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ABSTRACT
A method for optimizing the prediction of turbulence clo-

sure models was introduced by Parish & Duraisamy (2016).
The overall method is called FI-ML and it has three main steps.
First, a turbulence model is augmented with a corrective field.
Then, an optimization problem is solved to find the corrections
required to minimize the discrepancies between the turbulence
model and high fidelity data (field inversion). Finally, the cor-
rective field is trained against flow features (machine learning).
This method has been applied extensively to turbulent flows,
and with less extent, to bybass and natural transition. How-
ever, field inversion of separation induced transition still needs
to be explored. Here, we carry out field inversion for two test
cases involving separation induced transition. The first case is
a flat plate with favorable and adverse pressure gradients. The
second case is a parametric series of NACA 0012 airfoil at four
different angles of attack. We explore field inversion with and
without a transition model. Both methods show good fitting
with the high-fidelity data.

INTRODUCTION
The highly nonlinear behavior of dynamic stall associ-

ated with unsteady flow over airfoils usually requires computa-
tional investigations (Sharma & Visbal (2019)). Dynamic stall
is the delay of the maximum lift beyond its value in static flow.
This delay is attributed to the change of effective camber due
to the pitching motion and the acceleration of the boundary
layer (Magnus effect). Dynamic stall is characterized by the
formation and bursting of laminar separation bubbles (LSB)
and the formation of a dynamic stall vortex (DSV)— which
both play a crucial role in the onset of dynamic stall and in the
large overshoots of aerodynamic forces and moments (Sharma
& Visbal, 2019). Reynolds averaged Navier-Stokes (RANS)
computations have been used to investigate dynamic stall (Vis-
bal, 1990), while large eddy simulations have been deployed
more recently for flat plates (Garmann & Visbal, 2011) and
airfoils (Visbal & Garmann, 2018). The computationally cost-
effective RANS models are known to suffer from inaccuracies
in predicting non-equilibrium and separated flows. In addition,
flow transition within the laminar separation bubble requires
transition models which add more uncertainities. Hence, im-
proving the predictive capability of RANS models for both tur-
bulent and transition flows is needed to effectively investigate
dynamic stall.

Transition of laminar-to-turbulent flow occurs through
various mechanisms: Natural transition takes place through in-

stabilities in the laminar flow known as Tollmien-Tchlichting
waves, when the free-stream turbulence intensity is lower than
1%. For higher turbulence, intensities (> 1%), turbulence pen-
etrates into the laminar boundary layer and disturbances (Kle-
banoff modes) are generated which grow in amplitude, forcing
the flow to transition into turbulence without linear instabil-
ity of the base state. For flows with adverse pressure gradi-
ents, the laminar flow may separate and transition takes place
within the separated layer due to the inflection point instability,
resulting in the formation of a laminar separation bubble—as
discussed previously. These different mechanisms make it dif-
ficult for the available transition models to accurately predict
aspects such as transition onset, transition length, separation,
and reattachment.

Data driven techniques have recently been used to im-
prove the performance of existing RANS models, through data
assimilation. One of the earliest implementations of data-
driven modeling was quantifying the spatial model-form un-
certainties (Oliver & Moser, 2011). The techniques evolved
over time to use machine learning models to train model in-
accuracies against flow features (Tracey et al., 2013; Wang
et al., 2017; Wu et al., 2018; Weatheritt & Sandberg, 2016;
Ling et al., 2016). Parish & Duraisamy (2016) introduced the
framework of field inversion and machine learning (FIML).
The method is to replace a coefficient in the RANS turbu-
lence model by a field β (x). Then, an optimization problem is
solved to find β (x). This has been called a ‘model in the loop’
approach to data-driven turbulence modeling. It requires that
the RANS equations be solved repeatedly, to predict a quan-
tity of interest, as β evolves to optimize the prediction of that
quantity. Unlike the aforementioned studies, that rely on learn-
ing the functional form of the model from data directly, FIML
trains the model in its predictive context. Hence, the trained
model is consistent with the CFD implementation. Another
virtue of FIML is that the data set can be small or large; a few
values of skin friction, or a whole flow field, for example.

FIML has been applied extensively to enhance RANS
models for adverse pressure gradients turbulent flows and sep-
arated turbulent flows (Duraisamy et al., 2017; Singh et al.,
2017; Rumsey et al., 2022; Srivastava et al., 2024) and with
less extent to bypass transition (Duraisamy et al., 2015) and
natural transition (Yang & Xiao, 2020). However, the data-
driven enhancement of separation induced transition flows us-
ing FIML has gained far less attention. Symbolic regression
has been recently employed to train the laminar kinetic en-
ergy transition model, originally developed by Pacciani et al.
(2011), to improve the predictions of bypass and separation in-
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duced transition flows over low and high pressure turbine cas-
cades (Akolekar et al., 2021, 2022; Fang et al., 2023). Never-
theless, data-driven modeling of separation induced transition
for flows under moderate-to-high adverse pressure gradient for
isolated airfoils still needs to be explored.

Here, we focus on the field inversion of the laminar ki-
netic energy model of Pacciani et al. (2011) and infer the cor-
rections needed to its production term. In addition, we also use
field inversion to directly infer the intermittency field of the
shear stress transport k−ω turbulence model. Two cases are
considered: The first is a flate plate with favorable and adverse
pressure gradients; then we move forward with the static para-
metric series of NACA 0012 at chord-based Reynolds num-
ber, Re = 200,000 and angles of attack of 4◦, 8◦, 10◦, and
12◦. The dataset obtained from the field inversion should
serve as a starting point for training a transition model, using
machine learning algorithms to improve predictions of transi-
tional flows with laminar separation bubbles.

FIELD INVERSION
Laminar Kinetic energy model

The baseline model used here is similar to the lam-
inar kinetic energy transition model proposed by Pacciani
et al. (2011). This model uses Wilcox’s original k − ω

model (Wilcox, 1988) as the underlying turbulence model,
written in the incompressible form as follows.

Dk
Dt

= ∇ ·
[
(ν +σkνt)∇k

]
−Cµ kω +Fµ Pk +R, (1)

Pk = min(νt |S|2,
k|S|√

6
), (2)

Dω

Dt
= ∇ ·

[
(ν +σω νt)∇ω

]
−Cω2ω

2 +Cω1Fµ |S|2, (3)

where cµ = 0.09, cω1 = 5/9, cω2 = 3/40 and σk = σω = 0.5.
The eddy viscosity νt equals k/ω and |S| is the strain rate
magnitude given as |S| =

√
2Si jS ji. A limiter is used in the

production of turbulent kinetic energy, Pk following Durbin &
Reif (2010) to account for the stagnation-point anomaly which
results in unphysical values of k near the stagnation point of an
airfoil leading edge.

A function Fµ , which is defined in Pacciani et al. (2011),
is used to damp the turbulence level prior to transition. The
same damping function is used for both the production of k
and of ω . It is noteworthy that the damping here is different
from the original model, where the damping was applied to
the eddy viscosity, instead of to the turbulent kinetic energy
production term. Other damping functions were used for the
production of ω and the dissipation of k. Here, we use only a
single damping function for the k and ω production terms.

The transfer term R has opposite signs in turbulent and
laminar kinetic energy equations, which implies energy trans-
fer from laminar kinetic energy (kℓ) to turbulent kinetic energy
(k). The laminar kinetic energy equation is given as

Dkℓ
Dt

= ∇ ·ν∇kℓ−2ν
kℓ
y2 +βPℓ−R (4)

where 2νkℓ/y2 is a dissipation term with y being the wall nor-
mal distance. The production term Pℓ is given by

Pℓ = νℓ|S|2, (5)

νℓ =C1
√

kℓδΩ, (6)

δΩ = min(
Ωy2

U
,2), (7)

where C1 = 0.006 and νℓ is the laminar eddy viscosity, ex-
pressed in terms of a velocity scale,

√
kℓ and a vorticity

length scale, δΩ that depends on the vorticity magnitude,
Ω =

√
2Ωi jΩ ji, the wall distance, y and the velocity magni-

tude, U . The transfer term R is modeled similar to Pacciani
et al. (2011)

The laminar kinetic energy production term in Eq. 4 is
augmented with a corrective field, β (x) which is obtained by
solving the following optimization problem.

β = argmin

[
∑

wall
(τRANS

w (β )− τ
data
w )2 − ∑

f low
λ (β −1)2

]
(8)

The last term regularizes the optimization problem, with λ be-
ing a small number. The problem is to solve Eq. 8 with τRANS

w
obtained by solving the RANS equations and τdata

w being the
data to fit.

Inference of Intermittency Field
In the second approach, we augment the production term

of the turbulent kinetic energy of the k − ω SST model of
Menter et al. (2003) with an intermittency field, γe f f . The
model is described as follows.

Dk
Dt

= ∇ ·
[
(ν +σkνt)∇k

]
−Cµ kω + γe f f Pk, (9)

Dω

Dt
= ∇ ·

[
(ν +σω νt)∇ω

]
−Cω2ω

2 +
Cω1

νt
Pk

+2(1−F1)
σω2

ω

∂k
∂x j

∂ω

∂x j
. (10)

Here, the model coefficients are blended between inner and
outer values, using the blending function, F1. The details of
the blending, the production term, Pk and the description of
eddy viscosity, νt are provided by Menter et al. (2003).

Instead of inferring the intermittency (γe f f ) directly, it is
described in terms of the discrepancy field β as follows.

γe f f = (1−Ft)β +Ft , (11)

Ft = 0.5(1+ tanh(10(
k

ων
−Ct))). (12)
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This is to ensure that γ = 1 in the fully turbulent region. Prior
to transition, the eddy viscosity ratio k/(ων) is small and Ft is
approximately zero. In the turbulent region, k/(ων) increases
until it exceeds a threshold value Ct (values of 10 and 20 are
used) to force γe f f to be equal to unity. This is considered to
prevent the transition model interfering in the turbulent region.

Since the number of design variables involved in this op-
timization problem is large, we use gradient-based optimiza-
tion with the discrete adjoint method. The open source mod-
ule DAFoam has been used to solve the optimization problem,
with OpenFoam for the CFD and Python’s pyOptSparse mod-
ule for the optimizer (Bidar et al., 2022). DAFoam implements
a discrete adjoint solver to compute gradients of the cost func-
tion with respect to the β field. The Python module performs a
gradient-based optimization. The following sections show the
implementation and the results for the flat plate with pressure
gradient and the NACA 0012 parametric series.

FLAT PLATE WITH PRESSURE GRADIENTS
The computational domain for the flat plate case is shown

in Fig. 1. The upper surface is a curved slip wall that provides
favorable and adverse pressure gradients. The inlet is one half
chord length upstream of the plate leading edge. The part of
the bottom surface that extends from the inlet to the plate lead-
ing edge is specified as a symmetry plane, whereas the flat
plate is defined as a no-slip surface. The number of cells is
149 in the stream-wise direction and 99 in the wall-normal di-
rection.

Two test cases are considered at two different turbulent
intensities. The LES data provided by Lardeau et al. (2012)
are used as the high-fidelity data for inferring the corrections
fields at turbulent intensity levels of 1.5% and 2% defined at
the position corresponding to the mid-chord. The inlet con-
ditions are given in Table 1; they were provided by Ge et al.
(2014) to match the LES free-stream turbulent intensity level
and dissipation rate. The regularization constant used for this
case is λ = 10−4 and the threshold value Ct used in Eq. 12 is
10.

Table 1. Inlet conditions for the flat plate case

Uin(m/s) Tuin% ωin(s−1) ν(m2s−1)

Case 1 0.9 5.8 90 1.5×10−5

Case 2 0.9 7.5 60 1.5×10−5

The skin friction distribution over the flat plate surface is
shown in Figs. 2 & 3 for both the laminar kinetic energy (LKE)
and SST-γe f f models. The baseline LKE model shows ear-
lier transition onset and slightly a delayed reattachment point,
compared to LES data for case 1. The reattachment point is
more delayed in case 2. It was recommended by Pacciani et al.
(2014) that the production term of the LKE model should de-
pend on the free-stream turbulent intensity, which was not used
here. This is the reason why the baseline LKE model results
are similar for cases 1 and 2, while the LES data exhibits dif-
ferent reattachment points. However, free-stream intensity is
accounted for through field inversion, which shows that the op-
timized LKE model (LKE-FI) fits well with the data up to the
reattachment point. Beyond this, discrepancies start to emerge,
which shows that the field inversion has limited impact on the

fully turbulent flow beyond the reattachment point. This lim-
ited impact is more clear in case 2.

Similarly, the corrected SST model (k − ω SST-FI) fits
well with the data up to the reattachment point. The blending
function shown in Eq. 12 limits model corrections in the tur-
bulent flow beyond the reattachment point. Figs. 4 & 5 show
the contours of β for case 1. In both models, β is decreased
in the laminar region and then increases towards transition to
force the flow to reattach on time. It is noticed in Fig. 5 that β

increases near the wall beyond the reattachment point. This is
because the eddy viscosity ratio is small near the wall, leading
to Ft being almost zero, which can result in changes of γe f f .
However, this seems to have limited impact on the turbulent
region, as shown from the skin friction coefficient behavior in
Figs. 2 and 3.

NACA 0012 PARAMETRIC SERIES
The O-grid topology used for the airfoil case is shown in

Fig. 6. The domain radius is 20 times the chord length, and
the number of cells is 887 along the airfoil surface and 179
in the wall normal direction. The first cell height is chosen
such that y+ <= 1 everywhere on the airfoil surface. The inlet
turbulent intensity is 1% with an eddy viscosity ratio of unity.
The field inversion is carried out at a chord Reynolds number
of 200,000 and four angles of attack α = 4◦, 8◦, 10◦, and 12◦.
The regularization constant is 10−4 for α = 4◦ and 10−6 for
higher angles of attack.

To supply high-fidelity data for field inversion, well-
resolved LES data have been generated for a NACA 0012 air-
foil at the aforementioned angles of attack. The LES code uti-
lizes high-order schemes for solving finite difference formu-
lations of the Navier-Stokes equations, with time integration
by an implicit Beam-Warming scheme; see Sharma & Visbal
(2019) for further discussion of the solver. Once the simula-
tion reached statistically steady conditions, the data were time-
averaged and subsequently span-averaged.

The skin friction distribution over the airfoil upper surface
is shown in Figs. 7-10. For the case α = 4◦, The LES data ex-
hibit a small separation bubble, centered at x/c ≈ 0.42, which
the baseline LKE model fails to predict because the transition
is too early. The optimized model accounts for this by reduc-
ing the production term, to delay transition. Both LKE-FI and
k−ω SST-FI models fit the data well up to the end of transi-
tion. It can be seen that the optimized models do not fit the
data in the turbulent region beyond flow transition. In k−ω

SST-FI model, optimization is stopped in this region due to the
threshold value for blending, Ct = 20.

For higher angles of attack, the LKE model exhibited very
quick transition near the leading edge. The correction for this
behavior resulted in numerical instability and oscillatory c f
distribution. Hence, only the results for k − ω SST are re-
ported for angles of attack 8◦, 10◦, and 12◦ in Figs. 8-10. The
c f distribution shows that the laminar separation bubble be-
comes smaller and moves towards the airfoil leading edge as
the angle of attack increases. The corrected k−ω SST model
fits well with the LES data for all cases. In the case α = 4◦,
the variations in β span the airfoil upper surface, as shown in
Fig. 11, since the separation bubble is close to the airfoil mid-
chord. At higher angles of attack, the model corrections are
near the leading edge (Figs. 12 & 13). It should be noted that
γe f f was inferred directly without the blending used in Eq. 11
for higher angles of attack, as the discrepancies were mainly
in the separation bubble near the leading edge.
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CONCLUSION
Field inversion of two RANS models were carried out

to enhance their predictions for separation-induced transition
flows. The first model is a laminar kinetic energy model,
originally capable of predicting transition, whereas the sec-
ond model is the k−ω SST turbulence model supplemented
by an intermittency function. The cases considered are a flat
plate below a curved upper surface that provides favorable and
adverse pressure gradients, and an NACA 0012 parametric se-
ries, which exhibits separation-induced transition, with lami-
nar separation bubbles. While the field inversion of k−ω SST
was successful for all the cases presented, the LKE model was
limited to the flat plate case and NACA 0012 at α = 4◦. The
present data set is a starting point for training a data-driven
model to characterize separation-induced transition, which
plays a significant role in dynamic stall onset over pitching
airfoils.
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Figure 1. The computational mesh for the flat plate case
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Figure 2. Skin friction coefficient distribution for the flat
plate case 1.
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Figure 3. Skin friction coefficient distribution for the flat
plate case 2.

Figure 4. Inferred β field for the flat plate case 1 using the
LKE model.

Figure 5. Inferred β field for the flat plate case 1 using k−ω

SST model.

Figure 6. The computational mesh for the airfoil case
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Figure 7. Skin friction coefficient distribution for NACA
0012 at α = 4◦.
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Figure 8. Skin friction coefficient distribution for NACA
0012 at α = 8◦.
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Figure 9. Skin friction coefficient distribution for NACA
0012 at α = 10◦.
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Figure 10. Skin friction coefficient distribution for NACA
0012 at α = 12◦.

Figure 11. Inferred β field for NACA 0012 at α = 4◦ using
k−ω SST model.

Figure 12. Inferred β field for NACA 0012 at α = 10◦ using
k−ω SST model.

Figure 13. Inferred β field for NACA 0012 at α = 12◦ using
k−ω SST model.
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