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ABSTRACT
A method for large eddy simulations (LES), inspired by

spectral eddy viscosity models, is developed and implemented
in the physical space representation. The method estimates
the subgrid scale (SGS) energy transfer using a similarity-type
model expression for the SGS tensor obtained using Gaussian
filtering. Following steps for the spectral space representation,
the SGS transfer in the physical space is used to obtain a spa-
tially varying eddy viscosity at each time step in LES. The
method is autonomous in a sense that the functional form of
the eddy viscosity is not postulated but is extracted at each
time step from the LES data without any adjustable constants.
The method is tested in LES of isotropic turbulence at high
Reynolds numbers where the inertial range dynamics is ex-
pected and for lower Reynolds number decaying turbulence
under conditions of the classical Comte-Bellot and Corrsin ex-
periments. In both cases the agreement with reference data is
very good and the SGS transfer computed for the proposed
eddy viscosity model is highly correlated with the transfer
computed for the similarity-type stress tensor.

INTRODUCTION
Traditional SGS models fall into three general categories:

eddy viscosity models, similarity models and so-called mixed
models which combine eddy viscosity and similarity expres-
sions. Eddy viscosity models originated in work of Smagorin-
sky (1963) and similarity models in work of Bardina et al.
(1983). Initially, the Bardina model attracted a lot of interest
because of the simplicity of the expression for the SGS stress
tensor and its behavior in a priori tests. Bardina et al. (1983)
demonstrated that the similarity model predictions were highly
correlated with the actual SGS quantities, with correlation co-
efficients significantly larger than for the Smagorinsky model,
and that it was able to predict the reverse energy transfer, the
so-called backscatter, which is common in turbulence. How-
ever, Bardina et al. (1983), as well as many others later, ob-
served that the model in its proposed form was not suffi-
ciently dissipative in a posteriori tests. This usually leads to
similarity-type models failing in actual LES, especially when
the viscous dissipation is small.

The purpose of this work is to show that while the
similarity-type models are not suitable for use directly in
LES, they contain sufficient information for designing an au-
tonomous, dissipative, eddy viscosity model. The eddy viscos-
ity developed here is autonomous in a sense that its functional

form is not postulated but is obtained from a simulated LES
fields itself at each time step in simulations. Additionally, be-
cause the eddy viscosity is derived from the similarity model
expression, the respective SGS dissipations are highly corre-
lated.

The proposed procedure is guided by the recent work that
developed an autonomous eddy viscosity model in spectral
space based on the physics of interscale energy transfer among
resolved scales (Domaradzki (2021a,b, 2022)). The general
idea has been originated by Kraichnan (1976) who used an-
alytical theories of turbulence for SGS modeling. A good
overview of analytical theories of turbulence and their use in
modeling can be found in Lesieur (1997); Lesieur et al. (2005),
and in Zhou (2021). Compared with traditional SGS models
that are based on more-or-less phenomenological arguments
to develop functional forms of the modeling expressions, the
distinguishing feature of the spectral SGS models is that the
primary quantity used in modeling is the subgrid-scale energy
transfer TSGS(k|kc). The notation TSGS(k|kc) indicates the en-
ergy transfer from a range of resolved scales k ≤ kc caused by
nonlinear interactions involving subgrid scales k > kc, where
kc is a cutoff wavenumber of a sharp spectral filter. The un-
known SGS term in LES equations for the cutoff kc is modeled
through an eddy viscosity expression −νeddy(k|kc)k2un(k),
linear in the velocity un(k) in the spectral representation. The
form of the eddy viscosity itself is derived from the computed
SGS energy transfer for the range of resolved wave numbers
k < kc as

νeddy(k|kc) =−TSGS(k|kc)

2k2E(k)
(1)

where E(k) is the energy spectrum. Thus the main advantage
of such an approach to SGS modeling is that, if the SGS en-
ergy transfer TSGS(k|kc) is known, there is no need to postu-
late the functional form of the eddy viscosity because it can
be obtained directly from Eq. (1). In the original approach
of Kraichnan (1976) TSGS(k|kc) is computed from the under-
lying turbulence theory. In Domaradzki (2021a,b, 2022) the
SGS energy transfer TSGS(k|kc) is computed from LES fields
and two known asymptotic properties of energy flux in the in-
ertial range. Effectively, the procedure allows self-contained
LES without use of extraneous SGS models, or equivalently,
at each time step the model is obtained from a simulated field
itself and asymptotic properties of the energy flux in the in-
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ertial range. The method has been tested in LES of isotropic
turbulence at high Reynolds numbers and at lower Reynolds
numbers decaying turbulence under conditions of the classi-
cal Comte-Bellot & Corrsin (1971) experiments. In both cases
the agreement with reference data was excellent, providing nu-
merical justification for the proposed approach.

THE GOVERNING EQUATIONS
The main goal of this work is to extend the methodology

to the physical space representation which is most widely used
in LES practice where various finite difference/volume codes
are used. The procedure seeks an expression for the eddy vis-
cosity in the physical space νeddy(x, t) that is appropriate for
advancing in time the LES velocity field u(x, t). In our nota-
tion u(x, t) is the complete velocity field projected on the LES
mesh (or, in spectral space, truncated to wavenumbers k < kc),
while u(x) denotes the complete velocity first filtered using a
graded filter and then projected on the LES mesh. Note that
sometimes an explicit notation for projection (or spectral trun-
cation), may be useful, e.g., u<(x, t) ≡ u(x, t), u<(x) ≡ u(x).
In particular, LES equations for spectrally truncated LES ve-
locity are

∂

∂ t
ui +

∂

∂x j
ui u j =− ∂

∂xi
p+ν

∂ 2

∂x j∂x j
ui −

∂

∂x j
τi j (2)

where ui = (u1,u2,u3) = (u,v,w), p, and ν are the velocity,
pressure, and the kinematic viscosity, respectively, and τi j is
the SGS stress tensor which is based on the complete veloc-
ity, i.e., ucom(x, t) = u<(x, t)+u>(x, t), where u>(x, t) is an
explicit notation for subgrid scales. With such an explicit no-
tation

τi j =
(

ucom
i ucom

j

)<
−
(

u<i u<j
)<

(3)

When a spatial filtering procedure is used, e.g., Gaussian
or top-hat filters, indicated by the overbar, the LES equations
for filtered and truncated fields u<(x)≡ u(x) are

∂

∂ t
ui +

∂

∂x j
ui u j =− ∂

∂xi
p+ν

∂ 2

∂x j∂x j
ui −

∂

∂x j
τ

f ull
i j (4)

where the full SGS stress is written explicitly as

τ
f ull

i j = (ucom
i ucom

j )<− (u<i u<j )
< (5)

The full SGS stress tensor can be split into two components,
τ

f ull
i j = τres

i j + τ
phy
i j (see, e.g., Domaradzki et al. (2002)). The

resolved SGS stress tensor

τ
res
i j = (u<i u<j )

<− (u<i u<j )
< = uiu j −ui u j (6)

is a SGS similarity-like stress, computed using only the veloc-
ity projected on the LES mesh u(x)<. The second equality

in (6) indicates that the superscripts < may be ignored in the
notation if only LES resolution is considered. The remaining
term τ

phy
i j has a form

τ
phy
i j = (u<i u>j )

<+(u>i u<j )
<+(u>i u>j )

< (7)

which accounts for the physics of the nonlinear interactions
that involve unknown subgrid scales u(x)>. Note that the
above decomposition clarifies approximations involved in the
similarity modeling. Indeed, the similarity modeling for fil-
tered LES equations (4) is equivalent to approximating the
full SGS stress (5) by the resolved SGS stress (6) and entirely
ignoring the component (7) that involves true subgrid scales
u(x)>, not resolved on the LES mesh. To be more precise,
the original SGS similarity stress in Bardina et al. (1983) is
written as

τ
sim
i j = uiu j −ui u j (8)

and the form (6) is used in the deconvolution models where
the velocity u<(x) ≡ u(x) is obtained by an inversion (exact,
or approximate) of the spatial filtering operation in definition
of u<(x)≡ u(x) (see Domaradzki et al. (2002)).

The SGS energy transfer associated with the full SGS
stress tensor (5) in filtered LES equations (4) is

εSGS(x) = τ
f ull

i j (x)Si j(x) (9)

where Si j is the resolved rate-of-strain tensor for filtered ve-
locity u<(x)

Si j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
(10)

The contribution to the total SGS dissipation provided by the
resolved SGS stress in the physical space representation is

ε
res
SGS(x) = τ

res
i j (x)Si j(x). (11)

Note that if LES are performed with only resolved SGS stress
retained in (4), in general they will fail because they lack infor-
mation contained in τ

phy
i j about dynamically important actual

subgrid scales for modes with k > kc. This deficiency leads
to insufficient SGS dissipation in actual LES performed with
such pure similarity/deconvolution models.

THE MODELING PROCEDURE
The procedure seeks an expression for the eddy viscosity

in the physical space νeddy(x, t) that is appropriate for advanc-
ing in time the unknown LES velocity field u<(x, t) using LES
Eqs. (2). Note that the equations and the unknown velocity in
the procedure are the same for the spectral and the physical
space method. The eddy viscosity model for the SGS stress
tensor in Eq. (2) is
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τi j =−2νeddy(x)Si j(x) (12)

where Si j is the rate of strain tensor for unfiltered LES velocity
u(x)<. Note that (12) ignores the usual term with the trace of
the SGS stress because the procedure uses only energy equa-
tions where that term does not contribute.

The corresponding eddy viscosity closure model for the
resolved SGS stress tensor (6) for Eq. (4) is

τ
mod
i j =−2ν

mod
eddy(x)Si j(x) (13)

where Si j is the resolved rate-of-strain tensor given by Eq.
(10). Eq. (13) implies a formal relation for νeddy(x) that in-
volves computed resolved SGS transfer

ε
res
SGS(x) = τ

mod
i j (x)Si j(x) =−2ν

mod
eddy(x)Si j(x)Si j(x) (14)

It is well known that a naive application of this formula on a
pointwise basis

ν
mod
eddy(x) =−

εres
SGS(x)

2
(
Si j(x)

)2 (15)

will cause numerical instabilities when implemented in ac-
tual LES. This is because the SGS dissipation εres

SGS(x), Eq.
(11), contains negative and positive regions and the computed
eddy viscosity will contain negative values that may become
a source of instabilities. The key observation from the spec-
tral procedure is that in computing the eddy viscosity the SGS
transfer averaged over shells is used. While different types of
averaging in the physical space can be considered, a simple fil-
tering, the same as applied to derive Eq. (4), was found to be
sufficient, and the eddy viscosity is rewritten as

νeddy(x) =−
ε

res
SGS(x)

2S2
i j(x)

. (16)

Formally, the above eddy viscosity expression is appropriate
for the LES equations for filtered velocity u<(x) with the SGS
stress tensor (5) approximated by the resolved SGS stress (6).
An important observation from the spectral procedure was that
the eddy viscosity is computed first for the spectrally filtered
field, e.g., k < 1

2 kc, and subsequently, it is rescaled and ap-
plied in simulations to the full LES field, k < kc. We follow
this sequence of steps in the physical space as well. The eddy
viscosity is computed first for the filtered field, signified by
the resolved rate of strain in the denominator in (16), but the
eddy viscosity computed through (16) is then applied in LES
to the full, unfiltered LES field ui, i.e., the SGS stress tensor
is modeled through Eq. (12) and used to solve LES equations
(2). A simple, physical interpretation is that for two similar
fields, here ui and ui, the eddy viscosities should be similar,
here assumed to be the same.
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Figure 1. Results for forced LESs initialized with the inertial
range spectral form. Lines with symbols ◦: initial conditions;
broken line: spectrum after Nt = 2000 time steps (around 10
large eddy turnover times); solid line: spectrum averaged over
last 1000 steps. In this and all subsequent figures thin straight
lines show, as appropriate, −5/3 slope, and a boundary of the
forcing band at k = 3. For compensated spectra (lower panel)
horizontal lines mark expected range of values for the Kol-
mogoroff constant.

RESULTS
The proposed SGS model for LES in the physical space

representation requires specification of a graded filter, indi-
cated by an overbar in the previous sections. In this work
the filtering operation in Cartesian coordinates for an arbitrary
function f (x,y,z) is given by the formula

f (x,y,z) =
∫

G(x,x′)G(y,y′)G(z,z′) f (x′,y′,z′)dx′dy′dz′

(17)
which is a tensor product of 1-D Gaussian filters. The 1-D
filter kernel G has an explicit form (see Pope (2000))

G(x,x′) =

√
6

π∆2 exp
(
−6|x− x′|2

∆2

)
(18)

where the filter width was set to ∆ = 2∆x, where ∆x is a mesh
size, the same in each Cartesian direction.

To test the proposed implementation of the method in the
physical space we have repeated LES for several forced and
decaying isotropic turbulence cases simulated previously us-
ing the spectral implementation of the method (Domaradzki,
2021a,b, 2022) with the resolution of 643 mesh points. Steady
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Figure 2. Time evolution of energy spectra in an autonomous
LES run. Upper panel: for time interval U0t/M = [42,98];
lower panel: run continued for time interval U0t/M =

[98,171]. Experimental results: circles, U0t/M = 42; squares,
U0t/M = 98; triangles, U0t/M = 171.

state test cases were selected to be consistent with the physics
of the inertial range. Specifically, Reynolds numbers Reλ ex-
ceed 104, indicating that the inertial range theory should ap-
ply. Because of that, if the modeling procedure is correct, LES
should recover known features of the inertial range dynamics.
In Fig. 1 we plot energy spectra obtained in simulations initial-
ized with the k−5/3 function with no prefactors. The spectral
energy slopes at late times are in a good agreement with the
−5/3 exponent, with minor departures in the vicinity of the
LES cutoff kc. Also, the compensated spectra in a form of a
k-dependent Kolmogoroff function

CK(k) =
E(k)

ε2/3k−5/3
, (19)

fall within the expected range 1.4 − 2.1 outside the forc-
ing wave numbers. For testing the spectral method at lower
Reynolds number in Domaradzki (2021b), decaying turbu-
lence results of the classical experiments of Comte-Bellot &
Corrsin (1971) were used. We repeated LES for the same test
case using the current physical space method. Time evolution
of the energy spectra in LES obtained using the physical space
procedure is shown in Fig. 2 and can be compared with corre-
sponding results for the spectral procedure (shown in Fig. 7 in
Domaradzki (2021b)). Time evolution of the energy spectrum
is predicted quite well for both time intervals U0t/M = [42,98]
and U0t/M = [98,171].

As has been noted the fundamental quantity in the method
development in the physical space is the resolved SGS dissipa-

tion εres
SGS(x) (Eq. (11)). The resolved SGS stress tensor τres

i j ,
Eq. (6), can be considered as a generalized similarity model
in a sense that it is computed using the velocity u(x)< with
the same spectral support as used for LES equations, i.e., no
true subgrid scales with k > kc enter into its computation. Al-
ternatively, it can be considered as a deconvolution model, in a
sense that the velocity u(x)< can be recovered from the filtered
velocity u(x)< by inversion of the filtering operation, which
for a Gaussian filter can be performed exactly. The SGS stress
tensor for similarity or deconvolution models is known to be
highly correlated with the exact SGS stress computed from full
velocity data containing subgrid scales k > kc (Liu et al., 1994;
Meneveau & Katz, 2000). Despite that, similarity and exact
deconvolution models fail in actual LES because they cannot
maintain adequate SGS energy dissipation as simulation time
progresses. On the other hand, eddy viscosity based models
show very low correlations with exact SGS quantities but per-
form well in actual LES because of their good dissipative prop-
erties. Contrary to such common observations, for the method
proposed here we find very high correlations between the eddy
viscosity results and the results obtained with the similarity
model. Specifically, in Fig. 3 we plot SGS energy transfer for
both models. Note that forward transfer is signified by nega-
tive values, i.e., acting as an energy sink in the LES dynamics,
and backscatter is signified by positive values, i.e., acting as an
energy source in the dynamics. Visual inspection of color plots
indicates that the energy transfer for both cases appears quite
correlated. The computed correlation coefficient for these pla-
nar data is 0.81. We have also computed a correlation coeffi-
cient for the full 3-D data, getting values also in excess of 0.8.
Note these are much higher values than the value around 0.4
found for the standard Smagorinsky model. High correlations
are not surprising because the eddy viscosity is derived from
the SGS dissipation of the similarity model. Yet the presence
of backscatter for the SGS dissipation of the eddy viscosity
model is surprising, as it is commonly believed that it would
lead to unstable simulations. Despite that, none of the cases
simulated with this approach showed any hints of instability.
The analysis of the computed fields showed that the total for-
ward energy transfer was at least an order magnitude greater
than the backscatter. We suspect that its overall dominance in
the total energy transfer may explain why relatively small neg-
ative values of eddy viscosity, fluctuating in space and time,
do not lead to catastrophic instabilities. It must be noted that
above conclusions were reached for graded filters, here specif-
ically for the Gaussian filter. Correlations between the ac-
tual SGS stresses and similarity-type stresses computed using
sharp spectral filters are known to be significantly smaller (Liu
et al., 1994). Also, for sharp spectral filtering the forward and
inverse SGS transfers are of the same order of magnitude, with
the magnitude of the net forward transfer being much smaller
than each individual forward/inverse component as shown in,
e.g., Piomelli et al. (1991) and Domaradzki et al. (1993).

CONCLUSIONS
A previously proposed subgrid-scale modeling procedure

based on the interscale energy transfer among resolved scales
in LES, described for the spectral space implementation in Do-
maradzki (2021a,b, 2022), has been extended to the physical
space representation. As the fundamental quantity the method
employs the SGS energy transfer computed using a similarity-
type model expression for the SGS tensor obtained using fil-
tered velocity fields advanced in the simulations. The com-
puted eddy viscosity is then employed to model the SGS stress
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Figure 3. SGS energy transfer in a cross-sectional plane. Up-
per panel: for the similarity model (Eqs. (6) and (11)); lower
panel: for the eddy viscosity model (Eqs. (12) and(16)). Posi-
tive values are signified by red and orange colors, and negative
values by yellow, green, and blue.

tensor in the familiar Boussinesq form for use in LES. The
method is autonomous in a sense that the form of the eddy
viscosity (16) is not postulated but is extracted from the LES
data without any adjustable constants. However, the method is
unlikely to be universal because it is expected that it must de-
pend on the filter type and the filter width. This should be con-
trasted with the spectral method utilizing the sharp spectral fil-
ter where all model constants can be determined uniquely from
the LES data and the analytical theories of turbulence (Do-
maradzki, 2021a,b, 2022). In this work a graded filter was cho-
sen as a tensor product of 1-D Gaussian filters applied in each
Cartesian direction. The method was tested in LES of isotropic
turbulence at high Reynolds numbers where the inertial range
dynamics is expected and for lower Reynolds number decay-
ing turbulence under conditions of the classical Comte-Bellot
and Corrsin experiments. For both flows the agreement with
reference data is very good and the SGS transfer computed for
the proposed eddy viscosity model is highly correlated with
the transfer computed for the similarity stress tensor.

In summary, the current procedure, based on the SGS
energy transfer of the similarity model, can produce the eddy

viscosity expressions in the physical space representation that
are not only as globally dissipative as standard eddy viscosity
models, but also that they predict modeled SGS dissipation
which approximates the SGS dissipation of the similarity
model well and is highly correlated with it.

REFERENCES
Bardina, J., Ferziger, J.H. & Reynolds, W.C. 1983 Improved

turbulence models based on large eddy simulation of ho-
mogeneous incompressible turbulence. Tech. Rep. TF-19.
Stanford University.

Comte-Bellot, G. & Corrsin, S. 1971 Simple Eulerian time
correlation of full-and narrow-band velocity signals in grid-
generated, ‘isotropic’ turbulence. J.Fluid Mech. 48, 273 –
337.

Domaradzki, J., Liu, W., & Brachet, M. 1993 An analysis of
subgrid-scale interactions in numerically simulated turbu-
lence. Phys. Fluids A 5, 1747.

Domaradzki, J. A. 2021a Large eddy simulations of high
Reynolds number turbulence based on interscale energy
transfer among resolved scales. Phys. Rev. Fluids 6,
044609.

Domaradzki, J. A. 2021b Toward autonomous large eddy sim-
ulations of turbulence based on interscale energy transfer
among resolved scales. Phys. Rev. Fluids 6, 104606.

Domaradzki, J. A. 2022 Near-autonomous large eddy sim-
ulations of turbulence based on interscale energy transfer
among resolved scales. Phys. Rev. Fluids 7, 114601.

Domaradzki, J. A., Loh, K.C. & Yee, P. P. 2002 Large eddy
simulations using the subgrid-scale estimation model and
truncated Navier-Stokes dynamics. Theor. Comput. Fluid
Dyn. 15, 421–450.

Kraichnan, R.H. 1976 Eddy viscosity in two and three dimen-
sions. J. Atmos. Sci. 33, 1521.

Lesieur, M. 1997 Turbulence in Fluids, 3rd edn. Dordrecht,
The Netherlands: Kluwer Academic Publishers.

Lesieur, M., Metais, O. & Comte, P. 2005 Large Eddy Simula-
tions of Turbulence. Cambridge, U.K.: Cambridge Univer-
sity Press.

Liu, S., Meneveau, C. & Katz, J. 1994 On the properties of
similarity subgrid-scale models as deduced from measure-
ments in a turbulent jet. J. Fluid Mech. 275, 83–119.

Meneveau, C. & Katz, J. 2000 Scale-invariance and turbulence
models for large eddy simulations. Annu. Rev. Fluid Mech.
32.

Piomelli, U., Cabot, W.H, Moin, P. & Lee, S. 1991 Subgrid-
scale backscatter in turbulent and transitional flows. Phys.
Fluids A 3 (7), 1766–1771.

Pope, S.B. 2000 Turbulent Flows. Cambridge: Cambridge
University Press.

Smagorinsky, J. 1963 General circulation experiments with the
primitive equations. Mon. Weath. Rev. 93, 99.

Zhou, Y. 2021 Turbulence theories and statistical closure ap-
proaches. Physics Reports 935, 1–117.

5


