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ABSTRACT 

This work aims to investigate experimentally the effect of 

Reynolds number Re on and scaling of jet control using six 

independent unsteady radial minijets, with a view to enhancing 

jet mixing. A hybrid artificial intelligence (AI) control system 

that incorporates both genetic programming and genetic 

algorithm has been deployed to manipulate a jet whose Re varies 

in the range of 4,000-24,000 based on the jet exit velocity U̅j 

and nozzle exit diameter D. The control parameters include the 

mass flow rate ratio Cm,i, the excitation frequency fe and duty 

cycle αi of each minijet  (i = 1, 2, ..., 6), with an exit diameter 

of d. Jet mixing is quantified using K/K0, where K is the decay 

rate of the jet centreline mean velocity, and the subscript ‘0’ 

denotes the unforced jet. The learning process of AI control 

discovers four typical forcings, i.e. axisymmetric, helical and 

flapping, one by one in the order of increased performance, and 

finally converges to a forcing featured by both helical motion 

around a nonstationary switching axis and three-dimensional 

flapping, irrespective of Re. Empirical scaling analysis of 

experimental data, generated in the learning process, reveals that 

the relationship K = g1 (Cm,i, αi, Re, d/D, K0) may be reduced to 

K/K0 = g2(ζ), where ζ = (ξ/Re)m and ξ = ∑ (Cm,i/αi)(d/D)
n-16

i=1 , n 

and m are power indices, g1 and g2 are the nonlinear function. 

The physical meaning of ξ is discussed, along with some 

interesting inferences from the scaling law. 

 

 

INTRODUCTION 

The turbulent jet is one of classical flows discussed in 

virtually every fluid mechanics textbook. Jet control can be 

passive and active. The former requires no power input, such as 

changing the geometric shape of nozzles, which is efficient and 

reliable. The latter, such as speaker- or plasma-based and fluidic 

actuation, needs additional power input but may achieve more 

flexible and drastic flow modifications than the former. Over the 

past few decades, many active techniques have been proposed to 

improve jet mixing. The one developed by Zhou et al. (2020) 

deploys an artificial intelligence (AI) control technique based on 

six unsteady minijet, exhibiting a great potential to increase jet 

mixing significantly further. Their jet manipulation led to the 

occurrence of a novel turbulent flow structure, never reported 

before, that outperformed significantly all the classical flow 

structures previously reported. Their work was demonstrated at 

a fixed Reynolds number (Re = 8,000). In another experimental 

study on jet mixing at different Re, Perumal et al. (2022) develop 

a hybrid AI system to optimize the actuation states and strength 

of an unsteady minijet and proposed a scaling law which governs 

the effect of Re on jet manipulation. Then, several questions 

naturally arise. Can we develop an AI control system that may 

optimize simultaneously both the actuation states and strength of 

six minijets under different Re? How does the maximum K 

change as Re increases? Can we obtain the four typical flow 

structure reported in Zhou et al. (2020) or more new turbulent 

structures in other Re? Could we find a control law that governs 

the relationship between K and the control parameters of six 

minijets at varying Re? 

To address the questions raised above, a AI control system 

is developed to manipulate a turbulent jet based on six unsteady 

minijets, with a view to maximizing its mixing. The system can 

search simultaneously the near-optimal control laws and a time-

independent parameter in spite of a variation in Re. The Re effect 

on control performance and the optimal control parameters are 

investigated over Re = 4,000 - 24,000. A scaling analysis is then 

performed based on the massive data produced from the AI 

system. 

 

 

EXPERIMENTS DETAILS 

Experimental rig consists of a turbulent round jet and six 

minijet actuators, as schematically shown in Figure 1. The Re of 

the main jet is 4,000-24,000, where 𝑅𝑒 = UjD/ν, Uj is the jet 

centerline time-averaged velocity measured at the nozzle exit, ν 

is the kinematic viscosity of air and D = 20 mm is the diameter 

of the nozzle. The centre of the jet exit is set as the origin of a 

Cartesian coordinate system, where the x-axis is aligned with the 

streamwise direction (figure 1). Six unsteady minijets issued 

from orifices with a diameter of 1 mm are equidistantly placed 

around the main jet.  

The mass flow rate of the minijet through the pinhole is 

driven by a mass flow controller (FLOWMETHOD FL-802) 

with a measurement range of 0-7 l/min, whose experimental 

uncertainty is no more than 1%. The duty cycle and frequency 
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of the minijet injection are controlled using an electromagnetic 

valve that is operated on an ON/OFF mode with a maximum 

operating frequency of 500 Hz. The fluctuating flow velocity 

was monitored using two hot-wires placed at x/D = 0.05 and 5, 

respectively, operated on a constant temperature circuit at an 

overheat ratio of 1.8. The sampling frequency FRT is 10 kHz. The 

experimental uncertainty in measured Uj  is estimated to be 

within 2%. 

The real-time control is implemented via a National 

Instrument PXI system. A LabVIEW Real-Time module is used 

for digitizing the analogue signal and providing control 

commends for the mass flow controller and electromagnetic 

valve. The same sampling rate is used for the velocity data 

acquisition and control command generation. As discussed in 

Fan & Zhou (2022), the available duty cycles are determined by 

FRT and periodic excitation frequencies fe.  

 

 

HYBRID AI CONTROL SYSTEM  

The main difference between conventional AI control 

system proposed by Zhou et al. (2020) and the hybrid AI control 

system is the modification of the control law composition. The 

AI can be performed in multi-frequency forcing mode or sensor-

based feedback mode, depending on whether the control law 

consists of a series of harmonic signals or feedback signals. 

Following Zhou et al. (2020) and Perumal et al. (2022), the 

control law of the multi-frequency forcing mode can be 

represented as:  

b(t)=B(h(t),k). 

Here, B were functions for generating the actuation 

command based on the input harmonic functions h(t) and 

random constants k. The argument h(t) is a set of harmonic 

functions, i.e., 

h(t) = [h1 h2 … h11]T, where hi = cos(2πfit). 

Since the function B could be linear, quadratic or any other 

nonlinear function, a large range of frequencies can be generated 

in the control law signal. In general, the control law of multi-

frequency forcing optimized by linear genetic programming 

(LGP) is a time-variant signal. For optimizing both driving 

signals of electro-magnetic valves and Cm,i, both the time-

dependent signal and time-independent signal needs to be 

included in the control law. Usually, a genetic algorithm is 

suitable for optimizing Cm,i. In AI control system, the genetic 

programing operates on a population of computer programs (or 

functions) of varying sizes and shapes (Koza 1992). If we 

modify the population by replacing the time-dependent 

functions by time-independent functions, in principle, AI control 

system can optimize the time-independent signals as genetic 

algorithm. 

Figure 2 shows the principle sketch of the hybrid AI control 

system. Following our previous work (Wu et al. 2018, Perumal  

& Zhou 2021, and Zhou et al. 2020), the cost function J is 

defined as �̅�5𝐷 /�̅�𝑗  or 1-K, where �̅�5𝐷  is the time-averaged 

velocity measured at 5D downstream of the jet exit. The 

actuation command is denoted by b, which contains two 

  
 

Figure 1. Schematic of experimental setup. 
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independent laws, i.e., a time-dependent control law b1 and a 

time-independent control law b2. 

b(t) = [b1, b2]T = [B(h(t)), B(h(t0), k)]T 

On the one hand, the actuation command b1 is transferred to 

binary values for driving electro-magnetic by using a Heaviside 

function H. On the other hand, the harmonic functions hi(t) in 

the b2 is replaced by a constant value hi(t0), where t and t0 

represents time and a constant factor, respectively. Thus, the 

time-independent control law b2 could be used for driving the 

Cm,i of the pulsed minijet.  

The control law optimization process using LGP is described 

briefly in figure 2a. Generally, hybrid AI acts as a regression 

solver to optimize a cost function associated with general 

nonlinear mappings, like the control law. The control system 

contains 4 steps: population creation (i.e., generate Ni=100 

control laws), population evaluation (i.e., measure the 

performance of each control law), stop criterion check (i.e., 

check the best J) and population evolution (i.e., update 

generation based on the performance of last generation). 

 

 

RESULTS AND DISCUSSION 

Dependence of the maximum K, i.e. Kmax, along with the 

corresponding control parameters under the optimal control law 

on Re were investigated (figure 3). Kmax decreases from 0.78 to 

0.7 when Re increases from 4000 to 8000, while Kmax is found to 

be approximately a constant 0.7 for Re ≥ 8000. However, the 

control parameters and performance Kmax/K0 exhibit a significant 

variation with Re. The optimum Cm,i or Cm,i
opt

 rises gradually 

from 1.09% to 6.7% from Re = 4000 to 24,000, suggesting a 

larger minijet momentum to maintain the penetration depth or 

the best control performance at a higher Re. Similar phenomena 

has also been found in Perumal et al. (2022). As expected, the 

values of Kmax/K0 are decreased from 33 to 11 when Re is 

increased from 4000 to 24,000.  

Figure 4(a) displays 3000 evaluated cost functions under 

AI control at Re = 8000. The unforced cost Ju is marked by a 

horizontal solid line. The squares at generation n = 1, ..., 30 mark 

the first and best individual of each generation with Ni = 100 

individuals. The remaining costs of each generation are 

displayed by the increasing curve. Every curve has a unique 

color. The best individual of the first generation produces an 

axisymmetric control law. Subfigure (a1) shows the 

corresponding flow visualization. In the second generation, AI 

control discovers the helical forcing. The corresponding flow 

visualization (figure 4a2) shows a more regular pattern. In the 

fifth generation, AI control learns flapping forcing. Subfigure 

(a3) presents a strong flapping motion in x-z plane and a less 

pronounced mixing in the x-y plane  which is symmetric with 

respect to the two synchronous actuator groups. In the eleventh 

generation, AI control discovers a combination of flapping and 

helical forcing, significantly outperforming the other forcings 

and resulting in a markedly reduction in decay rate. The 

corresponding flow visualization (figure 4a4) indicates the 

flapping mechanism. Intriguingly, these four control modes are 

also obtained for the other three Reynolds number Re = 4000, 

16,000 and 24,000.  

The control performance, evaluated by K, of the 

manipulating jet strongly depends on Cm,i, αi and d/D when the 

excitation frequency ratio fe/f0 is fixed at 0.5; furthermore, the 

boundary-layer thickness at the jet exit diminishes with 

increasing Re, producing a significant influence on K0, that is, K 

 
 

Figure 2. (a) Principle sketch of hybrid AI control system, 

which comprises the plant, sensors, actuators and a linear 

genetic programming controller (b) Schematic of linear genetic 

programming algorithm. 

 
Figure 3. Optimal parameters achieved from the hybrid AI control 

system at different Re. 
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is also a function of Re and K0. After a careful analysis of the 

experimental data along with numerous trial-and-error attempts, 

it has been found that the relationship K = g1(Cm,i, αi, Re, d/D, K0) 

can be reduced to K/K0 = g3(ξ/Re), g4 (ξ/Re), g5 (ξ/Re) and g6 

(ξ/Re) given the same actuation phase shift , injection angle 

between the two adjacent jets θ, number of actived minijets N, 

where K/K0 accounts for the control performance at a given Re, 

and ξ = ∑ (Cm,i/αi)(d/D)
n-16

i=1  (the power index “n” depends on 

the Re and α) may be interpreted as the total momentum ratio per 

pulse of injection of six minijets. Following Perumal et al. 

(2022), the ξ/Re can be identified as a more general definition 

for the total effective momentum ratio of the six minijets to the 

main jet per pulse of injection in a varying Re. The scaling data 

are replotted in figure 4(b) showing the dependence of K/K0 on 

ξ/Re. The data of K/K0 displays a quite good collapse but branch 

into four, as evident by the dashed lines. Given Cm,i, αi, fe, Re and 

d/D, control laws can be divided into four modes, i.e. 

axisymmetric, helical, flapping and combined forcings. Then, 

the K/K0 = g3(ξ/Re), g4 (ξ/Re), g5 (ξ/Re) and g6 (ξ/Re) could be 

further reduced to K/K0 = g2(ζ), where ζ = (ξ/Re)m and the power 

index “m” is associated with the control modes, i.e. m = 0.85 

(combined), 0.9 (flapping), 0.95 (helical) and 1.01 

(axisymmetric), respectively. Here, the ζ is physically the 

effective momentum ratio per pulse of the minijet injections to 

the inertia momentum of main jet, valid even in the context of 

varying Re. As shown in figure 4(c), almost K/K0 collapses 

reasonably well once ζ is used as the abscissa, least-square-fitted 

by K/K0 = -3.0103172×107 ζ 2+ 5.9839×105 ζ +0.45. Note that 

given Cm,i, fe, d/D, αi and control mode (m), ζ may be calculated 

and hence K can be predicted from the equations over a range of 

Re (= 4000 – 24,000). This may have important applications in 

engineering. 

Few interesting finds could be derived from the scaling law. 

On one hand, given the same ξ/Re, the control performance K/K0 

decreases as the control models factor m rises. It indicates that 

when the input power is fixed, the control performance only  

depends on the control modes. The jet mixing performance 

gradually improves as the control modes evolves from 

axisymmetric forcing (m = 1.01), helical forcing (m = 0.95), 

flapping forcing (m = 0.90), to the final combined forcing (m = 

0.85). Thus, the combined forcing (the smallest m=0.85) could 

give the maximum K/K0. On the other hand, if we fixed the 

control performance K/K0, we can easily get the required 

ζ/ReGiven the (d/D)
n-1

 and Re, the  ∑ (Cm,i/αi)
6
i=1 , which 

indicates the input energy, is positively correlated with the factor 

m. In other words, smaller m needs lower power consumption to 

reach the same control performance. 

 

CONCLUSIONS 

A hybrid AI system has been applied to manipulate a jet 

using six pulsed radial minijets over a range of Re ∈[4000, 

24,000]. The AI system produces more than 4000 control laws 

for four Re’s examined and subsequently a huge amount of data 

involving K and independent control parameters, i.e. Cm,i, αi, Re, 

d/D and K0. Major conclusions are drawn below: 

 The AI system exhibits good robustness as Re varies from 

4000 to 24,000, finding Kmax and the optimal control parameters. 

For example, AI system successfully finds the optimal control 

law at Re = 8000, which consists of seven sub-control laws that 

govern six time-dependent pulse signals (α1 = 0.44, α2 = 0.5, α3 

= 0.27, α4 = 0.59, α5 = 0.46, α6 = 0.46, fe/f0 = 0.5) and a time-

independent mass flow rate signal (Cm,i = 1.2%), respectively, 

and hence Kmax (= 0.7). Kmax decreases from 0.78 in the 

laminar/transitional regime (Re = 4000) to 0.7 in the turbulent 

regime (Re = 8000) and remains unchanged for further increase 

in Re. The present Kmax is appreciably larger than that (0.52) 

obtained by Perumal et al. (2022) using a single unsteady minijet, 

 
 

Figure 4. (a) The learning curve shows that the control law moves to the helical and flapping forcing from the axisymmetric forcing 

corresponding the streamwise flow visualization (a1-a4). Hollow square represents the best value for each generation. Dependence of 

K/K0 on (b) ξ/Re and (c) ζ = (ξ/Re)m for Re = 4000-24,000, αi = 0.2 - 0.9, fe/f0 = 0.5, Cm,i = 0-12%. The black curve is the least-squares 

fitting to experimental data. 
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implying more effective enhancement of jet mixing using 

multiple minijets than a single minijet.  

 AI control has identified in its learning process four typical 

forcings, i.e. axisymmetric, helical, flapping forcings, and 

combined forcing featured by both helical motion around a 

nonstationary switching axis and three-dimensional flapping, 

one by one in the order of increased performances, irrespective 

of Re.  

Careful analysis of experimental data, produced from the 

learning process of AI control, leads to the finding of a scaling 

law, that is, K = g1 (Cm,i, αi, Re, d/D, K0) may be reduced to K/K0 

= g2 (ζ), where ζ = (ξ/Re)m and ξ = ∑ (Cm,i/αi)(d/D)
n-16

i=1 . The 

power index m is 1.01, 0.95, 0.9 and 0.85 for the axisymmetric, 

helical, flapping and combined forcings, respectively. The ζ is 

physically the momentum per pulse of the minijet injections to 

the inertia momentum of main jet, which may be also interpreted 

as the minijet penetration depth. Interesting inferences can be 

made from this scaling law. The power index m in the scaling 

law is physically related to the control modes of the six pulsed 

minijets. Given the same total effective momentum ratio, per 

pulse of injection ξ/Re, of the six minijets to the main jet, a 

smaller m could give a larger K/K0. That is, under the same input 

power, the jet mixing performance gradually improves as the 

control modes evolves from axisymmetric forcing (m = 1.01), 

helical forcing (m=0.95), flapping forcing (m=0.90), to the 

combined forcing (m=0.85). Furthermore, given the same 

control performance K/K0, a smaller m corresponds to a lower 

ξ/Re, implying a gradually improved control efficiency as the 

control mode transforms from the axisymmetric, helical, 

flapping, to combined forcing. 
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