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ABSTRACT
Recovering the pressure fields from image velocimetry

measurements involves two general strategies: i) direct Pres-
sure Gradient Integration (PGI) from the momentum equation
and ii) solving the Pressure Poisson Equation (PPE). In this
work, we analyze the error propagation of the former strat-
egy and provide some practical insights. For example, we
explain how applying the Helmholtz-Hodge Decomposition
(HHD) could significantly reduce the error propagation for
the PGI and PPE. We also propose to use a novel Radial Ba-
sis Function (RBF)-based HHD pressure field reconstruction
strategy that offers the following advantages: i) effective pro-
cessing of scattered or structured image velocimetry data on
a complex domain and ii) divergence/curl-free kernels provid-
ing direct divergence-free correction to the velocity fields for
incompressible flows and curl-free correction for pressure gra-
dients. Complete elimination of divergence-free bias in mea-
sured pressure gradients and curl-free bias in the measured ve-
locity field results in accurate and robust reconstruction. Syn-
thetic Lagrangian particle tracking velocimetry data based on
high-fidelity simulations are used to test the analysis, demon-
strating the flexibility and effectiveness of the RBF-HHD pres-
sure solver.

INTRODUCTION
Reconstructing pressure fields from image velocimetry is

attractive due to its non-invasive nature and field measurement
capability. This reconstruction, in general, can be classified
into two major categories: i) direct Pressure Gradient Inte-
gration (PGI) based on the momentum equation ∇p = ggg(uuu) =

−ρ

(
∂uuu
∂ t +(uuu ·∇)uuu−ν∇2uuu

)
and ii) solving the Pressure Pois-

son Equation (PPE), i.e., ∇2 p = f (uuu) = ∇ ·∇p.
Reconstructing pressure through the PPE and PGI poses

different advantages and challenges. One fundamental advan-
tage of solving the PPE is that the reconstructed pressure field
is unique (up to a constant reference pressure) given proper
boundary conditions, no matter if the data are corrupted or
not. However, rigorous error analysis and benchmarking stud-

ies show that solving the PPE could be sensitive to the error
in the data (Charonko et al., 2010; Pan et al., 2016). On the
other hand, carrying out the PGI along different paths in the
domain may give conflicting reconstructed pressure at a fixed
location if the pressure gradient data are corrupted. This re-
flects an ill-posed problem: the uniqueness of the solution is
not guaranteed and a regularization technique is needed to ad-
dress this issue. For example, Baur & Köngeter (1999) inte-
grated pressure gradients starting from an edge of the domain
using a spatial-marching strategy. Another typical strategy in
the PGI category includes the Omni-Directional Integral (ODI)
methods (e.g., the Rotating Parallel Ray Omni-Directional In-
tegration method (RPR-ODI) developed by Liu et al. (2016)).
The ODI-family algorithms attempt a finite ensemble recon-
struction of a pressure field on a discrete mesh. They aim to
iteratively impose the Path Independence Property (PIP) of the
line integral for a scalar field, whose gradient is supposed to
be conservative. Despite the fact that the ODI is robust against
random noise in the pressure gradients, its major deficiency is
the high computational cost, especially for time-resolved high-
resolution volumetric data.

Analyzing the error propagation from the input data to
the computed pressure is crucial not only for understanding
and improving the reconstruction algorithms but also for un-
certainty quantification. The error analysis of the pressure re-
construction based on the PPE has been reported in Pan et al.
(2016), offering error bounds for the recovered pressure, which
are independent of the solver implementations and experimen-
tal techniques (e.g., PIV or PTV). Error propagation of the
ODI solvers was analyzed by Liu & Moreto (2020), show-
ing that the error in the recovered pressure decreases with the
number of integration paths within a certain range when the
random noise in the pressure gradient is assumed to be zero-
mean. However, rigorous error propagation analysis for the
general PGI has not been sufficiently studied yet in the context
of image velocimetry-based pressure field reconstruction.

In this work, we attempt such an analysis of the PGI,
which leads to several interesting results. First, we show that
the continuous limit of the ODI is to apply the Helmholtz-
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Hodge Decomposition (HHD) to a measured pressure gradient
for regulated pressure reconstruction. Second, a properly con-
ducted PGI could potentially achieve more accurate pressure
reconstruction than that recovered by the PPE. Lastly, in lieu
of these observations, we propose to use a Radial Basis Func-
tion (RBF)-based HHD solver that is based on divergence/curl-
free kernels to provide divergence-free correction to the veloc-
ity fields for incompressible flows and curl-free correction for
pressure gradients, offering the following advantages: i) ef-
fective flow reconstruction on scattered PTV data in a com-
plex domain without meshes; ii) detecting and eliminating
divergence/curl-free bias in measured data; and iii) signifi-
cant reduction in computational time compared to conven-
tional ODI methods.

ERROR ESTIMATE FOR PGI (WITH HHD REGU-
LARIZATION)

In this section, we provide an error estimate of the pres-
sure field reconstructed from PGI. Let the uncontaminated
pressure gradient be ggg = ∇p in the domain Ω, where p is the
pressure field with boundary value p = p0 on ∂Ω. As p is a
scalar potential, its gradient ggg is a conservative vector field that
is curl-free. A fundamental property of a conservative field is
that the line integral from one location in the field to the other
is independent of the path of the integral, as suggested by the
gradient theorem. If ∇p is corrupted by some error ε∇p, then
we have g̃gg = ∇p+ ε∇p in Ω, and the PIP does not necessarily
hold for the contaminated field g̃gg, posing difficulty to direct
analysis of the error propagation of the PGI. However, this is-
sue could be resolved by applying the HHD on the contami-
nated pressure field.

One of the formulations of the HHD states that a suffi-
ciently smooth vector field ξξξ on a bounded domain Ω with
boundary ∂Ω can be uniquely decomposed in the form ξξξ =
∇ϕ + rrr, where the vector field rrr is divergence-free and is re-
movable. rrr is tangential to the boundary along ∂Ω; ϕ is a
scalar potential and ∇ϕ is curl-free (Chorin et al., 1990). For
example, a contaminated pressure gradient field g̃gg can be de-
composed as g̃gg = ∇p+ ε∇p = ∇ϕ + rrr∇p in Ω. If the condi-
tions on the boundary (e.g., n̂nn · rrr∇p = 0) are given, n̂nn ·∇ϕ = dn
is naturally determined. In turn, ϕ is unique up to a constant,
including the value of ϕ on the boundary: ϕ = ϕ0 on ∂Ω.

The significance of the HHD in the context of pressure re-
construction is that the decomposed gradient field ∇ϕ exactly
satisfies the path independence condition for a pressure gradi-
ent field and the divergence-free component in g̃gg can be com-
pletely removed. Note, the outcome of the HHD (∇ϕ) only
guarantees the curl-free property and thus ϕ is a scalar poten-
tial. However, this does not mean that ∇ϕ is error-free. The
HHD only identifies and removes the divergence-free part (i.e.,
rrr∇p) in g̃gg, which should not be there at all.

We next investigate the error (ϕ - p) in the reconstructed
pressure field when the contaminated field g̃gg is integrated using
HHD regularization. Comparing the uncontaminated pressure
gradient with the contaminated one, we can isolate the error in
the pressure gradient

ε∇p = g̃gg−ggg = ∇(ϕ − p)+ rrr∇p in Ω, (1)

and the discrepancy on the boundary is εp = ϕ0 − p0 on ∂Ω.
Computing the norm of both sides of (1) and applying triangle

inequalities lead to

∥ε∇p∥L2(Ω) = ∥∇(ϕ − p)+ rrr∇p∥L2(Ω)

≥
∣∣∣∥∇(ϕ − p)∥L2(Ω)−∥rrr∇p∥L2(Ω)

∣∣∣ in Ω.
(2)

Applying the Poincaré inequality to (2), we can bound the dis-
crepancy between the HHD reconstruction and the true value
of the pressure:

∥εp∥L2(Ω) = ∥ϕ − p∥L2(Ω) ≤C
(
∥ε∇p∥L2(Ω)+∥rrr∇p∥L2(Ω)

)
,

(3)
where C is the Poincaré constant. The value of C is indepen-
dent of the numerical scheme of the pressure solver or experi-
mental method. If the error on the boundary is concerned, the
error in the reconstructed pressure field can be bounded as

∥εp∥L2(Ω)≤C
(
∥ε∇p∥L2(Ω)+∥rrr∇p∥L2(Ω)

)
+||ϕ0− p0||L∞(∂Ω).

(4)

HHD-based regularization for improved pres-
sure reconstruction

If a proper HHD is performed to regularize the measured
pressure gradient, rrr∇p is removed from g̃gg, and using ϕ alone
to reconstruct the pressure field would reduce the error in
the pressure field. The corresponding error estimate can be
achieved by removing rrr∇p in (3) and (4):

∥εp∥L2(Ω) ≤C∥ε∇p∥L2(Ω) ≤C∥ε∇p∥L2(Ω)+ ||ϕ0 − p0||L∞(Ω).
(5)

It is obvious that the estimated error in (5) is potentially lower
than that for (4), by a difference of C||rrr||L2(Ω). The effec-
tiveness of this simple practice will be demonstrated using
an RBF-HHD solver in the next sections. In fact, similar
ideas have been pursued from various perspectives to differ-
ent extents. Examples include the works by Baur & Köngeter
(1999); Liu & Katz (2006); Dabiri et al. (2014); Wang et al.
(2016, 2017); McClure & Yarusevych (2019), and Lin & Xu
(2023). The goal shared by these methods is to recover the
pressure field from a contaminated pressure gradient field by
the endeavor of seeking a curl-free pressure gradient field.
These methods fulfilled the goal at different levels of success.

HHD-regularized PGI as a limit of ODI
The goal of the ODI is to recover a pressure field aim-

ing to satisfy the PIP of the pressure gradient. Invoking the
curl-free property of ∇ϕ from the HHD, which exactly satis-
fies the PIP, we can argue that the limit of applying the ODI on
a corrupted pressure gradient field is carrying out the HHD-
based regularization to the same field. If it is possible to find a
bound for the error in the pressure computed by the ODI, it is
expected to be higher than that in (5).

In addition, the ODI family methods may present some
fundamental features that extend beyond the potentially high
computational cost, which may have become a minor con-
cern with recent improvements in computational efficiency
(Zigunov & Charonko, 2023, 2024): i) the ODI cannot dif-
ferentiate the curl-free error in the pressure gradient, as the
curl-free error also satisfies the PIP. This is the same as the
HHD-based pressure solvers. Thus, such errors in the pres-
sure gradient can penetrate through reconstruction, by either
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the ODI family or HHD-based methods, and contaminate the
recovered pressure field; ii) the ODI does not necessarily re-
ject any divergence-free components in the pressure gradient
(i.e., rrr∇p), while the divergence-free error could be removed
by the HHD-based methods. Recent advancement of the ODI
(Zigunov & Charonko, 2023, 2024) showed that the ODI fam-
ily has close connections to the PPE. Despite that the original
motivation of the ODI algorithm is to iteratively converge to a
pressure field whose gradient satisfies the PIP, the simplifica-
tion by Zigunov & Charonko (2024) does not show the curl-
free correction intended by the ODI.

Connections between PPE and HHD-
regularized PGI

Assuming rrr∇p is small or removable, ignoring
∥rrr∇p∥L2(Ω) in (3) leads to ∥ϕ − p∥L2(Ω) ≤ C∥ε∇p∥L2(Ω).
More explicitly, this assumption implies that only the curl-free
part of ε∇p is relevant for error propagation. This means that
ε∇p = ∇εp and εp = ϕ − p, and we can obtain

∥εp∥L2(Ω) ≤C∥∇εp∥L2(Ω). (6)

Recalling the error estimate of the PPE which is based on the
analysis of the Poisson equation with respect to εp (details can
be found in Pan et al. (2016)): ∇2εp = ∇ ·∇εp = ε f , where ε f
is the error in the data of the PPE, we can apply the Poincaré
inequality which leads to

∥∇εp∥L2(Ω) ≤C∥ε f ∥L2(Ω). (7)

Combining (6) and (7) recovers the error bound by directly
analyzing the PPE:

∥εp∥L2(Ω) ≤C∥ε∇p∥L2(Ω)︸ ︷︷ ︸
bound for HHD

≈C∥∇εp∥L2(Ω) ≤C2∥ε f ∥L2(Ω)︸ ︷︷ ︸
bound for PPE

.

(8)
The error estimation (8) recovers the heuristic that an

HHD-regularized PGI solver is expected to outperform a nor-
mal Poisson solver in terms of upper bounds. However, in
reality, a direct comparison between these two strategies is
not trivial for several reasons. First, for example, using the
Poincaré inequality twice (i.e., C2 in (8)) for a PPE-based
solver may overestimate the error in the pressure reconstruc-
tion more significantly than the error estimate for an HHD-
based solver, where the Poincare inequality is applied only
once. Second, the bound for the HHD-based solver scales with
the error in the pressure gradient ∥ε∇p∥L2(Ω) but the bound
for the PPE-based solver scales with the error in the data field
∥ε f ∥L2(Ω). The relative value of ε∇p and ε f is not straightfor-
ward, in addition to the complexity associated with numerical
implementation when evaluating these quantities. One simple
example demonstrating this issue can be found in Nie et al.
(2022).

AN RBF-HHD SOLVER
In this work, we employ an RBF-HHD solver developed

by Fuselier & Wright (2017) to reconstruct the pressure field.
The use of this solver serves two purposes: i) validate some
of the arguments in the previous sections, and ii) demonstrate
the effectiveness of this solver as a novel pressure field recon-
struction method suitable for contaminated image velocimetry
data.

The general idea behind the RBF-HHD solver is sum-
marized below, and details can be found in Fuselier &
Wright (2017). A generalized matrix-valued RBF kernel
ΦΦΦ can be decomposed into a divergence-free and curl-free
part on a bounded domain: ΦΦΦ = ΦΦΦ

df + ΦΦΦ
cf, where ΦΦΦ

df =
−curlxcurly(φ(|x− y|)I) and ΦΦΦ

cf =∇x∇T
y (φ(|x− y|)I) are the

divergence-free and curl-free kernels, respectively. curl and
∇ are the curl and gradient operators, respectively, and their
subscript (e.g., the x in curlx or the y in ∇y) denotes the argu-
ment it acts on; I is an identity matrix. φ(|x− y|) represents
an RBF kernel, which is the scalar-valued form of ΦΦΦ. x and
y are two data points in the domain and |x− y| denotes their
Euclidean distance. The superscript [·]T denotes the matrix
transpose operator. This decomposition is unique and the con-
struction of the divergence-free and curl-free kernels for 2D or
3D is straightforward.

Using the kernels ΦΦΦ
df and ΦΦΦ

cf, a vector field sss f can
be decomposed into divergence-free and curl-free parts, i.e.,
sss f = sssdf

f + ssscf
f . The decomposed part is a linear combination

of ΦΦΦ
df or ΦΦΦ

cf, weighted by a generalized expansion coeffi-
cients λλλ j. It can be represented by sssdf

f = ∑
N
j=1 ΦΦΦ

df(·,x j)λλλ j

and ssscf
f = ∑

N
j=1 ΦΦΦ

cf(·,x j)λλλ j, where x j is the location of the
given data point, N is the number of given data points. The
expansion coefficients λλλ j can be solved by forcing the inter-
polant coinciding with the given data fff |X : sss fff

∣∣
X = fff |X =

∑
N
j=1 ΦΦΦ(X ,x j)λλλ j, where X = {x1,x2, . . . ,xN} represents the

locations of the given data. After retrieving λλλ j, we can ob-
tain the decomposed divergence-free and curl-free parts.

The divergence-free RBF-HHD solver for velocity field
reconstruction and the curl-free RBF-HHD solver for pressure
field reconstruction are constructed based on the above decom-
position. When solving λλλ j, the divergence-free solver utilizes
ΦΦΦ

df; and its boundary conditions are prescribed as the outward
normal components of vectors at boundaries in the divergence-
free part. On the other hand, the curl-free solver employs ΦΦΦ

cf;
and its boundary conditions require the tangential components
of vectors at boundaries in the curl-free part. After the de-
composition, the divergence-free RBF-HHD velocity solver
removes the curl-free bias in the velocity field for an incom-
pressible flow. The curl-free RBF-HHD pressure solver filters
out the divergence-free component in the pressure gradients
and calculates the potential of the pressure gradients (i.e., the
pressure field). The potential is evaluated by a linear combina-
tion of kernels −∇T

y (φ(|x− y|)), whose coefficients are known
from the previous step.

VALIDATION: A 2D LAMINAR CYLINDER FLOW
A two-dimensional, laminar, uniform flow around a circu-

lar cylinder for a Reynolds number Re = 100 is used to show-
case the RBF-HHD solvers and demonstrate some of the argu-
ments in the previous sections.

We first use a high-fidelity simulation to generate the
ground truth of the flow field. The free stream velocity of
the flow is U∞ = 1, the kinematic viscosity is ν = 0.01, and
the density is ρ = 1. The numerical simulation domain spans
from (x/D,y/D) = [−8,25]× [−8,8]. The boundary condi-
tions for the simulation are a uniform stream-wise velocity in-
let at x/D = −8, a pressure outlet p = 0 at x/D = 25, sym-
metry planes at y/D =±8, and a non-slip wall at the cylinder.
We use a structured mesh with about 0.75 million cells to dis-
cretize the simulation domain, with mesh refinement near the
cylinder and wake region.

The validation is performed within a rectangular recon-
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struction domain cropped from the simulation domain, as de-
picted in Fig. 1(a). The reconstruction domain encloses the
stagnation region in front of the cylinder and the oscillating
wake behind it. The center of the cylinder with diameter D = 1
is placed at (x/D,y/D) = (0,0). The reconstruction domain
spans (x/D,y/D) = [−1,3]× [−1,1]. We use U∞, D, and
P∞ = 1

2 ρU2
∞ as the characteristic scales to normalize the ve-

locity, pressure, and pressure gradients, respectively, as well
as the corresponding reconstruction errors.

To emulate realistic PTV experiments, synthetic La-
grangian data were generated by imposing Gaussian noise on
the true value of the velocity sampled at pseudo-particles in the
domain. About 1.1× 104 pathlines originated at random and
unique locations are generated in the domain. These pathlines
are computed by integrating the interpolated instantaneous ve-
locity. The velocity and pressure at the particle locations along
the pathlines are interpolated using the data from the simula-
tion, serving as the ground truth for validation. Lastly, we im-
pose zero-mean Gaussian noise on the particle velocity. This
artificially corrupted velocity field is used as the synthetic PTV
data. The standard deviation of the artificial noise is equal to
1% of the magnitude of the local velocity.

To reconstruct the pressure fields from the velocity fields,
we evaluate the pressure gradients from the synthetic La-
grangian data first, and then the pressure fields are computed
based on these pressure gradients. The material acceleration
in the pressure gradient was evaluated by approximating the
velocity change when following a particle along its pathline
(Van Oudheusden, 2013). The viscous term in the pressure
gradient is computed using the least squares RBF-QR algo-
rithm (Fornberg et al., 2011; Larsson et al., 2013).

Note that before computing the pressure gradients, we
have the option to filter out the curl-free part of the corrupted
velocity field using the divergence-free RBF-HHD velocity
solver. We refer to this option as the velocity correction, which
can improve the final reconstruction accuracy. The tangential
components of the velocities at boundaries in the divergence-
free part can be easily obtained by interpolating the velocime-
try data.

After recovering the pressure gradients, we use the curl-
free RBF-HHD solver to reconstruct the pressure fields. For
this pressure solver, we specify the tangential components
of the pressure gradients at boundaries in the curl-free part,
which are parallel to the boundaries. 500 independent tests
were carried out for the validation. We compute a space-
averaged L2-norm of the error to assess reconstruction quality:
∥ε∥L2(Ω) =

√
(
∫

ε2dΩ)/Ω, where ε represents the absolute
error between the reconstructed results and the ground truth.

Typical results of reconstruction and error statistics are
presented in Figs. 1 – 3. Figure 1 illustrates the true value
of the velocity, vorticity, and pressure fields as references, as
well as the synthetic velocimetry data (c1) and the corrected
velocity field (c2). The curl-free component (d) is extracted
from the contaminated velocity field (c1) and we obtain the
divergence-free velocity field (c2).

Figure 2 illustrates the pressure gradients (a1) – (a2) and
reconstructed pressure fields (c1) – (c2) using the curl-free
RBF-HHD pressure solver. The left and right columns in
Fig. 2 are the results based on the velocity field without and
with divergence-free correction, respectively. The removed
divergence-free error in the pressure gradient is shown (b1) –
(b2). For this particular flow, the divergence-free error in the
pressure field peaks near the stagnation region of the flow.
This is perhaps due to intrinsically high pressure gradients and
relatively low particle density near the wall that conflicts the

boundary condition of the curl-free RBF-HHD pressure solver.
Nevertheless, as shown in (c1) – (c2), the reconstructed pres-
sure fields were similar to the ground truth (see Fig. 1(b)), even
if the pressure gradients were contaminated.

The errors in the reconstructed pressure gradients and
pressure fields are shown in Fig 3. When the divergence-free
correction is not applied to the velocity field, the mean error
in the reconstructed pressure field is about 4.5% (red box in
(b1)), despite a higher error of 29.5% persisting in the pres-
sure gradients (red box in (a1)), which is used as the input to
the curl-free RBF-HHD pressure solver. This indicates that the
curl-free RBF-HHD solver is robust to the noise in the data. If
the divergence-free velocity correction is employed, the errors
in reconstructed pressure gradients and pressure field can be
reduced to about 8% (blue box in (a1)). This error reduction is
evident by comparing the error field of the pressure gradient in
(a2) and (a3). The curl-free RBF-HHD pressure solver finally
leads to a pressure reconstruction with a mean error level of
3.8%. This demonstrates that the divergence-free RBF-HHD
can further improve the pressure reconstruction.

CONCLUSIONS
In this study, we conduct an error propagation analysis

concerning the general Pressure Gradient Integration (PGI).
Our analysis yields several findings regarding error propaga-
tion. First, we show that applying the HHD-regularization
on a corrupted pressure gradient field can significantly re-
duce the error in the reconstructed pressure. The HHD can
uniquely decompose a corrupted pressure gradient field into
curl-free, which satisfies the path independence property (PIP)
of a pressure gradient field, and a divergence-free part, which
should not be in the pressure gradient at all. If we remove the
divergence-free part and reconstruct the pressure field solely
based on the curl-free part of the corrupted pressure gradient,
accurate pressure reconstruction is expected.

Second, we argue that the HHD-regularized PGI is a con-
tinuous limit of the ODI. While the ODI endeavors to satisfy
the PIP, the HHD-regularized PGI can precisely recover a pres-
sure field from a corrected pressure gradient that guarantees
the PIP.

Third, the error analysis connects the error propagation
for the PPE and HHD-regularized PGI. We suggest that the
HHD-regularized PGI can potentially outperform the PPE
since the HHD-regularized PGI has a lower upper bound than
that of the PPE, which is rooted in integration twice or once to
obtain the pressure from ∇2 p = f and ∇p = ggg, respectively.

Lastly, we propose to use RBF-HHD solvers that are
based on divergence/curl-free kernels to provide divergence-
free correction to the velocity fields for incompressible flows
and curl-free correction for pressure gradients. These solvers
can also reconstruct pressure fields from pressure gradients,
offering the following advantages: i) flexible computation on
scattered and/or structured data on a complex domain with-
out requiring Dirichlet BCs except for a reference pressure,
and ii) complete elimination of divergence/curl-free bias in
measured data, resulting in accurate and robust pressure re-
construction. Validation based on synthetic PTV data of a 2D
laminar cylinder flow demonstrated the competence of the pro-
posed solvers.
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Figure 1. The ground truth of the flow field (a) quiver plot of the velocity field overlaid on the vorticity field, (b) the pressure field;
(c1&2) corrupted velocity fields before and after divergence-free correction, respectively; (d) the curl-free components removed from
the velocity field (c1) by the divergence-free RBF-HHD solver.
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Figure 3. Statistics and typical results for the error in the
pressure gradient and pressure fields. A box plot of the error in
the reconstructed pressure gradient (a1) and pressure (b1) from
500 independent tests with the red and blue boxes correspond-
ing to the statistics of the error without and with the velocity
correction, respectively. Horizontal bars in the middle of the
boxes show the median while the upper and lower edges of the
box indicate the 25 and 75 percentiles. The upper and lower
whiskers bound the 95% confidence intervals of the error. The
symbols within the boxes mark where the corresponding error
is shown in (a2&3) for the reconstructed pressure gradients;
and in (b2&3) for the reconstructed pressure field. (a2&b2)
and (a3&b3) are error fields based on the reconstruction with-
out and with the velocity correction, respectively.
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