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Instituto Tecnológico de Aeronáutica
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1 ABSTRACT
The low-frequency receptivity of an incompressible,

pressure-gradient-induced turbulent separation bubble (TSB)
is investigated with the aim of studying the mechanism re-
sponsible for the low-frequency unsteadiness commonly ob-
served in experimental studies. The investigated flow consists
of a TSB generated on a flat plate by means of adverse and
favorable pressure gradients. The direct numerical simulation
of Coleman et al. (2018) is used for the linear analysis and
compared to the unsteady flow database of Le Floc’h et al.
(2018, 2020). Resolvent analysis (RA) reveals receptivity to
external forcing at low frequency and low, non-zero spanwise
wavenumber. This low-frequency receptivity can be related to
the experimentally observed low-frequency “breathing” of the
bubble through the alignment metric, which exceeds 94%. Fi-
nally, the strong similarities between the least stable mode of
the global linear stability analysis and the optimal response of
RA suggests that the low-frequency breathing motion might be
caused by a modal mechanism, driven by this weakly damped
global mode.

2 INTRODUCTION
Turbulent separation bubbles (TSBs) arise when a turbu-

lent boundary layer separates from a solid surface and subse-
quently reattaches downstream of the separation line. TSBs
are known to exhibit unsteadiness along various spatial and
temporal scales, thereby diminishing the performance of the
system under consideration. Such detrimental effects may in-
clude reduced lift, increased drag, noise emission or vibra-
tions. Hence, the understanding of these unsteady phenomena
holds particular significance within the fluid dynamics com-
munity. When considering pressure-induced turbulent sepa-
ration bubbles (Na & Moin, 1998), generally, three distinct
frequency ranges are distinguished by means of the Strouhal
number St = f Lb/Uref based on the separation length Lb and
the reference velocity Uref. At relatively high Strouhal number
St > 1, high-frequency fluctuations are caused by small-scale
turbulent motions (Abe, 2017). Further, the roll-up and shed-
ding of vortices from the shear layer bounding the recirculation

region has been associated with a characteristic Strouhal num-
ber St ≃ 0.1− 1 (Kiya & Sasaki, 1983; Cherry et al., 1984).
Finally, a low-frequency unsteadiness related to the tempo-
ral expansion and contraction of the entire separation bubble
has been observed at St ≃ 0.01− 0.1 (Mohammed-Taifour &
Weiss, 2016). This low-frequency unsteadiness (”breathing”)
of the TSB, is the main focus of the present work. While
the low-frequency unsteadiness of pressure-induced TSBs has
been extensively documented for high-speed flow configura-
tions, e.g., featuring shockwave/boundary layer interactions
(SBLI) (Dolling, 2001), research on the low-frequency un-
steadiness of pressure-induced TSBs in the subsonic regime
has only recently emerged (e.g., Mohammed-Taifour & Weiss,
2016; Wu et al., 2020; Richardson et al., 2023).
If the proposed mechanisms for the emergence of low-
frequency unsteadiness in turbulent SBLIs equally apply to
subsonic TSBs, two main categories can be distinguished
(Clemens & Narayanaswamy, 2014). The first entails an up-
stream mechanism, where velocity fluctuations within the in-
coming boundary layer directly influence the position and size
of the TSB. Here, the low-frequency unsteadiness is attributed
to the presence of large-scale ”superstructures” observed in
both subsonic and supersonic turbulent boundary layers. The
second category, a downstream mechanism, implicates the ex-
istence of inherent flow instabilities within the TSB. Both
shear layer and centrifugal instabilities have been considered
(Wu et al., 2020).
In this work, we examine a TSB generated on a flat test sur-
face by a combination of adverse and favourable pressure gra-
dients. This flow configuration has been previously studied
experimentally by Le Floc’h et al. (2018, 2020) and numer-
ically via DNS by Coleman et al. (2018). Our procedure is
as follows: we perform linear stability analysis on a base flow
consisting of the average DNS flow field and we cross-validate
our results with the unsteady experimental database.

3 NUMERICAL DATABASE
In this work, we investigate the low-frequency receptiv-

ity of the time- and spanwise-averaged velocity field extracted
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from the DNS by Coleman et al. (2018). The flow field fea-
tures a fully turbulent, two-dimensional flat-plate boundary
layer subjected to an APG followed by a FPG. The APG-FPG
characteristics are imposed by a transpiration velocity profile
Vtop(x) (Eq. 1) on a virtual parallel plane at a fixed distance
opposite to the no-slip wall, where Vmax represents the max-
imum velocity of the transpiration velocity profile and ξ de-
notes the length scale. To suppress boundary-layer separation
on the wall, a constant boundary-layer bleed velocity Φtop is
introduced.

Vtop(x) =−
√

2Vmax

( x
ξ

)
exp

(1
2
−
( x

ξ

)2)
+φtop (1)

The solution to the incompressible Navier-Stokes equations
was computed using a pseudo-spectral code. Further details
about the DNS are available in Coleman et al. (2018). Only
the mean flow field from case C (main case) will be consid-
ered hereafter.
Traditionally, stability analyses employing DNS base flows are
compared to unsteady DNS data. However, we opt to com-
pare our results with the experimental database of Le Floc’h
et al. (2018, 2020) for two main reasons. Firstly, Coleman
et al. (2018) did not observe a low-frequency breathing motion
in their DNS due to computational limitations (their sampling
period was 66Lb/Uref while breathing occurs at 0.01Uref/Lb).
Secondly, if our linear analysis aligns with experimental find-
ings, it would strongly support the generality and portability
of our results, while simultaneously ruling out the presence of
experimental artifacts. Consequently, even though the DNS of
Coleman et al. (2018) was not originally designed to match
our experimental TSB flow, we argue that the benefits of our
approach outweigh its drawbacks.

4 EXPERIMENTAL DATABASE
The experiments of Le Floc’h et al. (2018, 2020) were

performed in the TFT boundary-layer wind tunnel, a blow-
down type tunnel specifically designed for the investigation of
low-speed turbulent separation bubbles (Mohammed-Taifour
& Weiss, 2016). The widening and subsequent converging
wind tunnel floor is used to generate a combination of ad-
verse and favorable pressure gradients, leading to mean flow
separation (and reattachment) on the upper surface of the tun-
nel. A boundary-layer bleed on the lower surface of the tunnel
is used to ensure that the boundary layer remains attached on
the wind tunnel floor. The wind tunnel features a test section
measuring 3m in length and 0.6m in width. The experiments
were performed at a reference velocity Uref = 25ms−1, with a

ref

Boundary-layer bleed

Figure 1. Schematic of wind tunnel test section, depicting
the mean streamwise velocity field on the centerline. The
time-averaged position of the TSB is indicated by the divid-
ing streamline (white solid line). The positions of unsteady
wall-pressure measurements are x1, x2.

Figure 2. Streamwise velocity component u/u∞ of experi-
mental flow field (top) and DNS flow (center). The time-
averaged position of the TSB is indicated by the dividing
streamline (white solid line). The pressure distribution along
the flat plate is displayed by means of the pressure coefficient
cp (bottom) for the DNS flow (solid line) and the experimental
TSB flow (symbols).

Reynolds number of approximately 5000 based on the incom-
ing ZPG boundary layer’s momentum thickness (Θin = 3mm).
In Le Floc’h et al. (2020) TSBs of different sizes were studied
through the variation of the APG-FPG characteristics. Here,
our primary focus is their medium TSB, which, as demon-
strated in the following, is the closest to the DNS data pro-
vided by Coleman et al. (2018). The experimental dataset in-
cludes planar time-resolved Particle Image Velocimetry (TR-
PIV) in the streamwise/wall-normal plane and unsteady wall-
pressure measurements on the test section centerline (z = 0m)
and over the wind-tunnel span. A schematic of the wind-
tunnel test section, depicting the mean streamwise velocity
field as well as the position of unsteady wall-pressure mea-
surements, is displayed in figure 1. Further details regarding
the experimental data can be obtained in the original publica-
tions of Mohammed-Taifour & Weiss (2016) and Le Floc’h
et al. (2018, 2020). In figure 2, we demonstrate that the two
TSB flows exhibit a high degree of similarity when a certain
set of scaling parameters is selected. For this purpose, we in-
troduce the parameter Lp, which is equal to the streamwise
distance between the maximum APG and FPG. We further in-
troduce the momentum thickness Θ0, which was computed by
means of the von Kármán integral. It corresponds to the mo-
mentum thickness that would be reached at the streamwise po-
sition x(Vtop = 0) for a ZPG boundary layer (Coleman et al.,
2018). The streamwise velocity component of the experimen-
tal flow field from Le Floc’h et al. (2020) (top) and the DNS
flow of Coleman et al. (2018) (center) is shown, respectively.
For comparability, the experimental flow field has been in-
verted along the wall-normal axis. The pressure coefficient cp
along the flat plate (bottom) shows qualitative agreement over
a large portion of the domain.

We now examine fluctuating wall-pressure data gathered
in the spanwise direction by Le Floc’h et al. (2018). All pres-
sure signals were obtained by using piezoresistive pressure
transducers with a range of 1 psi (6.89kPa) and an estimated
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Figure 3. Pre-multiplied power spectral density (right) of un-
steady wall-pressure measurements for two streamwise posi-
tions x1,x2.

error of ±5%. To eliminate low-frequency wind-tunnel noise
in the signals, the correction method from Weiss et al. (2015)
was applied. PSDs were calculated using Welch’s method with
50% overlap and a Hamming window.
Figure 3 presents the pre-multiplied Power Spectral Density
(PSD) of the fluctuating wall pressure on the test-section cen-
terline at two streamwise positions: one immediately upstream
of the time-averaged location of the separation bubble (x1 =
1.60m) and another in the region downstream of the TSB (x2 =
2.05m), as depicted in figure 1. The low-frequency unsteadi-
ness manifests as a distinct “hump” in the pre-multiplied distri-
bution for x1 = 1.60m, where a significant amount of energy
is concentrated in the region St ≃ 0.01. This low-frequency
hump has been associated with the low-frequency breathing of
the TSB in several works (e.g., Mohammed-Taifour & Weiss,
2016; Richardson et al., 2023). Conversely, a different behav-
ior is observed for x2 = 2.05m, where a peak is visible in the
pre-multiplied PSD for St ≃ 0.1. Cura et al. (2023) linked this
medium-frequency unsteadiness to convective instabilities in
the shear layer bounding the recirculation region.

In figure 4 we show the two-point cross-correlation co-
efficient Rp′p′ = p′(z)∗ p′ref(zref)/(p′rms ∗ p′ref,rms) at zero time
lag measured by Le Floc’h et al. (2018) (symbols). The span-
wise correlations were obtained by simultaneously measur-
ing the fluctuating wall pressure at the test-section centerline
(zref = 0m) and with a moving sensor successively mounted
at the spanwise positions z = [0,±0.05,±0.10,±0.15,±0.20]
m. All pressure signals were low-pass filtered with a cut-off
frequency corresponding to St = 0.03. As indicated by fig-
ure 3, we focus on the low-frequency unsteadiness by exam-
ining the streamwise position x1 = 1.60m. A wave-like dis-
tribution of Rp′p′ across the span, characterized by a relatively
large wavelength λz, becomes evident. This observation indi-
cates that the low-frequency unsteadiness exhibits coherence
across a significant portion of the test-section span. To quan-
tify spanwise coherence, we proceed to perform a curve-fit of
the correlation curve at x1 = 1.60m. We use the cosine func-
tion of the form f (z) = c1 ·cos(c2z), and obtain the distribution
displayed in figure 4 (solid line). Here, the fitted function has a
non-dimensional spanwise wavenumber β = 2πLb/λz of 0.97.
Notably, this value closely aligns with the spanwise wavenum-
ber corresponding to the width of the wind tunnel b = 0.6m,
which is β = 1.17.

5 METHODS
In this section, we introduce the governing equations de-

scribing the TSB dynamics and briefly outline the stability

Figure 4. Spanwise correlation of low-pass filtered wall-
pressure measurements (symbols) (modified from Le Floc’h
et al., 2020) and cosine-fit f (z) = c1 ·cos(c2z) of pressure cor-
relation at x1 (solid line).

analysis methods employed in this work. Starting from the
viscous incompressible Navier-Stokes equations, we decom-
pose the flow field into time-averaged and fluctuating com-
ponents according to q(x,y,z, t) = q(x,y,z) + q̃(x,y,z, t). In-
troducing the above Reynolds decomposition into the incom-
pressible Navier-Stokes equations and time-averaging leads to
the linearized Navier-Stokes equations (LNSE)

∂ ũ
∂ t

+ ũ ·∇u+u ·∇ũ =−∇p̃+
1

Re
(1+νt/ν)∇2ũ+ f̃0,

∇ · ũ = 0.
(2)

Here u = (u,v,w) and ũ = (ũ, ṽ, w̃) are the streamwise, wall-
normal and spanwise mean and fluctuating velocity, respec-
tively, p̃ is the fluctuating pressure, and Re is the Reynolds
number. As proposed by McKeon & Sharma (2010), we
group the non-linear terms in the Navier-Stokes equations into
an unknown forcing term f̃0, and further, represent part of
the Reynolds stresses by means of an eddy viscosity model
(Reynolds & Hussain, 1972). The eddy viscosity is calculated
from the DNS data (Coleman et al., 2018) as νt = cµ k2/ε ,
where cµ = 0.09, k is the turbulent kinetic energy, and ε is the
dissipation rate.

5.1 Resolvent Analysis
To study the forced dynamics of the bubble, we recast

equation (2) into the resolvent form as described in McKeon
& Sharma (2010)

(−iωM−A2D,z)q̂ = Bf̂. (3)

The optimal response q̂= (û, v̂, ŵ) to any harmonic forcing f̂=
( f̂x, f̂y, f̂z,0) can be obtained by performing a singular value
decomposition (SVD) of the resolvent operator R

q̂ = C(−iωM−A2D,z)
−1Bf̂ = Rf̂, (4)

where M acts as a mass-like matrix, A2D,z is the two-
dimensional LNSE operator (u = (u,v,0)) and the operators
B and C act as filters that impose restrictions on the forcing
(input) and response (output), respectively. The first singu-
lar value of the SVD of the resolvent operator is denoted as
the optimal gain σ1, while the remaining singular values (sub-
optimal gains) are arranged in decreasing order according to
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σ1 > σ2 > σ3 > ... > σn. The computation of the SVD of
equation (4) is performed using the code described in Abreu
et al. (2021) and Blanco et al. (2022).

5.2 Global Linear Stability Analysis
When the forcing term f̃0 is dropped in equation (2) the

asymptotic behavior of the TSB flow can be studied by means
of the spanwise periodic eigenvalue problem (EVP)

−iωMq̂ = A2D,zq̂, (5)

where β ∈ R is the spanwise wavenumber, ω ∈ C are the
eigenvalues, and q̂ are the eigenfunctions. The EVP in equa-
tion (5) can be analyzed to identify unstable global modes
whenever the growth rate ωi > 0, whereas disturbances de-
cay for t → ∞ when ωi < 0. The solution to equation (5) is
computed using the code from Abreu et al. (2021) and Blanco
et al. (2022), modified for global linear stability analysis.

6 RESULTS AND DISCUSSION
In this section, the results of the resolvent analysis will

be presented. In accordance with section 4 we will direct par-
ticular focus towards the low-frequency regime St ≃ 0.01 and
the identified region of spanwise coherence β ≃ 1. To clas-
sify the results, we will further discuss our findings in light of
the unsteady experimental database as well as the global linear
stability analysis.

6.1 Resolvent Analysis
In figure 5 we depict the optimal energy gain σ2

1 for dif-
ferent Strouhal numbers St, where we distinguish between the
two-dimensional case (β = 0) and the three-dimensional case
(β = 1). For 2D perturbations (β = 0), we obtain a distribu-
tion that monotonically increases up to St ≈ 0.1, after which
the optimal energy gain rapidly decreases again. In Cura et al.
(2023) the medium-frequency unsteadiness of the present TSB
flow was related to the existence of convective instabilities in
the flow. Here, the optimal response at St = 0.1 and β = 0
strongly resembles the typical alternating pattern of Kelvin-
Helmholtz (KH) rollers (not shown here), confirming this con-
clusion. In the case of 3D perturbations (β = 1), we observe a
distinctly different behavior. The highest energy gains are now
located in the previously established region of low-frequency
unsteadiness St ≃ 0.01. Moreover, the optimal energy gain σ2

1
follows the distribution of a first-order low pass filter with a
cut-off frequency Stc = 0.016. This value is in good agree-
ment with the values reported for the low-frequency unsteadi-
ness based on pre-multiplied PSDs of fluctuating velocity or
wall pressure (e.g., Fig. 3). Notably, the first-order low-
pass filter behavior of low-frequency unsteadiness has already
been observed experimentally for an incompressible TSB by
Mohammed-Taifour & Weiss (2021). It further appears to be a
repeated observation in turbulent SBLIs (Plotkin, 1975; Poggie
et al., 2015) and has recently been identified in the resolvent
analysis of a laminar SBLI (Bugeat et al., 2022).

In figure 6, we display iso-surfaces of the streamwise com-
ponent of the optimal forcing (left) and response (right) at
low frequency St = 0.01 and β = 1. Iso-surfaces of ±45%
of max| f̂x| and max|û| are shown, respectively. The time-
averaged location of the TSB is indicated by the dividing
streamline (grey-shaded region). The optimal forcing is lo-
cated mostly in the region upstream of the separation bubble

Figure 5. Optimal energy gain σ2
1 over Strouhal number St

for β = 0 (left) and β = 1 (right).

and in the first half of the TSB. A spanwise-alternating pat-
tern of large elongated structures, which encompasses a large
portion of the domain, becomes evident. The corresponding
spanwise wavelength, scaled with the boundary layer thick-
ness δ , is λz ≈ 20δ at x/Lp = 0. The associated optimal re-
sponse bounds the recirculation region and follows its shape.
Interestingly, a similar large-scale “global” structure has been
reported for the POD of the streamwise velocity component
of the TSB of Mohammed-Taifour & Weiss (2016) and for
the SPOD of several pressure-induced TSB flows (Steinfurth
et al., 2022; Richardson et al., 2023). In all of these works, the
“global” mode was linked with the low-frequency unsteadi-
ness of the TSB. However, the aforementioned works primar-
ily studied the (spectral) POD of the fluctuating velocities in
the two-dimensional streamwise/wall-normal plane. Conse-
quently, the three-dimensional structure of the modes was not
investigated. Here, the particular spatial configuration of op-
timal forcing and response, with the forcing mainly located in
the upstream region of the TSB and the response restricted to
the region nearest to the bubble, suggests that upstream pertur-
bations are a main contribution to the low-frequency unsteadi-
ness. Moreover, resolvent analysis predicts broadly similar be-
havior in the region 0.25 ≤ β ≤ 3 and 0.001 ≤ β ≤ 0.01 (not
shown here). That is, similar contours of optimal forcing and
response could be observed at low-frequency (St ≃ 0.01) and
for 0.25 ≤ β ≤ 3. Furthermore, the abovementioned low-pass
filter behavior could be observed for any β within that range.
This suggests that the low-frequency unsteadiness most likely
is not driven by a unique frequency St and spanwise wavenum-
ber β , but rather, by a range of low frequencies St ≃ 0.01 and
low, non-zero, spanwise wavenumbers.
In the following we will discuss these results in light of the
unsteady experimental database and the global linear stability
analysis.

6.2 Discussion
In section 6.1, we have identified a low-frequency resol-

vent mode with a “global” characteristic and recognized its
resemblance to the leading POD/SPOD modes observed in
various experimentally measured pressure-induced TSBs. In
Towne et al. (2018) a direct relationship between the optimal
response of RA and the leading SPOD mode was uncovered,
when the forcing can be modeled as spatial white noise. Al-
though non-linearities in the Navier-Stokes equations are ex-
pected to have “color”, a strong link between these modes can
be expected if the resolvent operator is of low-rank (Cavalieri
et al., 2019). For the present TSB flow σ2

1 /σ2
2 > 10 at low

frequency, thereby confirming the validity of the low-rank as-
sumption.
Here, we use the SPOD algorithm proposed by Towne et al.
(2018) on the TR-PIV data of Le Floc’h et al. (2020), where
fs = 900Hz, NFFT = 512 and a hamming-type window with
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Figure 6. Streamwise component of optimal forcing f̂x (left) and response û (right) for non-dimensional spanwise wavenumber
β = 1. Iso-surfaces of ±45% of the real part of max| f̂x| and max|û| are displayed, respectively. The time-averaged location of the TSB
is indicated by the dividing streamline (grey-shaded region).

50% overlap was employed. At low frequency St = 0.01 the
leading SPOD mode represents 72% of the total turbulent ki-
netic energy (TKE) in the flow, indicating the existence of a
dominant flow feature (not shown here). To quantify the align-
ment between the SPOD and RA modes, we introduce the
alignment metric

ϕ =

〈
q̂1SPOD , q̂1RA

〉
∥q̂1SPOD∥ · ∥q̂1RA∥

, (6)

which is the projection of the first SPOD mode q1SPOD on the
first RA mode q1RA . Here, ⟨·, ·⟩ is the L2 inner product and ∥·∥
is the euclidean norm. The value ϕ = 1 corresponds to perfect
alignment of the modes, while ϕ = 0 indicates that the modes
are orthogonal. Note that only the streamwise and wall-normal
component are considered here.
In figure 7 we display the leading SPOD mode (left) and the
optimal response from RA (right) at low frequency St = 0.01
and β = 1. The streamwise (top) and wall-normal (bottom)
component are displayed, respectively. Clearly, a portion of
the large-scale “global” structure described in section 6.1 can
be uncovered in the streamwise component of the SPOD of the
experimentally measured TSB flow (Fig. 7 left). Similarly, the

Figure 7. Comparison between leading SPOD mode (left)
and optimal response of the RA (right) in the PIV measure-
ment region. The streamwise (top) and wall-normal (bottom)
component are depicted, respectively. Results are shown at
low-frequency St = 0.01 and β = 1 (RA).

wall-normal component of the leading SPOD mode and the
optimal response from RA are in good agreement in terms of
phase and position of structures. The alignment is ϕ = 0.94.
This large value of ϕ strongly suggests that the low-frequency
breathing observed experimentally is associated with the cal-
culated RA response.
Finally, in figure 8 we plot the least stable mode of the GLSA
(left) against the optimal response of the RA (right) for β = 1
and St = 0.01 (RA). Interestingly, no growth rate ωi > 0 could
be uncovered for the investigated spanwise wavenumbers β ,
indicating that the flow is globally stable in the asymptotic
time limit. Nevertheless, the striking resemblance between the
least stable mode of the GLSA and the optimal response of
the RA suggests that the low-frequency receptivity observed
in the RA is most likely caused by a modal mechanism driven
by this weakly damped global mode. As this low-frequency
receptivity has been previously related to the experimentally
observed low-frequency unsteadiness (breathing), we propose
that the low-frequency breathing of TSBs may be linked to
the excitation of this weakly damped global mode. As pre-
viously described, this phenomenon is not linked to a unique
frequency and spanwise wavenumber, but rather, to a range of
low frequencies and low, non-zero spanwise wavenumbers.

7 CONCLUSION

The aim of this work was to investigate the origin of
the low-frequency breathing motion commonly observed in
pressure-induced turbulent separation bubbles (TSBs). For
this purpose, we performed modal and non-modal stability
analyses of the numerical DNS base flow from Coleman et al.
(2018) and compared the results to the unsteady experimental
database of Le Floc’h et al. (2018, 2020) in a similar flow field.
Resolvent analysis revealed strong receptivity to external dis-
turbances at low frequency St ≃ 0.01 and low, non-zero span-
wise wavenumbers β ≃ 1. The optimal response was found to
closely align with the experimentally measured low-frequency
unsteadiness, revealing an alignment of ϕ = 0.94 between the
leading SPOD mode and the optimal response of RA for β = 1.
The strong similarities between the leading GLSA mode and
the optimal response of RA indicate that the low-frequency re-
ceptivity might be caused by a modal mechanism, driven by
this weakly damped global mode.
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Figure 8. Global LSA mode 1 (left) and optimal response
from RA (right) for β = 1. The streamwise (top), wall-normal
(center) and spanwise (bottom) modes are depicted, respec-
tively.
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