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ABSTRACT

A Lagrangian method for simultaneously measuring tem-
perature and velocity in a volume is presented, employing en-
capsulated Thermochromic Liquid Crystals (TLCs) as tracer
particles for both variables. The experiments are performed in
an equilateral hexagonal-shaped convection cell with a height
of 60 mm and a distance of 104 mm between its parallel side
walls, resulting in an aspect ratio of 1.73. A water-glycerol
mixture is used as the fluid to match the density of the TLC
particles. A densely connected neural network, trained on cal-
ibration data, is proposed to predict the temperature of indi-
vidual particles based on their image and position in the color
camera images, achieving uncertainties below 0.2 K over a
temperature range of 3 K. The Shake-the-Box technique is
used to determine the 3D position and velocity of the par-
ticles, which is then coupled with the temperature measure-
ment approach. Applied to thermal convection at a Rayleigh
number Ra = 3.4 x 107 and a Prandtl number Pr = 10.6, the
method allows for the visualization of detaching plumes and
direct measurements of the convective heat transfer. Moreover,
it is demonstrated that the approach enables the computation
of statistics on convective heat transfer.

Introduction

Heat transfer is a crucial factor in various natural phe-
nomena and engineering scenarios, and temperature variations
often being the driving force behind fluid flow (Chilla & Schu-
macher, 2012). To understand these flows, it is essential to an-
alyze both velocity and temperature data. A method for obtain-
ing this information simultaneously is the combination of Par-
ticle Image Velocimetry (PIV) or Particle Tracking Velocime-
try (PTV)/ Lagrangian Particle Tracking (LPT) with Particle
Image Thermometry (PIT), utilizing Thermochromic Liquid
Crystals (TLCs) as the tracer particles (Dabiri, 2009). Due to
their unique molecular arrangement, TLCs reflect light of dif-
ferent color depending on their temperature when exposed to
white light (Tamaoki, 2001). Therefore, capturing tempera-
ture variations requires a color camera. The color reflection of
the TLCs is influenced by further factors, including the angle
of observation and the spectrum of illumination, making tem-
perature calibration for the specific experimental setups essen-
tial (Moller et al., 2019). This hybrid PIV/PIT technique has
facilitated the examination of large-scale patterns in natural
convection (Moller et al., 2022; Kaufer et al., 2023) and tur-
bulent heat flux in mixed convection (Mommert et al., 2023).
Moreover, recent advancements have expanded this method to

assess all three velocity components and the temperature at
the particle level in thermal convection studies by integrating
LPT with encapsulated TLCs, as described in a recent paper
by Kéufer & Cierpka (2024) and outlined in Fig. 1.

Experimental setup

The experiments were conducted in a Rayleigh-Bénard
convection cell of hexagonal geometry, with dimensions of
h = 60 mm in height and w = 104 mm in width. A schematic
diagram offering a top view and detailing the coordinate sys-
tem orientation is presented in Fig. 2. The experiment was
carried out at a Rayleigh number Ra = 3.4 x 107, defined by
as Ra = goATH / vk, where g represents the acceleration due
to gravity, o the thermal expansion coefficient, AT = Ty, — T¢.
the temperature difference between the heating and cooling
plates, & the height of the convection cell, v the kinematic
viscosity, and k the thermal diffusivity, respectively. The ex-
periment utilized a water-glycerol mixture with an 87:13 vol-
ume ratio as the working fluid, resulting in a Prandtl number
Pr = v/x = 10.6. This mixture was chosen to closely match
the density of the encapsulated thermochromic liquid crystals
used as tracer particles, which ranged in size from approxi-
mately 60 to 100 um and were eliminated by a custom-made
white light LED which was used in pulsed mode with a pulse
width of 20 ms. The larger particle size was selected to ensure
sufficient light reflection and to generate particle images of a
size that allows for the reliable extraction of color information.
This aspect is crucial for accurately determining the color and,
thus, the temperature of individual particles. The flow within
the cell was recorded using three cameras (PCO edge 5.5), one
of which is color-sensitive due to a Bayer pattern in front of the
sensors. All cameras were used with f = 100mm focal length
optics (Zeiss Milvus) and observed the region of interest under
varying viewing angles but perpendicularly through the side-
walls. By aligning the viewing direction perpendicularly to the
sidewall and using large focal length optics, chromatic aberra-
tions are minimized.

Temperature calibration and processing

To estimate the temperature from the particle images, a
calibration that relates temperature and particle images is nec-
essary. A flow chart of the procedure is shown within Fig. 3.
For the calibration measurements, a uniform temperature was
created in the convection cell by connecting both plates to a
thermostat and using a magnetic stirrer to achieve a uniform
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Figure 1. Schematic illustration of simultaneous temperature and velocity measurements. Particle images are captured using two
monochrome cameras alongside a color camera. Particle identification and tracking are carried out by the proprietary Shake-the-Box

software. Particle temperatures are derived from color particle images by employing a densely-connected artificial neural network.

This figure is adapted from Kéufer & Cierpka (2024).
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Figure 2. Schematic top-view illustration of the camera and
light source arrangement with respect to the measurement do-
main. The illuminated domain where the measurements were
performed is indicated, and the coordinate system is defined.
The Figure is adapted from Kaufer & Cierpka (2024).

temperature distribution. After stabilizing the temperature,
color images of TLC particles were taken, and simultaneously,
the plate temperature was measured with PT-100 thermistors
to get a reference temperature Ti.;. This procedure was re-
peated across temperatures from 19.7°C to 22.7°C in 0.2 K
increments. Thereby, typical particle images at known tem-
peratures are acquired. Exemplary particle images are shown
in Fig. 4. After recording, color images were obtained from
bilinear demosaicing of the color filter array (CFA) images. To
identify individual particles, the color images were converted
to grayscale and thresholded, and then a local maximum search
was applied for peak detection. At the peak location 5 x 5 pixel
particle images were extracted from the corresponding color
image and normalized to compensate for variations of size and
illumination. The normalized particle image, together with the
position of the peak in the color camera image X and Y, was
used to train a multi-layer perception after applying a train-test
split of 90:10. The MLP was trained to predict the temperature
using the reference temperature 7.y measured during the cal-
ibration as a target. For the machine learning procedure, the
sci-kit learn package was used (Pedregosa et al., 2011). After
the training phase, the model’s accuracy was tested, and the
uncertainty was estimated by comparing the measured particle
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Figure 3. Flow chart of the temperature calibration proce-
dure. To relate particle images and temperature, a densely
connected neural network is trained on the particle images and
their position in the color camera image at a known temper-
ature. The target is the temperature measured by the temper-
ature sensors in the plates during the calibration. MSE is the
abbreviation for mean squared error. Figure taken from Kéufer
& Cierpka (2024).

temperatures T to the reference temperatures Ti¢. The results
are displayed in Fig. 5. It shows that the standard deviation
of the measured particle temperature o(7') remains below 0.2
K across the temperature range, indicating a relative measure-
ment uncertainty of about 6.5%. Furthermore, the mean ab-
solute deviation (|Te — T'|) is lower than the o(T') except for
the highest calibration temperature, indicating little systematic
deviation of T from T.s. After the training, the neural net-
work can be used to measure the temperature simultaneously
and in combination with the velocity measurements obtained
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Figure 4. Exemplary images of TLC particles at 19.7 °C (a),
20.6 °C (b), 21.7°C (¢), and 22.7 °C (d). The color shift from
red over green towards blue is recognizable with increasing
temperature. This figure is adapted from Kiufer & Cierpka
(2024).
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Figure 5. Plot of the mean absolute deviation between the

reference and the measured particle temperature (|Tief — T'|)
(red) and the standard deviation of the measured particle tem-
perature o7 (blue) for each reference temperature Ties.

from the Shake-the-Box (STB) technique. Therefore, the 3D
particle position is projected into the color camera image, and
the particle image is extracted and processed in a similar way
as the calibration data. After separately processing the parti-
cle velocities and temperatures, the temperature and velocity
data were merged together. In a post-processing step, the tem-
perature data are filtered by a sliding median filter along the
trajectory, and short tracks are discarded, ensuring robust and
accurate assessments of temperature and velocity. After post-
processing, 998 snapshots with approximately 5000 particles
each were available.
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Figure 6. Trajectories of the convective heat transfer Jeonv

varying in length from 15 to 41 time steps. The thermal plumes
stand out due to their enhanced heat transfer.

Results

To analyze the results the time 7, the coordinate x, velocity
u and temperature T are transferred into their non-dimensional
representation according to

t
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After the non-dimensionalization, the dimensionless tempera-
ture fluctuation

~h

O =T (&) —(T(%0))x; 5)

and the dimensionless convective heat transfer
jconv = \/m ﬂ)‘ (ivf) C:) (i7 f) (©)

can be calculated. To demonstrate that Fig. 6, presents the con-
vective heat transfer Jony along the particle trajectories. These
paths vary in duration from 15 to 41 time steps. The figure
highlights the separation of thermal plumes, distinguishable
by their increased heat transfer compared to their surround-
ing. Furthermore, the joint measurement allows for the direct
computation of statistics of the Jeopy, similar to Shang et al.
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Figure 7. PDF of the normalized convective heat transfer
Jeony for the inner |% < 0.25 (red) and outer |# > 0.25 (blue)
region. The PDFs are skewed toward positive values since
overall heat is transferred from the bottom toward the top.

(2004). To validate the results with literature, the probabil-
ity density function (PDF) of the normalized convective heat
transfer Jeony /6 (Jeony) for the inner |# < 0.25 (red) and outer
|| > 0.25 (blue) region are shown in Fig 7. Both PDFs are
skewed toward positive values, which aligns with the physics
since overall heat is transferred from the bottom toward the
top plate. Beyond that and albeit at different Ra and Pr, the
shape of the PDFs agree qualitatively with the PDFs reported
in Shang et al. (2004). This once more demonstrates the ca-
pabilities of the described method. |%| < 0.25 (red) and outer
region |£| > 0.25 (blue)

Conclusion and Outlook

A novel method for simultaneously measuring tempera-
ture and velocity in 3D was presented. The technique is ca-
pable of direct measurements of the heat transfer along the
particle trajectories in a volume, which is crucial for numer-
ous technical applications. This opens avenues for a deeper
understanding of convective heat transfer.

In the future, further improvements to the measurement
technique are intended to be made by applying more color
cameras and refining processing and post-processing. Ad-
ditionally, the application of data assimilation techniques to
interpolate the data onto an Eulerian grid for further analysis
of the data is desired. For this purpose, physics-informed
neural networks (Karniadakis et al., 2021) or RBF with con-
straints (Sperotto et al., 2024) are considered valuable tools.
These methods are capable of leveraging the full potential of
the 3D measurements and overcoming the limitation of planar
data (Teutsch et al., 2023).
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