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ABSTRACT
We present a recent algorithm, known as RSVD-∆t, for

computing resolvent and harmonic resolvent modes for large
systems. Originally developed for stationary steady-state flows
where resolvent analysis is applicable, we have extended this
algorithm to encompass fluid flows exhibiting periodic mo-
tions at specific frequencies, necessitating harmonic resolvent
analysis. The success of RSVD-∆t lies in its ability to elim-
inate the bottleneck associated with solving potentially large
linear systems in frequency space and replace it with an effi-
cient time-stepping surrogate whose cost scales linearly with
the dimension of the problem. In particular, we emphasize the
effectiveness of time-stepping for periodic flows, where the
harmonic resolvent operator consolidates all frequencies of in-
terest into a single matrix, unlike resolvent analysis, where a
separate resolvent operator is constructed for each frequency.
To illustrate the capabilities of RSVD-∆t, we compute resol-
vent modes for a three-dimensional jet and harmonic-resolvent
modes for the flow around an airfoil.

INTRODUCTION
Modal analysis techniques, including spectral proper or-

thogonal decomposition (SPOD), dynamic mode decomposi-
tion (DMD), and resolvent analysis, have received a lot of at-
tention in recent years (Taira et al., 2017; Towne et al., 2018).
Among these techniques, resolvent analysis has emerged as a
widely explored operator-theoretic method. It serves as a valu-
able tool for gaining insights into the dynamics of fluid flows.
Nonetheless, computational challenges have largely prohib-
ited its application to geometrically complex flows, especially
those with three inhomogeneous dimensions.

Harmonic resolvent analysis is an extension of resol-
vent analysis that investigates flows characterized by a time-
varying, periodic base flow, such as vortex shedding behind
a cylinder (Padovan et al., 2020). The frequency content of
the base flow determines the number of triadic interactions
between the forcing, base flow, and response. The singular
value decomposition (SVD) of the harmonic resolvent oper-
ator is employed to determine the optimal forcing and iden-

tify the most amplified response. Standard resolvent analy-
sis is recovered as a special case when the base flow becomes
time-independent. However, the computational requirements
for computing the leading harmonic-resolvent modes can be
even more demanding than the resolvent case due to the higher
dimensionality of the linearized operator caused by the afore-
mentioned frequency coupling.

RESOLVENT ANALYSIS
The linearized Navier-Stokes (LNS) equations for statis-

tically steady flows can be written as

∂qqq′

∂ t
= AAA(q̄qq)qqq′+ fff ′(q̄qq,qqq′), (1)

where the state qqq ∈ CN is decomposed into the temporal aver-
age of the flow q̄qq, and the time-varying fluctuations qqq′. Here,
fff ′ is the forcing, including the nonlinearities and external
forces, AAA ∈ CN×N is the LNS operator, and N is the state di-
mension of the discretized system. The resolvent system

q̂qq(ω) = RRR(ω) f̂ff (ω) (2)

is obtained by taking a Fourier transform of (1). The resolvent
operator

RRR = (iωIII−AAA)−1 ∈CN×N (3)

maps the forcing to the response in Fourier space (McKeon &
Sharma, 2010). Here, ω denotes the frequency, III is the identity
matrix, and i =

√
−1. The SVD

RRR =UUUΣVVV∗ (4)

identifies the optimal forcing VVV and response modes UUU along
with their corresponding amplifications (gains) Σ .
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HARMONIC RESOLVENT ANALYSIS
A similar Reynolds decomposition of Navier-Stokes

equations can be applied to flows where the mean flow is peri-
odic, yielding the time-dependent linear system,

∂qqq
∂ t

= AAApqqq+ fff , (5)

where AAAp(t) =AAAp(t+T) ∈CN×N is the periodic LNS operator,
ω f is the fundamental frequency, and T = 2π/ω f is the funda-
mental cycle length. Taking the Fourier transform of (5), we
obtain

TTT q̂qq = f̂ff , (6)

where TTT is an infinite dimensional block matrix written as

TTT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⋱ ⋮ ⋮ ⋮ ⋮ ⋰
. . . RRR−1−ω f ÂAA−ω f ÂAA−2ω f ÂAA−3ω f . . .

. . . ÂAAω f RRR−1
0 ÂAA−ω f ÂAA−2ω f . . .

. . . ÂAA2ω f ÂAAω f RRR−1
ω f ÂAA−ω f . . .

. . . ÂAA3ω f ÂAA2ω f ÂAAω f RRR−1
2ω f

. . .

⋰ ⋮ ⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7)

where the diagonal entries are in fact the inverse of resolvent
operators at various frequencies.

The harmonic resolvent operator is HHH = TTT−1. The SVD

HHH =UUUHΣ HVVV∗
H (8)

provides the optimal forcing, response and degree of ampli-
fications. In practice, one needs to truncate the frequencies to
obtain TTT , which forms a block matrix. The number of frequen-
cies used to expand AAAp in Fourier space determines the stencil
length at each row (Nb), while the number of frequencies used
to expand qqq determines the dimensions of the block matrices
(Nω ). Hence, the overall size of TTT is Nω N ×Nω N.

THE RSVD-∆t ALGORITHM
RSVD-∆t utilizes time stepping to compute the action of

the resolvent or harmonic resolvent operator on a vector (or
matrix). In other words, given bbb, we can compute xxx = RRRbbb
or xxx = HHHbbb using time stepping. The original RSVD algo-
rithm in the context of resolvent analysis (Moarref et al., 2013;
Ribeiro et al., 2020) computes the LU decomposition of RRR and
solves for xxx in Fourier space, referred to as “RSVD-LU” in
this study. We, however, employ the steady-state response
method, a technique utilized by both Martini et al. (2021) and
Farghadan et al. (2023b) in the context of resolvent analy-
sis, which has been generalized to harmonic resolvent analysis
(Farghadan et al., 2023a). Figure 1 illustrates the process of
computing the action of the harmonic resolvent operator on
a matrix. This approach leverages streaming calculations to
minimize memory usage, resulting in only temporary storage
of forcing inputs, LNS operators, and response snapshots in
the time domain. The majority of memory allocation is ded-
icated to Fourier coefficients in the frequency space, and the
streaming concept typically yields significant memory savings,
often reducing memory usage by two or more orders of mag-
nitude. A similar schematic can be drawn for computing the

Algorithm 1 RSVD-∆t for harmonic resolvent analysis
1: Inputs: AAAp,k,q,Ωq,Ωq̄,TSS, dt,Tt

2: Θ̂ ← randn(NNω ,k)
3: ŶYY ← DirectAction(AAAp,Θ̂ ,TSS, dt,Tt)

4: if q > 0 then
5: ŶYY ← PI(AAAp,ŶYY ,q,TSS, dt,Tt)

6: end if
7: Q̂QQΩ ← qr(ŶYY Ω )

8: ŜSS← AdjointAction(AAA∗p,Q̂QQ,TSS, dt,Tt)

9: (ŨUUH ,Σ H ,VVV H)← svd(ŜSSH)

10: UUUH ← Q̂QQΩŨUUH
11: Outputs: UUUH ,Σ H ,VVV H

Algorithm 1: k,q,Ωq,Ωq̄ are common parameters with RSVD-
LU. (⋅)Ω indicates all frequencies are merged into a single col-
umn, and TSS is an abbreviation for time-stepping schemes (e.g.,
backward Euler). DirectAction and AdjointAction are
functions that solve the direct and adjoint LNS equations, respec-
tively, via time stepping with a predefined forcing.

action of the resolvent operator on a matrix. In this scenario,
the LNS operator remains constant and does not need to be
stored in Fourier space.

The RSVD-∆t algorithm, as proposed by Farghadan et al.
(2023b), has been extended to cover periodic flows with some
modifications. This algorithm is built upon the RSVD algo-
rithm, but the actions of the harmonic resolvent operator and
its adjoint are replaced with the time-stepping surrogate. In
contrast to the RSVD-LU algorithm, where constructing an ex-
panded system of size Nω N is necessary, RSVD-∆t leverages
time integration directly on the LNS equations. This approach
significantly reduces the size of the matrices involved, requir-
ing only a system of size N. This fundamental difference in
matrix size plays a pivotal role in the efficiency and scalability
of RSVD-∆t for large-scale flows.

Algorithm 1 describes the RSVD-∆t algorithm for har-
monic resolvent analysis, which contains as a special case
standard resolvent analysis. Line 2 generates a random ma-
trix Θ̂ ∈ CNNω×k, which is used in line 3 to obtain the
sketch of HHH. This involves sampling the range of HHH via
the DirectAction function, which computes the action of
HHH on a given forcing using time-stepping before taking the
Fourier transform. Optionally, power iteration (PI) can be per-
formed as shown in lines 4 and 5, involving q successive ap-
plications of DirectAction and AdjointAction to im-
prove the accuracy of the resolvent modes. In line 7, QR de-
composition is applied to obtain the forcing to sample the im-
age of HHH through AdjointAction. This function, similar to
DirectAction, computes the action of HHH∗ on a given forc-
ing using time-stepping before taking a Fourier transform of
the steady-state responses. An inexpensive SVD is performed
in line 9, where the optimal forcing modes VVV H ∈ CNNω×k and
gains Σ H ∈Rk×k of HHH are obtained. Line 10 recovers the opti-
mal response modes UUUH ∈CNNω×k.

The steps of our algorithm in the context of resolvent
analysis largely mirror those of Algorithm 1, except for two
distinctions. In Algorithm 1, interactions between frequencies
matter, requiring QR decomposition and SVD on all frequen-
cies simultaneously. However, in resolvent analysis, each fre-
quency is treated as a separate system, and QR and SVD are
conducted individually for each frequency. Additionally, in
Algorithm 1, the LNS operator AAA j is generated at each time
step (from Â stored in memory as shown in figure 1), whereas
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Figure 1. Schematic of the action of HHH with streaming discrete Fourier transform (DFT) and inverse DFT (iDFT) methods to transform
between the Fourier and time domains. In resolvent analysis, AAA remains constant, and ÂAAppp vanishes.

in resolvent analysis, it remains constant throughout integra-
tion.

The main benefit of time-domain integration instead of
solving a linear system in Fourier space is the scaling with di-
mension, as illustrated in figures 2 and 3. The scaling plots
compare RSVD-LU (red lines) and RSVD-∆t (blue lines) in
the context of resolvent analysis and harmonic resolvent anal-
ysis, respectively. In resolvent analysis, RSVD-LU scales as
O(N2.4) for CPU cost and O(N1.5) for memory usage, while
the CPU cost and memory usage of RSVD-∆t both increase
linearly with dimension. In the harmonic resolvent analysis
case study, the CPU scaling with the dimension of the RSVD-
LU is theoretically comparable to resolvent analysis. How-
ever, it also scales with the number of frequencies involved in
constructing the matrix TTT . The computational cost scales with
O(N2.9

ω ), and the memory requirement scales with O(N1.5
ω ),

both determined by performing the LU decomposition of TTT
with Nb = 3. This was achieved while maintaining a constant
state dimension N and varying the number of blocks Nω . With
RSVD-∆t, the overall CPU cost remains unaffected by increas-
ing Nω . This implies that creating LNS operators on the fly and
performing time-stepping are the dominant costs compared to
the transformations between Fourier space and the time do-
main for forcing and response. Moreover, the primary mem-
ory usage of RSVD-∆t is to store the LNS operators, which is
independent of Nω , while the smaller portion required to store
forcing and response matrices scales linearly with Nω .

OPTIMIZING CPU AND MEMORY USAGE
Although streaming calculations have been shown to min-

imize memory consumption, and our algorithm computes re-
solvent modes for a range of frequencies simultaneously, addi-
tional strategies can be employed to further reduce both CPU
time and memory usage.

In many cases, operators consist solely of real numbers,
allowing us to exploit the symmetry of resolvent modes about
zero. This property enables us to halve the memory usage for
these matrices. Another crucial strategy involves reducing the
duration of time stepping. This duration encompasses the time
required to pass through transients and reach steady-state. Sys-
tems with slow decay rates require extended integration peri-
ods to eliminate undesired transient responses. By leverag-
ing the underlying equations governing steady-state and tran-
sient responses, we can estimate and remove the transient part
far more efficiently than waiting for natural decay. This ap-
proach can accelerate simulations by one or two orders of mag-
nitude, depending on the desired accuracy and the system’s
original decay rate. Detailed descriptions of these strategies

for resolvent and harmonic resolvent analyses are provided in
Farghadan et al. (2023b) and Farghadan et al. (2023a), respec-
tively.

TEST CASES
Our algorithm is showcased through two distinct configu-

rations: one involving a jet for resolvent analysis, and the other
featuring an airfoil for harmonic resolvent analysis.

ROUND TURBULENT JET
A round jet is employed to demonstrate the reduced com-

putational cost and improved scalability of our algorithm. The
mean flow is derived from a large eddy simulation (LES) uti-
lizing the “Charles” compressible flow solver, with a Mach
number of M = U j

a = 0.4 and Reynolds number of Re = U jD j
ν j

=
0.45× 106. Here, U j represents the mean centerline veloc-
ity at the nozzle exit, a denotes the ambient speed of sound,
ν j signifies the kinematic viscosity at the nozzle exit, and D j
denotes the diameter of the nozzle. The computational do-
main extends over x ∈ [0,20] and y× z ∈ [−4,4]× [−4,4], with
grid resolutions of 400× 140× 140, respectively. The range
of Strouhal number, St, spans from 0 to 1, while an effec-
tive Reynolds number of 1000 is set to accommodate for un-
modeled Reynolds stresses.

The resolvent operator is constructed around the three-
dimensional mean flow. The LNS equations are expressed as
qqq(xxx,t) = [ξ ,uuux,uuur,uuuθ , ppp]T (xxx,rrr,θ ,t) comprising specific vol-
ume, the three velocity components, and pressure. The three-
dimensional state in the frequency domain is

qqq′(xxx,yyy,zzz,t) =∑
ω

q̂qqω(xxx,yyy,zzz)eiωt , (9)

and each mode is characterized by its frequency ω . To fa-
cilitate comparison, we also computed resolvent modes of an
axisymmetric jet using identical mean flow variables across
azimuthal wavenumbers of m = 0,1,2, and 3. While solving
an axisymmetric problem in 3D Cartesian coordinates may
not be a practical approach, the rationale for this choice stems
from the prohibitively high computational cost associated with
computing the resolvent modes using RSVD-LU on a three-
dimensional discretization of the jet. However, having insights
into the modes at four azimuthal wavenumbers (Schmidt et al.,
2018) serves as a valuable benchmark for further assessment
of our algorithm.
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Figure 2. Computational cost of the resolvent analysis via RSVD-∆t as a function of the state dimension N for the three-dimensional
jet: (a) CPU-hours and (b) memory usage for the RSVD-LU (pink) and RSVD-∆t (black) algorithms.
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Figure 3. Computational cost of the harmonic resolvent analysis via RSVD-∆t as a function of Nω for the airfoil test case: (a) The
CPU-hour, and (b) memory usage scaling of RSVD-LU (pink) and RSVD-∆t (black) to compute the action of HHH onto a vector, i.e.,
k = 1. The memory usage of RSVD-∆t is decomposed into memory required to store LNS operators (solid) and forcing and response
matrices (dashed).

Resolvent modes for the three-dimensional round jet are
computed using RSVD-∆t for the range of St ∈ [0,1] with
∆St = 0.05. The number of test vectors and power iterations are
k = 10 and q = 1, respectively. The classical 4th order Runge–
Kutta (RK4) integrator with dt = 0.00625 is used for time step-
ping. The total integration length is set to T = Tt +Ts = 3Ts,
based on the fact that the transient error drops below 1% for
St > 0 when the transient duration of Tt ≈ 2Ts using our tran-
sient removal strategy. The resolvent modes of the axisym-
metric jet are computed for the same St range using a standard
Arnoldi-based method, serving as reference results.

We anticipate that the gains of the three-dimensional
problem will encompass those of the axisymmetric prob-
lem due to the presence of azimuthal symmetry. Through
a comparison of gains between two-dimensional and three-
dimensional discretizations of the jet (figure not shown here),
the RSVD-∆t reliably computes the three-dimensional resol-
vent modes and effectively captures the underlying physics
of the problem. We present a comparative analysis of pres-
sure response modes at various St numbers, corresponding to
four distinct azimuthal wavenumbers, in figure 4. Each group
showcases isocontours of the three-dimensional mode above
and contours of the two-dimensional mode below. The cross-
sectional views of each panel validate the expected azimuthal

wavenumber classifications of each three-dimensional mode.

FLOW OVER AN AIRFOIL
We conduct our second test case on the flow dynam-

ics around a NACA0012 airfoil, characterized by a Reynolds
number of Re = 200 and an angle of attack of α = 20○. A
direct numerical simulation via the “CharLES” compressible
flow solver (Brès et al., 2018) is performed to obtain the mean
flow. The Mach number is set to 0.05 to replicate the condi-
tions of an incompressible flow. The computational domain
spans x/Lc × y/Lc ∈ [−49,50]× [−50,50] with a leading edge
at the origin (x/Lc,y/Lc) = (0,0), and a chord length of Lc = 1.
A constant time step of ∆tU∞/Lc = 6.88× 10−5 is utilized,
corresponding to a CFL number of 0.91, where U∞ repre-
sents the inflow streamwise velocity. Figure 5(a) depicts the
power spectral density (PSD) computed from the transverse
velocity at (x/Lc,y/Lc) = (3.0,−0.43), where vortex shed-
ding behind the trailing edge is evident. The shedding fre-
quency is St f = 0.114, where the Strouhal number is defined as

St = ωLc sin(α)
2πU∞

.
The domain of interest for harmonic resolvent analy-

sis spans x/Lc × y/Lc ∈ [−4,12]× [−2.5,2.5]. Harmonic lin-
earized operators are constructed at 100 time points within
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Axisymmetric jet, optimal mode, m = 0, St = 0.6 Axisymmetric jet, optimal mode, m = 1, St = 0.7

Axisymmetric jet, optimal mode, m = 2, St = 0.35 Axisymmetric jet, optimal mode, m = 3, St = 0.25

Figure 4. Four groups of axisymmetric and three-dimensional pressure modes are shown, including axisymmetric views, and three-
dimensional iso-volume representations. Cross-sections at x = 5 confirm the azimuthal wavenumber of the three-dimensional results.
Color bar ranges are adjusted for visualization.

10 -2 10 0 10 2

St

10 -15

10 -10

10 -5

10 0

P
S
D

(a)

10 -4

10 -2

10 0

jjÂ
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Figure 5. Airfoil test case: (a) the PSD spectrum based on transverse velocity at (x/Lc,y/Lc) = (3.0,−0.43). (b) The normalized
Frobenius norm of ÂAAp,St up to the eighth harmonic.

T = 2π/St f ≈ 55. Using a discrete Fourier transform (DFT), we
generate 100 LNS operators ÂAA j in Fourier space for harmonic
resolvent analysis. Figure 5(b) presents the Frobenius norms
of ÂAAp,St , where we selected up to the 5th harmonic in this
study. To compute harmonic resolvent modes using RSVD-
∆t, we employ the RK4 integration scheme with dt = 0.0045.
The frequency range of the perturbation is set to Nω = 15, in-
dicating that we assume the optimal perturbation and response
does not contain frequencies beyond the 7th harmonic. We set
the total time-stepping length to T = Tt +Ts = 30Ts, indicating
that employing our transient removal strategy for 29 periods
is adequate to reduce the transient response error below 1%.
Remarkably, without our transient removal strategy, the an-
ticipated transient length would have exceeded 2000 periods,
illustrating nearly two orders of magnitude in time stepping
savings.

The number of test vectors is set to k = 5, with q = 2 power
iterations effectively ensuring convergence of both gains and
modes. Apart from the unwanted phase-shift mode (Padovan
et al., 2020), the optimal forcing and response modes are il-
lustrated in figure 6. The intrinsic low-rank structure of this
harmonic system results in a striking resemblance between the
vortical structures observed in the first output mode and the
vorticity patterns seen in the nonlinear simulation driven by
sinusoidal perturbation (Padovan et al., 2020). A key obser-
vation is that regardless of the type of perturbation, vortical

structures dominate the flow dynamics. Furthermore, the forc-
ing modes predominantly occur near the trailing edge, indicat-
ing the sensitive region of the airfoil for control and design
purposes. Contrasting performance with performing resol-
vent analysis instead of harmonic resolvent analysis for flow
around the airfoil reveals that the output only closely matches
the base frequency and overlooks crucial physics at the mean
flow and higher harmonics (Padovan et al., 2020). This un-
derscores the significance of harmonic resolvent analysis for
flows characterized by dominant periodic motions. Finally,
the results obtained from RSVD-∆t demonstrate close agree-
ment with the existing data from RSVD-LU, as documented
by Padovan et al. (2020), despite variations in the CFD solver,
boundary conditions, domain setup, energy norm, and other
factors. This underscores the reliability of RSVD-∆t in the
context of harmonic resolvent analysis.

CONCLUSIONS
In conclusion, our newly developed algorithm for com-

puting resolvent and harmonic resolvent modes presents a
significant advancement by substantially reducing CPU and
memory costs, thereby expanding the applicability of these
tools to a broader range of problems. The computational com-
plexity of RSVD-∆t is demonstrated to scale proportionally to
the state dimension N in resolvent analysis. In harmonic re-
solvent analysis, where both forcing and LNS operators need
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Figure 6. Airfoil test case: real part of the vorticity field computed from the optimal input (a, c, e, g) and output (b, d, f, h) modes at
(a, b) St = 0, (c, d) St = St f , (e, f) St = 2St f , and (g, h) St = 3St f , where St f is the fundamental frequency. Color bar ranges are adjusted
for visualization.

to be created at each iteration, RSVD-∆t still exhibits linear
scalability, highlighting its effectiveness for periodic flow sim-
ulations. These findings underscore the potential of RSVD-∆t
as a reliable and efficient tool for conducting resolvent and
harmonic resolvent analyses across various domains.
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