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ABSTRACT
Lie symmetries of the mean momentum equation in the

limit of of wall parallel steady turbulent shear flows are derived
and discussed in great detail. In comparison to the symmetries
of the Navier-Stokes equations, the reduction of the indepen-
dent variable space breaks some symmetries while simultane-
ously generating numerous new symmetries. These allow the
construction of turbulent scaling laws that are applicable to the
turbulent channel’s logarithmic and core region. The incor-
poration of novel symmetries enables the extension of these
scaling laws, resulting in superior fits against high Reynolds
number channel DNS data.

Steady turbulent shear flow
A very common type of flow is the wall parallel steady

turbulent shear flow (WPSSF). It is characterised by only hav-
ing one component of the mean velocity being unequal to zero.
This component is also only depending on one spatial coordi-
nate, i.e.

U1 =U1(x2), U2 = 0, U3 = 0. (1)

With this, the mean continuity equation is always fulfilled. The
above assumptions further imply that there is no x1 depen-
dence of the Reynolds stresses Ri j . However, the flow might
be pressure driven so we allow a pressure gradient in this di-
rection.

With this assumption, the Reynolds averaged Navier-
Stokes (RANS) equations greatly simplify into the following
equations

0 =− ∂P
∂x1

− ∂R12

∂x2
+ν

∂ 2U1

∂x2
2
, (2a)

0 =− ∂P
∂x2

− ∂R22

∂x2
, (2b)

0 =
∂R23

∂x2
, (2c)

with ν being the viscosity and P the mean pressure. Under
these assumptions, the pressure gradient in x1 direction is not
a function of x2, while R13 = R23 = 0 (Pope, 2000).

The RANS equations can be written either in the more
common form based on the velocity fluctuations u′i, in which
the Reynolds stress tensor Ri j occurs, or in the instantaneous
form subsequently denoted by Hi j, based on Ui. In the latter,
the Reynolds decomposition is not performed and the instanta-
neous second moment Hi j = Ri j +U iU j occurs. In the case of
steady wall parallel turbulent shear flow, only R11 differs from
its instantaneous twin and the Reynolds stresses that appear in
eq. (2) are equal their the instantaneous formulations, i.e.

H11 = R11 +U2
1, (3a)

H12 = R12, (3b)

H22 = R22, (3c)

H33 = R33. (3d)

We now want to find special solutions to the equations
eq. (2), called invariant solutions. These are solutions of the
equations derived from the Lie symmetries. In order to under-
stand this process, we first give a brief introduction into Lie
symmetries, and then more specifically to invariant solutions.

Lie symmetries
A symmetry is a transformation of the independent and

dependent variables of a system of differential equations that
leaves the system form invariant. Here, the concept of a sym-
metry as a property of geometrical objects, e.g. the rotational
symmetry of a sphere, is extended to differential equations. If
the rules of transformation form a Lie Group, they are called
Lie Symmetries. See Bluman et al. (2010) for a detailed intro-
duction into this topic. A one-parameter Lie point transforma-
tion T is defined as

T : x∗ = f(x,y;ε), y∗ = g(x,y;ε), (4)
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where x are the independent and y the dependent variables.
ε is the group parameter with ε ∈ R. Additionally, further
constraints have to be fulfilled, see Bluman et al. (2010). The
transformation can then be applied to a differential equation
(PDE), e.g. F(x,y,y(1), . . .) = 0. It is a symmetry of this PDE
if the form stays invariant under eq. (4), i.e.

F(x,y,y(1), . . .) = 0 ⇔ F(x∗,y∗,y∗(1), . . .) = 0. (5)

The definition of a Lie symmetry given in eq. (4) is called
a global transformation. Lie’s first fundamental theorem states
that this global form is equivalent to the infinitesimals, also
called the local form, that are calculated as follows

x∗i = fi(x,y;ε) = xi + εξi(x,y)+O(ε2), (6a)

y∗k = gk(x,y;ε) = yk + εηk(x,y)+O(ε2), (6b)

where ξ is the infinitesimal of the independent and η of the
dependent variables. Essentially, it is a Taylor expansion of
the transformed variable with respect to the group parameter
ε . This transformation can be extended, or prolonged, to the
partial derivatives of the k-th dependent variables through

y∗k,i = yk,i + εηk;i +O(ε2)

...

y∗k,i1,...,is = yk,i1,...,is + εηk;i1,...,is +O(ε2),

(7a)

with

ηk;i1,i2,...,is =
Dηk;i1,i2,...,is−1

Dxis
− yk,i1,...,is−1,m

Dξm

Dxis
, (7b)

where the total differential operator is defined as

D
Dxi

= Di =
∂

∂xi
+ yk,i

∂

∂yk
+ yk,i, j

∂

∂yk, j
+ . . . . (8)

The local form of the transformation eq. (4) is then given by
the infinitesimal generator, prolonged to include derivatives up
to order s

X (s) = ξi
∂

∂xi
+ηk

∂

∂yk
+ηk;i1

∂

∂yk,i1
+ηk;i1i2

∂

∂yk,i1,i2
+ . . . .

(9)
A PDE F(x,y,y(1), . . . ,y(s)) = 0 is then invariant under the Lie
transformation group eq. (4), now written in infinitesimal form
eq. (6), if

X (s)F
∣∣
F=0 = 0 (10)

holds, which is again equivalent to the form invariance under
the global transformation of the variables in eq. (5).

Invariant solutions
Turbulent scaling laws can be derived from the symme-

tries of the given system of equations. The following mathe-
matical descriptions follows Bluman et al. (2010).

Given a PDE system F(x;y)

Fσ (x,y,y(1), . . . ,y(s)) = 0, σ = 1, . . . ,N (11)

of N PDEs of order s with n independent variables x =
(x1, . . . ,xn) and m dependent variables y=(y1, . . . ,ym) that has
the point symmetry with the infinitesimal generator

X = ξi(x,y)
∂

∂xi
+ηk(x,y)

∂

∂yk
. (12)

Let ξ (x,y) = (ξ1(x,y), . . . ,ξn(x,y)) and assume ξ (x,y) ̸≡ 0.
Then, y = θ(x), with components yν = θν (x), ν = 1, . . . ,m,
is an invariant solution of the PDE system eq. (11) resulting
from the point symmetry eq. (12) if and only if

1. yν = θν (x) is an invariant surface of the point symmetry
eq. (12), i.e. X(yν −θν (x)) = 0

∣∣
y=θ(x).

2. y = θ(x) is a solution of eq. (11).

This procedure leads to a set of characteristic equations
for y = θ(x) given by

dx1

dξ1(x,y)
= · · ·= dxn

dξn(x,y)
=

dy1

dη1(x,y)
= · · ·= dym

dηm(x,y)
.

(13)
Solving this system leads to n+m−1 constants of integration
which are invariants of eq. (12).

The solutions y = θ(x) of particular point symmetries are
solutions of the PDE system. Here, the PDE system are the
WPSSF equations and the invariant solutions are dubbed tur-
bulent scaling laws.

Lie Symmetries of the WPSSF equations
The equations of WPSSF are a special case of the RANS

equations. Some of the symmetries of the latter equations
transform to this reduced system, i.e. they are also symme-
tries of the WPSSF equations. The classical symmetries of
RANS, classical in the sense that they are also symmetries
of the non-averaged Navier-Stokes equations, are the trans-
lations of space and time, rotation, a scaling symmetry (two
scaling symmetries for the inviscid case), Galilean transfor-
mation and pressure translation. As the space of independent
variables is reduced, there no longer is a time translation and
a Galilean transformation for the WPSSF equations. Also, the
rotational symmetry is broken through the assumptions made
for WPSSF. The remaining classical symmetries of the invis-
cid WPSSF equations are

Xxi =
∂

∂xi
, (14a)

XP =
∂

∂P
, (14b)

XSx = xi
∂

∂xi
+U1

∂

∂U1
+2P

∂

∂P
+2Ri j

∂

∂Ri j
+ . . . , (14c)

XSt =−U1
∂

∂U1
−2P

∂

∂P
−2Ri j

∂

∂Ri j
+ . . . , (14d)

i.e. translation in space and pressure as well as scaling in space
and time. In addition to the classical symmetries, a second set
of symmetries exist for the RANS equations, called statistical
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symmetries. They consist of the statistical scaling and statisti-
cal translation symmetry

XSc,H =U1
∂

∂U1
+P

∂

∂P
+Hi j

∂

∂Hi j
+ . . . , (15a)

XU1,H =
∂

∂U1
, (15b)

XHi j =
∂

∂Hi j
. (15c)

Here, the statistical symmetries are presented in the instanta-
neous H-formulation, as this is a more concise representation.
In the R-formulation, for instance, a translation of the mean ve-
locity eq. (15b), also affects the fluctuating second moments.
Also, there exists a statistical translation symmetry for every
averaged quantity that occurs in the hierarchy of instantaneous
momentum equations (Oberlack & Rosteck, 2010). Here, we
have listed only two for brevity.

Now, a more detailed calculation of the symmetries of
the inviscid WPSSF equation is performed through the com-
puter algebra system Maple (Maplesoft, a division of Water-
loo Maple Inc.., 2019). A total of 16 symmetries are found,
some of which contain arbitrary functions depending on inde-
pendent variables. Splitting up these function to recover the
classical and statistical symmetries results in 25 symmetries.
With eqs. (14) and (15), we have 11 classical and statistical
symmetries. Then, the remaining 14 symmetries are three that
include arbitrary functions

X1 = f1(ζ )
∂

∂U1
(16a)

X2 = f2(ζ )
∂

∂H11
(16b)

X3 = f x3(ζ )
∂

∂H33
, (16c)

with

ζ =
{

x2,U1,H11,H12,H22,H33
}
, (16d)

five symmetries that were first discovered by Rosteck (2013),

Xz1,H =
∂

∂U1
+2U1

∂

∂H11
, (17a)

Xz11,H = x2
∂

∂H11
, (17b)

Xz12,H =−x1
∂

∂P
+ x2

∂

∂H12
, (17c)

Xz22,H =−x2
∂

∂P
+ x2

∂

∂H22
, (17d)

Xz33,H = x2
∂

∂H33
, (17e)

and a more general formulation of eq. (17d)

X4 = f4(ζ )
∂

∂P
− f4(ζ )

∂

∂H22
. (18)

The first of these, eq. (17a) is similar to the statistical transla-
tion of the mean velocity eq. (15b). However, while the latter

does not transform the instantaneous higher moments, the for-
mer does. The remaining z-symmetries are all translations of
the second moments that depend on the wall-normal coordi-
nate x2, with the pressure-gradient in the WPSSF equations
also causing a translation for the pressure in two cases.

Next, a symmetry similar to a rotational symmetry exists

X5 =−x2
∂

∂x1
+H12

∂

∂H22
, (19a)

which, written in the global form is

T5 : x∗1 = x1 − εx2, H∗
22 = H22 + εH12. (19b)

This symmetry is similar to the rotational symmetry with re-
spect to the x3-axis, which no longer exists due to the assump-
tions made for the WPSSF. The global transformation of the
rotational symmetry would also include an infinitesimal trans-
formation of the x2-axis and of other dependent variables.

Further a scaling symmetry exists that only affects the
streamwise direction and the shear-component of the Reynolds
stress

X6 =−x1
∂

∂x1
+H12

∂

∂H12
. (20)

Three symmetries remain:

X7 =− (P+H22)
∂

∂x1
+H12

∂

∂x2
, (21a)

X8 =− x1x2
∂

∂x1
− x2

2
∂

∂x2
+ x1H12

∂

∂P
− x2H12

∂

∂H12
, (21b)

X9 =− x2(P+H22)
∂

∂x1
+ x2H12

∂

∂x2
+PH12

∂

∂P

+H2
12

∂

∂H12
+H12H22

∂

∂H22
.

(21c)

It is hard to grasp the effect these symmetries have when writ-
ten in their local form. While the first of these is a translation
of the two independent variables, the second and third are pro-
jective transformations Olver (1995); Bluman et al. (2010)

T8 : x∗1 =
x1

1− εx2
,x∗2 =

x2

1− εx2
,P∗ = P−H12

εx1

1− εx2
,

H∗
12 =

H12

1− εx2
,

(22a)

T9 : x∗1 = x1 − (P+H22)
εx2

1− εH12
,x∗2 =

x2

1− εH12
,

P∗ =
P

1− εH12
,H∗

12 =
H12

1− εH12
,H∗

22 =
H22

1− εH12
.

(22b)

Turbulent scaling laws
Now, with the symmetries of the WPSSF equations, tur-

bulent scaling laws can be computed. Instead of using all the
symmetries derived in the previous chapter, only the remain-
ing classical eq. (14), statistical eq. (15) and Xz-symmetries
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eq. (17) are used. This is due to the fact that the arbitrary func-
tions of some symmetries lead to invariant solutions that have
no closed form.

As shown previously, the characteristic system eq. (13)
has to be solved in order to compute the scaling laws. We now
write the characteristic system with the symmetries mentioned
above, i.e. translation in space and pressure, scaling in space
and time, statistical translation of mean velocity U1, Reynolds
stresses Ri j, statistical scaling and the additional symmetries
eq. (17)

dx1

ax1 +aSxx1
=

dx2

ax2 +aSxx2
=

dU1

(aSx −aSt +aSc)U1 +aU1
+az1

=
dP

(2aSx −2aSt +aSc)P+aP −az12x1 −az22x2

=
dR11

(2aSx −2aSt +aSc)R11 −aSsU2
1 −2aU1

U1 +aR11 +az11x2

=
dR12

(2aSx −2aSt +aSc)R12 +aR12 +az12x2
= . . . ,

(23)

where we have introduced the group parameters ax1 and ax2
for the translation in their respective direction, aP for the pres-
sure translation, aSx and aSt as the scalings in space and time
and aSc for the statistical scaling symmetry. Additionally, aU1

,
aR11 , aR12 , etc. denote the statistical translation symmetry. Fi-
nally, the symmetries eq. (17) are denoted az1, az11 and so on.

When solving this system, depending on the choice of
group parameters, different kind of solutions can be produced.
Close to the wall, Kármán (1930) assumed that there is a re-
gion in which the flow is entirely determined by the wall-
friction velocity uτ . This external parameter does not allow
arbitrary scaling of the mean velocity U1. Thus, breaking the
transformation of the mean velocity under the three scaling
symmetries

U∗
1 = eaSx−aSt+aScU1 (24)

leading to aSc = aSt − aSx. Now, solving the system eq. (23)
for U1 leads to

dU1

dx2
=

aU1
+az1

ax2 +aSxx2
, (25)

which leads to the well known logarithmic law eq. (26), dis-
cussed in the next section. Without the aforementioned restric-
tion for aSc, a power-law for the mean velocity emerges (see
eq. (30) below), which corresponds to the velocity-deficit law
valid in the core region of channel flow.

We now first discuss the case of the logarithmic law, valid
in the region close to the channel’s wall, the logarithmic re-
gion. Then, the core region is discussed.

Log region
In this case, we set aSc = aSt −aSx in order to remove the

mean velocity U1 from the denominator for the mean velocity
in eq. (23). Also, variables are non-dimensionalized with the
shear velocity uτ and the viscous length scale δν = ν/uτ and
are denoted by (·)+. Then, solving eq. (25) leads to

U+
1 =

1
κ

ln
(
x+2 +A2

)
+B, (26)
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R
+ ij

R11
R12
R22
R33
k

Figure 1. The DNS data of Hoyas et al. (2022) and the scal-
ing laws eq. (27). The parameters used are listed in table 1.
The vertical lines mark the region in which the scaling laws
are fitted. Additionally, the turbulent kinetic energy k = 1

2 Rii

is plotted.

with B being the constant of integration, κ = aSxuτ/(aU1
+

az1) and A2 = ax2uτ/(aSxν). This represents the classical for-
mulation of the log-law, expanded by the translation of the
wall-normal coordinate by A2 due to the translation symme-
try eq. (14a).

Repeating the same procedure for the second moments
results in

R+
i j =Ci j

(
x+2 +A2

)ω −Bi j +Di jx+2

− (U+
1 )

2
δi1δ j1 −2EU+

1 δi1δ j1,
(27)

with the exponent ω = 1−aSt/aSx, Ci j being the constants of
integration, E = az1/(aSxωuτ ), Di j = azi jν/(aStu3

τ ) and Bi j =
aRi j/(aSxωu2

τ )−Di jA2/ω +2δi1δ j1E/(ωκ).
The scaling law for the pressure can then be computed

from the WPSSF equation by inserting eq. (27) into the steam-
wise and wall-normal momentum equations eqs. (2a) and (2b).
From this we get the restriction C12 = 0 which leads to the
shear component of the Reynolds stress being a linear func-
tion of x+2 .

To show the quality of the scaling laws, the turbulent
channel flow DNS at Reτ = 104 from Hoyas et al. (2022) is
used to determine the fitting parameters. The resulting fit, to-
gether with the DNS data, is shown in fig. 1. Table 1 displays
the values for the parameters of the scaling law.

Although the values for Di j seem very small, they are nec-
essary as the linear term in eq. (27) is written with x+2 , which
is of order O(x+2 ) = 103 in the logarithmic region. Additional
terms are included in the scaling law for H+

11 compared to
Oberlack et al. (2022). Writing R+

11 from eq. (27) in the in-
stantaneous form results in

H+
11 =C11

(
x+2 +A2

)ω −B11 +D11x+2 −2EU+
1 , (28a)

whereas eq. (16) in Oberlack et al. (2022) reads

H+
11 =C11

(
x+2

)ω −B2, (28b)
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Table 1. Fitting parameters in the log region using the com-
mon values ω = 0.1, κ = 0.3932, E = 3.4071 and A2 = 0. The
plot of eq. (27) with these parameters is shown in fig. 1.

Bi j Ci j Di j

U+
1 4.5945 − −

R+
11 645.4385 648.1605 −6.1995 ·10−4

R+
12 −0.9955 0 9.6238 ·10−5

R+
22 −0.9241 0.2236 −1.2025 ·10−4

R+
33 −5.8632 −1.9449 −4.7944 ·10−5

with B2 = aR11/(aSxωu2
τ ), in which A2 was already set to zero.

Both E and D11 depend on the parameters of the symmetry
eq. (17) and their inclusion lead to a better overlap with the
DNS data, especially for R+

11.
The plot of the log-law for the mean velocity is not shown

as the precision of this turbulent scaling law is known in the
literature. Also, the value of ω is the same as in Oberlack
et al. (2022), with the von Kármán constant κ being nearly the
same, see table 1.

Core region
We now discuss the general case in which no assumptions

for the group parameters was made. Equation (23) then leads
to the ordinary differential equation for the mean velocity

dU1

dx2
=

(aSx −aSt +aSc)U1 +aU1
+az1

ax2 +aSxx2
=

σ1U1 +
aU1

+az1

aSx

x2 +
ax2
aSx

,

(29)
with σ1 = (1− aSt

aSx
)+ aSs

aSx
, which will be the exponent of the

power-law when solving eq. (29). Then, we define a new coor-
dinate system x◦2 = x2/h, which is 0 at the center line and 1 at
the wall of the channel. All the variables are still written non
dimensional through uτ and h. Also, the scaling laws are often
written as deficit laws, which is the subtraction of the center-
line value of the variable under investigation, such as the mean
velocity or the Reynolds stresses. To differentiate the parame-
ters used in the core region from those of the log region, they
are written with a prime.

For the mean velocity, solving eq. (29) results in the
deficit-law

U+cl
1 −U+

1 =C′
1
(
x◦2 +A′

2
)σ1 + B̃′, (30)

with A′
2 = ax2/(aSxh), B̃′ = U+cl

1 − B′, B′ = −(aU1
+

az1)/(aSxσ1uτ ) and the constant of integration C′
1.

The Reynolds stresses scale with σ2 = 2(1− aSt
aSx

)+ aSs
aSx

R+cl
i j −R+

i j =C′
i j
(
x◦2 +A′

2
)σ2 + B̃′

i j +D′
i jx

◦
2

+U+2
1 δi1δ j1 +

2E ′
2

(σ2 −σ1)
U+

1 δi1δ j1,
(31)

with C′
i j again being the constants of integration,

E ′
2 = az1/(aSxuτ ), D′

i j = azi jh/(aSx(σ2 − 1)u2
τ ) and

B̃′
i j = R+cl

i j + B′
i j with B′

i j = aRi j/(aSxσ2u2
τ ) + D′

i jA
′
2/σ2 −

2δi1δ j1E ′
2B′σ1/(σ2(σ2 −σ1)).

These scaling laws hold only for the general case of σ1 ̸=
σ2. This can be seen from the singularity in eq. (31), as well as
in B′

11. There is no change in the mean velocity for σ1 = σ2,
but the i = j = 1 Reynolds stress component then also contains
a logarithmic term

R+cl
11 −R+

11 =
(
x◦2 +A′

2
)σ1

[
C′′

11 +2C′
1E ′

2 ln
(
x◦2 +A′

2
)]

+ B̃′′
11

+D′
11x◦2 +U+2

1 −2B′U+
1 ,

(32)

with the same definitions for E ′
2 and B′ as before. C′′

11 is
a different constant of integration and B̃′′

11 also differs. The
logarithmic terms comes only for E ′

2 ̸= 0 into effect. For
E ′

2 = az1 = 0, eq. (32) is identical to eq. (31) and thus the
consideration of the two cases σ1 = σ2 and σ1 ̸= σ2 is only
relevant when the symmetry eq. (17a) is taken into account.

Now we compare eq. (31) in its instantaneous form

H+cl
11 −H+

11 =C′
11
(
x◦2 +A′

2
)σ2 +B′

11 +H+cl
11

+D′
11x◦2 +2

E ′
2

(σ2 −σ1)
U+

1

(33a)

to the deficit law given in Oberlack et al. (2022) (eq. 19
therein)

H+cl
11 −H+

11 =C′
11(x

◦
2)

σ2 , (33b)

where A′
2 was set to zero and the deficit law at x◦2 = 0 was also

set to zero through aR11/(aSxσ2u2
τ ) = −H+cl

11 . Applying the
same assumptions to eq. (33a) yields

H+cl
11 −H+

11 =C′
11 (x

◦
2)

σ2 +D11x◦2

+2
E ′

2
(σ2 −σ1)

(
U+

1 −B′ σ1

σ2

)
,

(34)

which is eq. (33b) extended through a term linear in x◦2 due to
the Xz11-symmetry eq. (17b) and with an additional term that
contains the mean velocity, occurring only for az1 ̸= 0. In order
for the deficit law eq. (34) to still be zero at x◦2 = 0, a different
aR11 has to be chosen.

Like in the logarithmic region, the scaling laws are fitted
against the DNS data of Hoyas et al. (2022) in the region 0 ≤
x◦2 ≤ 0.7, shown in fig. 2. The parameters, listed in table 2
differ from those of Oberlack et al. (2022). Whereas the latter
authors found that σ1 ≈ σ2 ≈ 1.95, we find that 2σ1 ≈ σ2.

Writing the scaling laws in the core region as deficits sug-
gests displaying, and therefore fitting, the Reynolds stresses
in a double logarithmic representation. However, there are a
few issues with this approach: first, doing so over represents
the center of the core region, roughly 0 ≤ x◦2 ≤ 0.1, and sec-
ondly, a good fit in a double logarithmic representation can
only be achieved if R+

i j

∣∣
x◦2=0 = R+cl

i j . While a good fit is un-
doubtedly aligned with the DNS’s center-line values of the
Reynolds stresses, it is conceivable that an even more optimal
fit could be achieved by allowing for a discrepancy between
R+

i j and R+cl
i j . For the mean velocity deficit, an optimal fit was

achieved for B̃′ = 0. Similarly, table 2 shows that B̃′
i j is nearly
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Figure 2. The DNS data of Hoyas et al. (2022) and the scal-
ing laws eq. (31). The parameters used are listed in table 2.
The vertical line marks the right border of the region in which
the scaling laws are fitted. Additionally, the turbulent kinetic
energy k = 1

2 Rii is plotted.

Table 2. Fitting parameters in the core region with the com-
mon values σ1 = 1.8197, σ2 = 4.0503 and E ′

2 =−60.9131, A′
2

and B̃′ set to zero. The plot of eq. (31) with these parameters
is shown in fig. 2.

B̃′
i j C′

i j D′
i j

U+
1 − 5.7639 −

R+
11 745.1922 −31.0101 0.3620

R+
12 1.9254 ·10−4 − 1.0054

R+
22 0.0448 −0.8545 −0.6030

R+
33 0.0743 −1.0355 −1.0764

zero for all components with the exception of R+
11. This is due

to the fact that in eq. (31) additional constant terms appear due
to U+

1

∣∣
x◦2=0 ̸= 0. Evaluating the R+

11 deficit at x◦2 = 0 yields

B̃′
11 +2E ′

2B′/(σ2 −σ1)+B′2 =−0.0043, thus nearly zero.

Conclusion
The derived Lie symmetries of the wall parallel steady

turbulent shear flow equations have been used to construct tur-
bulent scaling laws that hold in the channel flow’s logarithmic
and center region. These scaling laws are special solutions of

the equations that describe this flow and it has been shown that
they are an excellent model for high Reynolds number turbu-
lent channel flow.

We wish to include these scaling laws into a turbulence
model. In order for the model to be compatible with the laws
derived herein, it needs to have the same symmetries as those
used to compute the laws. Then, the model can be calibrated
through the fitting parameters tables 1 and 2.

To date, there is no compatible turbulence model. While
commonly used two-equation turbulence models fulfill all the
classical symmetries, they are not invariant under the statistical
symmetries and even have more symmetries than the RANS
equations (Oberlack, 2001). A second moment closure tur-
bulence model is invariant under all classical symmetries and
does not contain additional ones, but is still not invariant under
the statistical symmetries. To address this issue, Klingenberg
et al. (2020) developed the minimum framework of a second
moment turbulence model that is invariant under both classi-
cal and statistical symmetries. However, challenges such as the
modeling of the return-to-isotropy, production and dissipation
still remain and are under current research.
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