scribe any particular physical system, let us consider the fol-
lowing modified version of (1):

∂tzzz± =−(zzz∓ ·∇)zzz±−∇P+λ∂x∇
2zzz±, (18)

where λ is a constant parameter. The last term is intended as
a simple ad hoc correction that, while causing deviation from
ideal MHD, leaves the primary-mode evolution unaffected and
preserves MHD’s key invariants, specifically, the energy and

Figure 5. (a) The magnitude of the global PSW group ve-
locity |vg| versus θ for various r. (b) Same for the average
spectral energy density En/ε2. (c) Same for the resulting av-
erage drain rate γ/ε2, where γ

.
=−Ėpri/Epri = 2|vg|En/Epri.

The initial conditions used are given by (7), with
ξ
±
1 =−ξ

±
−1 = exp(±iπ/2) which maximizes En for all θ .

cross helicity. Similar terms can appear due to a background
magnetic field or differential rotation (Heinonen et al., 2023).

With this correction, one arrives at the following corre-
sponding modification of the linear (6):

√
2(∂τ + iδn)y±n = e∓iθ

α
−
n y±n−1 + e±iθ

β
−
n y∓n−1

+e±iθ
α
+
n y±n+1 + e∓iθ

β
+
n y∓n+1,

(19)

where δ±
n

.
= Λr(r2 +n2), Λ

.
= λ/Ap3, and α±

n , β±
n are as in

(6). In the large-|n| limit, one has α±
n ∼ 1, β±

n → 0, δn ∼ Λn2,
so one obtains the following scaling: |y±n+1| ∼ |y±n |/Λn2.

This shows that the harmonic magnitude |yn| decreases
rapidly (super-exponentially) with |n|, and thus low-order trun-
cations may be justified. Note that although the opposite scal-
ing, |y±n−1| ∼ |y±n |/Λn2 is also formally possible, such modes
cannot be excited, as is the case with inward propagating
PSWs. Figure 6(a) shows that, indeed, the agreement between
analytical QL growth rates and nonlinear DNS improves as the
parameter Λ increases. The agreement becomes nearly per-
fect for Λ ≳ 0.5. Figure 6(b) shows that the same effect can
be achieved if, instead of the λ term in (18), one introduces
sufficiently strong viscosity. In this case, one also has a modi-
fied (6) with the exact form of (19), but with δ±

n
.
= µ(r2 +n2),

where µ
.
= ν+/Ap2 (with ν− = 0 for simplicity). Again, the

agreement becomes nearly exact for µ ≳ 0.5.

SUMMARY
In this paper, we explore structure formation in two-

dimensional MHD turbulence as a modulational instability
(MI) of turbulent fluctuations. We focus on the early stages
of structure formation and consider simple backgrounds that
allow for a tractable model of the MI while retaining the full
chain of modulational harmonics. This approach allows for a
systematic examination of the importance of high-order corre-
lations that are typically ignored in mean-field theories.

We find that, when the primary structure truly experiences
a MI, this MI can be described well with the QLA which ne-
glects high-order correlations. However, in adjacent regimes,
such truncated models can fail spectacularly and produce false
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Figure 6. The growth rate Γ, at ν− = 0, versus:
(a) Λ

.
= λ/Ap3 and (b) µ

.
= ν+/Ap2. The colour markers

indicate the results obtained through DNS of (6), while
the black solid curves indicate solutions obtained from the
QL truncation of (19). The results are presented for the
representative cases θ = 0 and θ = π/2, both at r = 0.5.

positives for instability. To study this process in detail, we
propose an ‘extended’ quasilinear theory (XQL) that treats the
primary structure as fixed but includes the entire spectrum of
modulational harmonics (as opposed to just the low-order har-
monics, as usual). We find that the difference between said
regimes is due to a fundamental difference in the structures of
the modulational spectra. For unstable modes, the spectrum is
localized at low harmonic numbers, so truncated models are
justified. But this localization does not always occur.

At other parameters, modulational modes turn into
constant-amplitude waves propagating down the spectrum,
unimpeded until dissipative scales. These spectral waves are
self-maintained as global modes with real frequencies and
cause ballistic energy transport along the spectrum, breaking
the feedback loops that could otherwise sustain MI.

The ballistic transport by PSWs drains energy from the
primary structure at a constant rate until the primary structure
is depleted. Because global PSWs exist at almost all parame-
ters, this means that almost any primary structure in ideal in-
compressible MHD will eventually be depleted. This means,
in particular, that sustainability of MHD structures is not en-
tirely limited to the issue of exponentially growing linear in-
stabilities, as PSWs must also be taken into consideration.

Finally, we find that departures from ideal MHD con-
strains the form of modulational eigenmodes, in turn suppress-
ing the amplitude of high harmonics. This allows us to end
on an informed yet optimistic note regarding the applicabil-
ity of the QLA for structure formation in dispersive forms of
MHD. That said, it is an important conclusion of our work
that, unless deviations from ideal incompressible MHD are
substantial, changing the turbulence parameters even slightly
can destroy the applicability of an otherwise workable reduced
model. An understanding of the complex modulational dy-
namics supported by (nearly) incompressible MHD aids the
interpretation of existing simple closures and potentially opens
the path to building more reliable alternatives.
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