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ABSTRACT 

This work aims to investigate the active drag reduction (DR) 

of an Ahmed body with a rear slant angle φ = 35°, corresponding 

to the low-drag regime, using machine learning or artificial 

intelligence (AI) control at a Reynolds number Re = 1.7 × 105 

based on the square root of the body cross-sectional area. The AI 

control system comprises of five independently operated 

microjet arrays placed along the edges of the rear window and 

the vertical base, twenty-six pressure taps on the rear end of the 

body, and a controller based on ant colony algorism (ACA) for 

the unsupervised learning of near-optimal control laws or 

strategies that lead to the minimum cost function J. The J is 

designed to include both DR and input control energy, with a 

view to achieving energy saving as well as substantial DR. Both 

steady and unsteady microjet blowings are investigated, 

corresponding to 5 and 15 independent control parameters, 

respectively. While the optimal steady blowing strategy results 

in a maximum DR of 18%, the unsteady reaches 21%, both much 

higher than previous reports in the literature. However, given the 

same DR, the energy expenditure of the latter can be much 

smaller. Extensive flow measurements performed with and 

without control point to distinct mechanisms underlying the 

different control strategies. 

 

 

INTRODUCTION 

The generic Ahmed body is widely used as a simplified 

vehicle model in DR researches (Zhou & Zhang 2021), whose 

wake can be classified into two distinct regimes depending on 

the slant angle φ of its rear window, i.e., high-drag regime with 

12.5 < φ < 30 and low-drag regime with  > 30. Zhang et al. 

(2015) and Liu et al. (2021) carried out relatively thorough 

investigations on the flow structures around the high and low-

drag Ahmed bodies, respectively. Numerous studies have been 

performed on DR for the high-drag regime, with a significant 

DR reaching up to 29% achieved by Zhang et al. (2018). 

Nevertheless, reports on the control of a low-drag Ahmed body 

are scarce notwithstanding the fact that this body may represent 

the commonly used cars such as sport utility vehicle and multi-

purpose vehicle, whose rear slant angles are usually larger than 

30 (Zhou & Zhang 2021). Moreover, the maximum DR 

achieved so far for the low-drag regime is only about 4%. Then, 

several questions naturally arise. Could we develop an artificial 

intelligence (AI) control system that optimize five independently 

microjet arrays to achieve higher DR? Is there any interesting 

flow physics behind possible effective control? Based on our 

latest improved understanding of the flow physics (Liu et al. 

2021), this work sets out to address the issues raised above 

through a rather extensive experimental investigation on active 

DR of a low-drag Ahmed body with φ = 35° using five 

independent steady and unsteady microjets arranged at every 

edge of the rear end.  

 

 

EXPERIMENTS DETAILS 

Experiments were conducted in a closed-circuit wind tunnel 

with a test section 1.0 m high, 0.8 m wide and 5.6 m long. A flat 

plate was horizontally placed and 0.1 m from the floor to control 

the boundary layer thickness (Fig. 1). A ½-scaled Ahmed model 

( = 35) was tested. The Reynolds number Re investigated is 

1.7 × 105 based on the square root of the body cross-sectional 

area. Drag forces, surface pressure, hot-wire and PIV 

measurements were conducted. Five different actuations based 

on independently operated microjet arrays, referred to as C1, C2, 

C3, C4 and C5, were deployed. C1, C3 and C5 are three arrays of 

microjets along the upper and lower edges of the slanted surface 

and the lower edge of the base, respectively. C2 and C4 each 

comprise two microjet arrays, arranged along the two side edges 

of the rear window and the base, respectively. The blowing ratio 

of Ci (i = 1, 2, …, 5) is defined by BRCi = Vci/U, where VCi is 

the exit velocity of a microjet and U is the free-stream velocity. 

C1, C2, C3, C4 and C5 produces a maximum DR of 9%, 1%, 5%, 

1% and 7%, respectively. The right-handed Cartesian coordinate 

system (x, y, z) is defined in figure 1. In this paper, superscript 

asterisk ‘*’ denotes normalization by √A (= 0.167 m). 

 

 

AI CONTROL SYSTEM  

In the present control system, there are five control 

parameters of steady blowing or 15 control parameters of 

unsteady blowing to be optimized. It would be a challenge for 

conventional optimization techniques once the number of 

control parameters exceeds three; for instance, the extremum 

seeking method based on extended Kalman filter could be 

applied to at most three control parameters (Fan et al. 2020). On 
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the other hand, the AI control may get around this difficulty and 

may find the global optimum solution even when the number of 

control parameters is rather large, as demonstrated by Zhou et al. 

(2020). 

Ant colony algorism (ACA) is presently used. Inspired by 

the behavior of ant colonies in nature, Dorigo et al. (1991) 

proposed an approach for solving hard combinatorial or discrete 

problems. In their work, the well-known travelling salesman 

problem was used as an application example, and the ACA is 

manifested to be effective in finding out the optimal or shortest 

tour. The ACA uses many interacting agents, called artificial 

ants mimicking the real ones mediated by pheromone trails, and 

an algorithm based on positive feedback for exploring rapidly 

the optimal solution. Liao et al. (2014) developed a unified 

framework of ACA, in which the ants in each cycle are divided 

into two groups, one whose costs are below a threshold 

performing local search near the best ant, and the other executing 

global search in the entire parameter space. This method is 

demonstrated to be efficient in finding the global optimum 

solutions, when applied to more than 20 benchmark multimodal 

functions, without being trapped in local minima. They obtained 

the global extremum for every benchmark function with faster 

speed and higher accuracy, as compared with conventional ACA 

methods (Dorigo et al. 1991). This ACA was implemented 

presently for the first time as an algorithm of MLC in order to 

find the best control strategy for the DR of an Ahmed body wake, 

and is briefly introduced below.  

The vector B = [b1, b2, …, b5]
T or [b1, b2, …, b15]

T comprises 

all actuation commands or analog voltages, where the 

superscript ‘T’ denotes the transpose and bi (i = 1, 2,…,5 or 15) 

regulates the mass flow controller for Ci (figure 2a). Then, 

B = K(BR, α, f
e
), (1) 

where BR = [BRC1, BRC2, …, BRC5]T, α = [αC1, αC2, …, αC5]T, 

fe = [fe
C1, fe

C2, …, fe
C5]T are referred to as the control law of the 

combined actuations in this paper and K is the vector function 

that transforms (BR, α, fe) to the control signals of the actuators. 

The optimization process searches for a law of form (1) that 

minimizes the cost 

Kopt = arg min 
K

J [K(BR, α, f
e
)]. (2) 

The regression problem is to optimize mapping from five 

inputs of steady blowing or 15 inputs of unsteady blowing to a 

single output signal J and the optimizing process is 

schematically shown in figure 2(b), described briefly below: 

Step 1: the process is initialized with a set of M = 100 

randomly generated Bm
n , m = 1, …, M, also called ants, for the 

first cycle of ACA (n = 1). Here, the superscripts ‘n’ and ‘m’ 

denote the cycle number and the mth control command of each 

cycle. 

Step 2: each ‘m’ is experimentally tested for 25 s to yield the 

measured cost Jm
 n. The pheromone (τm

 n) is given by 

τm
 n = (1 − ev)τm

 n-1 + Jm
 n, (n = 1, …, N), (3) 

where ev is the evaporation rate and is set to 0.9, and N is the 

total number of cycles. The value of τm
 0 is zero. Then, the ants 

are renumbered in order of the pheromone values, τ1
 n  < τ2

 n 

< … < τM
 n. 

Step 3: the ants are sorted into two groups, one performing 

local search, and the other regenerated randomly in the entire 

search space. The transition probability (Pm
 n) for the local search 

is written as 

Pm
 n = {

1,   p
m
n  < p

0

0,   p
m
n  ≥ p

0

, (4) 

where p
0
 is a threshold, which affects largely the ratio of 

ants that perform local or global searching. A right choice of p
0
 

may raise the efficiency of global searching of ACA, ensuring a 

relatively large number of ants to be generated randomly in the 

entire search space (or global searching). Otherwise, most ants 

may get engaged in local searching. The p
0
 is presently chosen 

  
 

Figure 1. Schematic of experimental setup. 
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to be 0.2 after a trial-and-error process. The p
m
n  is a variation in 

τm
 n relative to τ1

 n, viz. 

p
m
n  = 

τm
 n − τ1

 n

τ1
 n . (5) 

The ant conducting the local search is determined by 

Bm
n+1 = Bm

n +
1

2n
Ra, Ra = [r1, r2, …, r5]T (6) 

where ri (i = 1, 2, …, 5) can be expressed by 

ri = 2Si[rand(0, 1) − 0.5], (7) 

and Si denotes the maximum BRCi, αCi or fe
Ci for Ci.  

Step 4: next cycle starts with step 2 until the cost is 

converged to its minimum. 

The control law optimization process employed linear 

genetic programming is described briefly (figure 2b). Generally, 

AI acts as a regression solver to optimize a cost function 

associated with general nonlinear mappings, like the control law. 

The control system contains 4 steps: population creation (i.e., 

generate Ni=100 control laws), population evaluation (i.e., 

measure the performance of each control law), stop criterion 

check (i.e., check the best J) and population evolution (i.e., 

update generation based on the performance of last cycle). 

 

 

RESULTS AND DISCUSSION 

Combined actuations were deployed to seek the optimal 

modification of the interaction between different coherent 

structures in the wake. An AI control system was developed to 

search for the optimal control parameters for the maximum DR. 

This system comprises of the combined actuations, 26 pressure 

taps distributed on the rear end of the body, and a controller 

based on ant colony algorism (ACA) for the unsupervised 

learning of a near-optimal control law. The cost function J for 

the steady blowing is written as  

J = − 〈Cp
̅̅ ̅〉 + α ∑ (BRCi)

35
i=1 , (8) 

where Cp is the surface pressure coefficient; the overbar denotes 

time-averaging; the angular bracket expresses a quantity 

spatially averaged over the 26 pressure taps; α is a weighting 

factor. 

 The AI based on ACA algorithm is deployed to optimize 

the control parameters of all the five actuators. The cost of each 

ant was tested for 25 s in the optimization. The learning curve of 

the AI control for steady blowing was shown in figure 3(a). Each 

cycle consists 100 ants. The square symbol represents the best 

ant (An) in the nth cycle. The square symbol curve reveals the 

evolution of the best ant. After eight generations of optimization, 

the cost J of A8 corresponding to BR = [5.8, 3.5, 4.9, 1.3, 1.8] T 

drops substantially from J0 = 0.235 to 0.166, and remains 

unchanged, implying a convergence of the cost that produces ∆J 

of -29% associated with a DR of 18%. In contrast of the steady 

blowing, the learning curve of unsteady control was also shown 

in figure 3(b). The ant number of each cycle is 200. Up to the 

cycle n = 7, A7 achieves the highest DR of 21% and the minimum 

cost J of 0.164. The optimal actuation frequency, duty cycle and 

blowing ratio of A7 are f
e

*
 = [5.02, 3.08, 3.01, 3.95, 4.61] T, α = 

[0.76, 0.46, 0.09, 0.76, 0.58] T and BR = [2.15, 2.68, 0.45, 3.87, 

3.59] T, respectively. The DR of unsteady blowing is larger than 

that of steady blowing. It is commenting that through the 

sensitivity analysis of DR to control parameters, under the 

condition of DR sacrifice of 3% for unsteady blowing, that is, 

yielding the same DR (18%) as the steady blowing, the 

efficiency may reach 30.6, which is much higher than that (0.13) 

of the steady blowing. The efficiency would be further increased 

to 52.1 when the DR of unsteady blowing decreases to 13%. This 

indicated the unsteady excitation is much more efficient than the 

steady blowing case. 

 One conceptual model of wake structures with the optimal 

control of steady blowing is proposed, as shown in figure 4. The 

altered wake is mainly characterized by a small separation 

bubble near the upper edge of the rear window, one pair of strong 

C-pillar vortices, and a patch of stagnated flow near the lower 

edge of the window due to the interaction between the attaching 

flow and the upstream and upward blowing of C3, which results 

in a significant pressure rise near the mid lower end of the 

window. Moreover, the upper and lower recirculation bubbles 

take place behind the base. The shear layer separated from the 

side edges of the base is deflected inward due to the inward 

blowing of C4, creating a boat tailing effect. The control 

efficiency η, which is defined by the ratio of the power saved 

  
Figure 2. (a) Principle sketch of AI control system, which 
comprises the plant, sensors, actuators and an ant colony algorism 

(ACA) controller (b) Schematic of ant colony algorism. 
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from DR to the control input power, is evaluated. The optimal 

control is associated with a small η = 0.13. Nevertheless, it is 

found that a small sacrifice in DR may lead to a large increase in 

η; η rises with increasing sacrifice in DR, reaching 3.7 and 25.7 

when DR drops to 16% and 10%, respectively. The flow 

modification of the most efficient control differs markedly from 

the optimal control. The pressure recovery on the rear part results 

largely from a downstream shift in two recirculation bubble 

centers. 

Combined unsteady actuations, which were deployed 

separately at the same locations of C1, C2, C3, C4 and C5, were 

also examined. The ACA-based AI control system was used to 

search for the optimal control parameters, including the 

frequency, duty cycle and blowing ratio of each actuation, for 

the maximum DR. The learning process converges after 7 cycles, 

with 1400 control laws tested. The optimal combination creates 

a maximum DR of 21%. A maximum η reaching up to 52.1, with 

a DR of 13%, was also obtained using the combined unsteady 

actuaitons. Further investigation is being conducted to gain a 

thorough understanding of flow physics and control mechanisms 

behind the optimal and the efficient control. 

Work is under way to unveil the altered flow structures and 

control mechanisms under the combined unsteady actuations for 

the optimal and most efficient controls and will be presented 

during TSFP13. 

 

 

CONCLUSIONS 

Active DR of a low-drag Ahmed body has been extensively 

studied using five independently operated steady or unsteady 

 
Figure 3. Learning curve of AI control based on ACA: (a) steady blowing, (b) unsteady. 

 
Figure 4. Conceptual model of flow structure under the optimized combination of C1, C2, C3, C4 and C5. 
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blowing jet arrays. An AI control system was used to search for 

the best combination strategy for the five actuations. Major 

conclusions are as below: 

(1) Under steady blowing, individual C1, C2, C3, C4 and C5 

produce DRs from 1% to 9%. The optimal combination of 

the five steady actuations or five independent control 

parameters found by the AI control creates a maximum DR 

reaching 18%, greatly higher than any previous report for a 

low-drag Ahmed body. The control efficiency can be 

greatly improved with a small sacrifice in DR. The η 

corresponding to the DR of 18% is only 0.13 but may rise 

to 3.7 and 25.7 given a sacrifice of DR by 2% and 8%, 

respectively. Modification in the flow structure under the 

optimal control or maximum DR is distinct from that under 

the most efficient control with η = 25.7. Under the optimal 

control, the two C-pillar vortices are greatly strengthened, 

inducing a downwash flow between them and flow 

reattachment over the rear window. The reattached flow 

interacts with the upward blowing of C3, generating a 

stagnated flow near the lower end of the window and hence 

a big pressure increase, up to 287%, in this region, which is 

the main reason for the significant DR. On the other hand, 

the mechanism of the most efficient control is largely due 

to the longitudinal elongation of the upper and lower 

recirculation bubbles and the downstream shift of their 

centers. There is little change with the two C-pillar vortices. 

(2) Under unsteady blowing, C1, C2, C3, C4 and C5 produce 

DRs from 2% to 4%. Yet, with a significantly larger 

searching space (15 independent control parameters) than 

steady blowing, the optimal control performance is 

significantly improved, the maximum DR reaching 21%. 

Given the same DR (18%) as steady blowing, the control 

efficiency is 31, much higher than that (0.13) of steady 

blowing. Furthermore, the maximum efficiency may reach 

52.1 with a corresonding DR of 13%. The flow structure 

modification under the optimized combination of the five 

unsteady actuations is distinct from its steady control 

couterpart. For instance, the strengthes of the two C-pillar 

vortices are reduced; flow separation from the upper edge 

of the rear window is suppressed, with one separation 

bubble occurring in the upper region of the window, whose 

size contracts substantially as compared with the unforced 

flow. This separation bubble interacts with the upstream 

recirculating flow from the base, producing a pressure 

recovery on the lower part of the window.  
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