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INTRODUCTION

Flow separation is observed in all devices that deal with
fluid flows and can cause lift loss, drag increase, transition to
instabilities and turbulence or undesired vibrations. Predict-
ing it is the beginning stage of controlling and delaying such
an unwelcome occurrence. The pursuit of grasping this phe-
nomenon goes back a long way. It starts with the fundamental
work of Prandtl (1904) who developed the notion of boundary
layers and specified the separation point in a two-dimensional
(2D), incompressible, steady flow as the location on the wall
where the skin friction (τw) is zero and its longitudinal deriva-
tive is negative. In three-dimensional (3D) or unsteady flows,
the Prandtl criterion is not valid and many other tools have
been and are still proposed until today. For example, Moore
(1958), Rott (1956) and Sears (1956) individually suggested
what is now known as the MRS criterion, that the separation
point is located within the boundary layer where there is no
shear and no streamwise velocity component in a frame of ref-
erence moving with the separation point, which makes the cri-
terion difficult to apply in practice.

Further numerical studies aimed to capture singularities
in the unsteady boundary layer equations. Van Dommelen &
Shen (1980, 1982) used Lagrangian coordinates to describe
the problem and observed a singularity where the MRS crite-
rion holds. While using Lagrangian coordinates shows an ad-
vantage, the method depends strongly on how boundary layer
equations are solved, which, again, makes this principle diffi-
cult to apply.

Haller (2004) proposed an exact theory for separation in
unsteady 2D flows. He called separation a Lagrangian phe-
nomenon and described it as ‘the convergence and subsequent
ejection of fluid particles from the vicinity of the boundary’,
and classifying the unsteady separation as either fixed or mov-
ing, associated it with material spike in the vicinity of the
boundary. This theory was extended to 3D flows for steady
and fixed unsteady separation (Surana et al., 2006, 2008). An-
other approach to detect separation is through material spikes.
Serra et al. (2018) studied 2D flows and associated the loca-
tions of maximum curvature in material lines with spikes. This
theory was recently extended to 3D flows as well (Santhosh
et al., 2023). These latest studies are very promising, but the
methods could be difficult to apply for very complex flows, the
extreme case being turbulent separation. This is this case that
is considered in this study.

METHODOLOGY
The proposed criterion to capture separation is first intro-

duced by Haller (2011) and employed in a variational theory
to extract Lagrangian Coherent Structures. The repulsion rate
is a measure of assessing perturbation growth in the normal di-
rection of a material surface. In order to define this parameter,
consider the following dynamical system:

ẋ = u(x, t), (1)

where u is the velocity vector field. The initial position of a
fluid particle at time t0 is x0, and at time t, a trajectory of the
system is x(t, t0,x0). This passage is expressed through the
flow map Ft

t0(x0). A snapshot of an invariant manifold M of
the system (1) at time t is a material surface M(t), that is made
by advecting initial surface M(t0) through the flow map Ft

t0 :

M(t) = Ft
t0(M(t0)), M(t)⊂ Rn. (2)

Now for an arbitrary point x0 ∈M(t0), consider we break
it down into a one-dimensional normal space, Nx0M(t0), and
a (n−1)-dimensional tangent space, Tx0M(t0) (figure 1).

Figure 1. Material surface M(t) and its geometry (from
Haller, 2011)

The tangent space, Tx0M(t0), is transported by the flow
map ∇Ft

t0(x0) into the tangent space at time t, TxtM(t). By
consequence, a unit tangent vector e0 ∈ Tx0M(t0) is also car-
ried into a unit tangent vector et ∈ TxtM(t) by the flow map;

et = ∇Ft
t0(x0)e0. (3)
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The same cannot be said about normal space Nx0M(t0)
though, as it is generally not mapped into the normal space
NxtM(t). Hence a unit normal vector, n0 ∈ Nx0M(t0), will
be of general orientation when mapped (∇Ft

t0(x0)n0). To mea-
sure how strongly perturbations in the normal direction grow,
Haller (2011) considers the normal component of ∇Ft

t0(x0)n0,
i.e. its projection into nt . This parameter is called repulsion
rate and is defined as:

ρ
t
t0(x0,n0) = ⟨nt , ∇Ft

t0(x0)n0⟩. (4)

ρt
t0(x0,n0)> 1 indicates that the infinitesimal normal per-

turbations applied at time t0 have grown in the normal direction
by time t, and ρt

t0(x0,n0) < 1 means these perturbations have
diminished by the end of the time interval, and thus, tracking
the maximum values of ρt

t0 close to a boundary corresponds to
detecting Lagrangian separation.

Haller (2011) shows that the repulsion rate can also be ex-
pressed in terms of the (right) Cauchy-Green tensor Ct

t0(x0) =[
∇Ft

t0(x0)
]⊤

∇Ft
t0(x0) as:

ρ
t
t0(x0,n0) =

1√
⟨n0,

[
Ct

t0(x0)
]−1 n0⟩

. (5)

The finite difference open source code Incompact3d, a
powerful high-order flow solver for academic research (Laizet
& Lamballais, 2009; Laizet & Li, 2011), is used to solve
the Navier–Stokes equations. An implicit large eddy sim-
ulation, based on the numerical dissipation controlled with
the discretization of the viscous term (Dairay et al., 2017),
is conducted to obtain a turbulent separation bubble (TSB).
The rectangular computational domain has a physical size
1000θ × 100θ × 50θ in the streamwise x, wall-normal y and
spanwise z directions, respectively, where θ is the momentum
thickness of the turbulent inlet flow, generated from a previous
simulation of a turbulent boundary layer at a Reynolds num-
ber Reθ = 800. A no-slip boundary condition is imposed at the
bottom wall (y= 0), and along the spanwise direction, the flow
is periodic. To generate an adverse pressure gradient, a wall-
normal suction velocity profile is imposed using a Gaussian
function within a narrow streamwise region on the top wall.
An inviscid boundary condition is also applied on the top wall
with zero vorticity. A convective boundary condition is finally
applied at the outlet section for all velocity components.

RESULTS
To illustrate how the repulsion rate may capture separa-

tion before treating the turbulence case, a simulation is per-
formed on a configuration of two solid cylinders of diameter
D placed in tandem, separated by a distance of 10D, and ex-
posed to an incoming flow of constant and uniform velocity
U∞.

The Reynolds number, based on U∞ and D, reaches Re =
300. We place surfaces of particles with the shape of cylinders
with a diameter of 1.24D, initially centered on the solid cylin-
der axes, and advect them with the non-dimensional time t.
The repulsion rate will be calculated based on the deformation
of the particles initially located on the material cylinder. Con-
tours of ρ

t0+0.6
t0 are plotted for both cylinders at the beginning

and the end of the time interval.
On the first cylinder in figure 2, we can clearly see two

main quasi-2D separation lines detected on the top and bottom

Figure 2. Time evolution of a material surface initially (t0)
centered on the first cylinder axis with a radius of 0.62D (left),
and advected in time until t = t0 +0.6 (right).

Figure 3. Time evolution of a material surface initially (t0)
centered on the second cylinder axis with a radius of 0.62D
(left), and advected in time until t = t0 +0.6 (right).

sides of the cylinder, which adequately follow the deformed
pattern. There are also other patterns on the downstream side
of the cylinder, which are captured by the criterion although
with a lower value.

The patterns observed on the second cylinder in figure 3
are more complicated and no longer indicate a 2D separation,
due to the irregular incoming flow generated by the wake of
the first cylinder. Nonetheless, ρ

t0+0.6
t0 captures adequately the

two main spanwise-oriented separation mechanisms. Some
streamwise-oriented separation profiles are also detected with
weaker intensity, mainly in the front part of the cylinder.

The lower value areas of repulsion rate in the contours
show that the criterion captures separation qualitatively, but
additionally measures the strength of separation, i.e. allows to
indicate which part of the flow is more susceptible to leave the
solid surface.

3D separation patterns of incompressible flows are also
investigated by means of the method of Perry & Chong (1986).
In this method, a Taylor expansion is assumed for the velocity
components up to a desired order. The velocity is then passed
along different equations and conditions, and forced to sat-
isfy them (e.g. the continuity equation or the no-slip boundary
condition), which simplifies the flow model to an analytically
manageable form.

Consider the skin friction field given by equation (6), with
y being the wall-normal coordinate, and the skin friction field
given by τ(x,y,z) = (τx(x,y,z),τz(x,y,z)):

{
τx = x2 + z2 +0.1x3 −1,
τz =−0.5z− xz.

(6)
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Figure 4. Repulsion rate ρt
t0 contour on the plane of particles

initially located at y = 0.01 for the shear stress map (6) and
[t0, t] interval. (a) t = t0 +1. (b) t = t0 +10. (c) t = t0 +30.
(d) t = t0 +50.

Particles initially located on a horizontal plane close to
the wall (at y = 0.01) are advected in time. The repulsion rate
is calculated based on the displacement of these particles with
time. Figure 4 shows the 2D repulsion rate contours calculated
for different durations. These contours are drawn on the initial
plane of particles and show ρt

t0 , with t increasing gradually
from case (a) to (d).

As the computation time window increases, the repulsion
rate contour becomes more precise and reports more details
about the flow. At t = t0+1 (case (a) of figure 4), the repulsion
rate pattern is very simple, with a 2D character, and its value
has not considerably deviated from 1.

With time, more relevant patterns become evident and the
repulsion rate range increases (evident in the colorbars). At
t = t0 + 50 (case (d) of figure 4), there are different zones
with distinct repulsion rates, each with its own comparative
strength. The bolder colors indicate the areas with most growth
of perturbations in the normal direction, which is equivalent to
particles that take the most distance from the wall in the nor-
mal direction (as the plane was initially placed at a constant y
location from the surface).

This contour, i.e. ρ
t0+50
t0 is studied more closely and the

deformation of the initial particles plane located at y = 0.01 is
followed in figure 5. The steady flow streamlines of the shear
stress map (6) are also depicted here. In (a), the areas distanc-
ing themselves from the wall are properly colored as having
the maximum repulsion rate. This is more evident in (b) as

the surge of particles from the boundary becomes more pro-
nounced. The ridge in the plane of particles is more protruding
by the time in (c), and we can easily detect the separated area
through the criterion. The importance of adequate 3D visual-
ization can be observed through these cases. Further advection
of the particles shows that by the time in (d), the criterion—
computing until t0 + 50, ρ

t0+50
t0 —remains a good separation

indicator even for when particles are convected until t0 +100.
It is evident here that maximum repulsion rate values pertain
to the most repelling particles from the wall and the criterion
picks up on the particles breaking away from the wall in ac-
cordance with the Lagrangian definition of separation.

Figure 6 examines more physical cases and shows the
case of a laminar separation bubble (LSB), with an inlet Bla-
sius velocity profile. A material surface, initially aligned with
the wall, is advected in time from t = 0 and colored with the re-
pulsion rate obtained at t = 0.25. With a steady upstream flow,
the separation is 2D and occurs on a line oriented in the span-
wise direction z. One can see that the repulsion rate reaches
its maxima on that line, and therefore captures the Lagrangian
separation, however it occurs upstream of the mean Prandtl
line visualized with the streamlines of the time- and spanwise-
average flow, a phenomenon that was first observed by Haller
(2004). In other words, the location of Lagrangian separa-
tion differs from its Eulerian counterpart, here illustrated by
the Prandtl line usually used to define the mean separation lo-
cation. Downstream the Prandtl line, several local separation
phenomena are also detected, but their analysis is complex. A
closer view is proposed in figure 7 for the case of the TSB de-
scribed in the methodology section. A surface, initially aligned
with the wall, is advected in time where the turbulent separa-
tion is supposed to occur. The deformed state is complex, but
overall, the criterion generally shows a local maximum where
particles are the most ejected from the surface.

Results illustrated in figure 6 for the LSB show that apply-
ing the general repulsion rate (5) may be difficult in practice
as it requires velocity data in space and time, which is even
more demanding if a statistical criterion has to be obtained. To
overcome this limitation, we investigate the criterion instan-
taneously by writing a temporal Taylor expansion around the
initial time:

ρ
t0+∆ t
t0 = 1+ ρ̇t0 ∆ t +O(∆ t2), ρ̇t0 :=

d
dt

ρ
t0+∆ t
t0 |∆ t=0, (7)

where x0 is omitted for clarity. After developments, we obtain

ρ̇t0 = ⟨n0,Sn0⟩, (8)

where S is the rate-of-strain tensor. In our geometry, taking
material surfaces initially aligned with the bottom wall, equa-
tion (8) implies that ρ̇t0 = ∂v/∂y = vy. Moreover, for incom-
pressible flows where vy vanishes at the wall, close to the wall,
the velocity can be approached by a Taylor expansion in the y
direction:

vy(x,y,z) = vyy(x,0,z)y+O(y2). (9)

On a plane y > 0 parallel to the wall, finding the local maxima
of vy is equivalent to finding the local maxima of vyy. Since
vyy is a non-zero continuous function in space, this is also the
case on the boundary y = 0. For 2D flows, a local separation
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Figure 5. Streamlines and advection of particles for the shear
stress map (6), case (d) of figure 4. The initially parallel to the
wall plane of particles evolves in the flow field. Advection
time: (a) t = t0 +30, (b) t = t0 +50, (c) t = t0 +70, (d) t =
t0 +100.

point xs = (xs,0) is then defined where

{
vyyx(xs) = 0,
vyyxx(xs)< 0.

(10)

For incompressible flows, the divergence-free velocity vector
field allows one to express vyy in terms of skin friction mea-

surements and their spatial derivatives along the wall. Indeed,
the skin friction field τ = (τx,τz) = (µ uy,µ wy) in the xz plane
can be utilized to find an alternative relation for the instanta-
neous repulsion rate. From continuity:

vyy =−uxy −wzy

=− 1
µ
(∂xτx +∂zτz)

=− 1
µ

∇|| · τ, (11)

where ∇|| = ex ∂x + ez ∂z, with ex and ez unit vectors in the x
and z directions, respectively. Hence the repulsion rate deriva-
tive is also proportionate to the divergence of the wall skin
friction field.

We use (11) in the case of the TSB to capture the birth of
separation. In the top-right corner of figure 7 is plotted the evo-
lution of ρ̇t0 , averaged over time and spanwise direction. Sta-
tistically, the results show that the mean Lagrangian separation
occurs, just like the LSB, upstream of what is usually accepted
as the definition of the mean separation point/line represented
by the Prandtl criterion (visible with the streamlines). In the
same plot, the evolution of the forward flow fraction γ , which
represents the percentage of time that the longitudinal velocity
is positive, is also shown. While the mean separation point can
be captured with γ = 50%, ρ̇t0 indicates that the Lagrangian
criterion is localized upstream, close to what is called the in-
cipient detachment (Simpson, 1996), where the forward flow
fraction is 99%.

CONCLUSION
Traditional criteria based on Eulerian quantities are still

extensively used today to detect flow separation, as for ex-
ample in aerodynamics. For numerical simulations, most of
DNS/LES results extract separation by generally capturing the
Prandtl criterion on spanwise-averaged data (a periodic bound-
ary condition in that direction is systematically used). How-
ever, this is Lagrangian separation that is visualized in experi-
ments when particles are used to seed the flow. Here we show
that the location of the mean Lagrangian separation clearly and
strongly differs from what is generally known as the mean sep-
aration point, obtained from the vanishing mean wall-friction
point. In the domain of flow control, this indicates that the
effort to reduce separation based on focusing on the mean sep-
aration point/line could be revisited.
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Figure 6. Time evolution of a material surface initially tangent to the bottom wall colored by ρ0.25
0 in the case of a laminar separation

bubble. The vertical plane shows streamlines of the time- and spanwise-averaged flow.

Figure 7. Time evolution of a material surface initially tangent to the bottom wall colored by ρ4
0 in the case of a turbulent separation

bubble. The deformed surface originally begins at x = 70 for t = 0. In the top right corner are plotted some streamlines (white) of the
time- and spanwise-averaged flow in the vicinity of the mean separation point, together with the evolution of the forward flow fraction
γ (yellow) and the instantaneous repulsion rate ρ̇t0 along the y = 0 axis.
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