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ABSTRACT
In the last few decades, optimal control theory has been

successfully applied to wall turbulence, and remarkable con-
trol performances have been reported. Meanwhile, the result-
ing performances are highly dependent on a cost function to be
minimized, and its selection has been made based on numeri-
ous trials and errors based upon researchers’ insight. In this
study, we define the cost function as a linear sum of quadratic
terms of various wall quantities, and their weight coefficients
are optimized to maximize the resulting drag reduction rate. It
is shown that the fluctuation of the spanwise wall shear stress
has a large impact on the drag reduction rate obtained in the
suboptimal control as reported in Lee et al. (1998), while non-
negligible contributions to skin friction drag from other wall
quantities are also identified. As a result, the newly propsoed
cost function improves the control performance from those re-
ported in existing studies.

INTRODUCTION
Wall turbulence can be found in various thermo-fluids

systems and its prediction and control are of fundamental im-
portance in engineering. However, the non-linear and multi-
scale nature of wall turbulence makes it challenging to de-
velop accurate prediction models and effective control meth-
ods (Brunton & Noack, 2015).

Among various control schemes developed so far, adjoint-
based optimal control (Abergel & Temam, 1990; Bewley et al.,
2001) has resulted in significant control performances by ex-
plicitly considering the mathematical models of fluid flow in
deriving the control inputs. Specifically, the laminarization
of a fully developed channel flow at a low Reynolds number
was achieved by applying the optimal control input (Bewley
et al., 2001) with a far smaller magnitude than those of the
other types of control inputs achieving relaminarization such
as a traveling wave of wall blowing and suction Min et al.
(2006). One of the drawbacks of the optimal control theory is
that it requires the iterations of forward and adjoint analyses,

and this becomes an obstacle to applying it to online control
in an experiment. The suboptimal control is a kind of opti-
mal control, where the time horizon is assumed to be vanish-
ingly small. This allows one to derive the suboptimal control
input analytically without conducting the expensive forward-
adjoint looping. According to Lee et al. (1998), a significant
drag reduction effect can be still achieved by setting the cost
function as the fluctuation of the spanwise wall shear stress.
However, it is important to note that, in their control, the algo-
rithm aims at enhancing the spanwise wall shear stress fluctu-
ation in a subsequent time step, while the spanwise wall shear
stress eventually decays by continously applying the control
for a long period, and the streamwise mean wall shear stress
is also reduced. This indicates that the relationship between a
short-term control target, i.e., a cost function, and the result-
ing drag reduction rate is not trivial, and even a higher control
performance could be achieved by setting an appropriate cost
function. However, no attempt to systematically optimize the
cost function have been reported so far.

In the present study, we aim to find effective wall quan-
tities to be included in the cost function in the framework of
the suboptimal theory for reducing the skin friction drag in a
fully developed turbulent channel flow. The cost function is
expressed by a linear sum of various wall quantities and their
weight coefficients are optimized by Bayesian optimization to
maximize the resulting drag reduction rate. Based on the ob-
tained results, we will discuss how each short-term control tar-
get is related to the long-term drag control effect.

PROBLEM AND NUMERICAL SETUPS
In this study, we perform direct numerical simula-

tions (DNSs) of a fully developed turbulent channel flow as
schematically shown in Fig. 1 under a constant flow rate
condition. The bulk Reynolds number is set to be Reb =
2Ubh/ν = 3220, where Ub, h, and ν are the bulk mean ve-
locity, the channel-half height, and the kinematic viscosity of
the fluid, respectively. This flow configuration corresponds to

1



13th International Symposium on Turbulence and Shear Flow Phenomena (TSFP13)
Montreal, Canada, June 25–28, 2024

the friction Reynolds number of Reτ = uτ h/ν � 110 in the
uncontrolled flow, where uτ is a friction velocity. The fluid is
assumed to be incompressible and Newtonian, and the corre-
sponding governing equations are the following continuity and
Navier-Stokes equations which are solved by using the open-
source solver Incompact3d (Laizet & Lamballais, 2009; Laizet
& Li, 2011):
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The streamwise, wall-normal and spanwise coordinates
are denoted by (x,y,z), while the corresponding velocity com-
ponents are (u,v,w). Periodic boundary conditions are im-
posed in the x and z directions, whereas no-slip boundary con-
ditions are adopted for u and w on the top and bottom walls.
The wall boundary condition for v is determined based on the
suboptimal control in the controlled flow, while it is also set to
be null for the uncontrolled flow. Throughout this study, all the
variables are normalized by Ub and h. The dimension of the
computational domain is Lx�Ly�Lz = 4π � 2� 4/3π with
computational grids of Nx�Ny�Nz = 128� 129� 96. The
computations were performed using the Cartesian coordinate
system with uniform grid spacings in the streamwise and span-
wise directions, and the grid becoming finer with approaching
the walls, as proposed by Laizet & Lamballais (2009). The
grid resolution in each direction is (∆x+,∆y+,∆z+,∆t+) =
(10.7,0.6� 4.8,4.8,0.02), where the superscript of + repre-
sents a value in the wall-unit of the uncontrolled flow.

SUBOPTIMAL CONTROL
We define the cost function as
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The cost functions described previously are applicable solely
to the lower wall of the system. Conversely, the cost functions
for the upper wall have been appropriately modified to account
for the inherent symmetry of the overall system. Here, p is
the static pressure, and the parenthesis h�i represents the sur-
face integral over the top and bottom walls. Accordingly, the
present cost function includes only wall quantities. The weight
coefficients ai (i = 1�10) will be optimized by Bayesian op-
timization as explained later. Once the cost function (3) is
defined, the suboptimal control input can be analytically de-
rived by using the instantaneous flow information following
the essentially same procedures reported in (Lee et al., 1998).
Note that the cost function (3) can be considered as a general
form of those proposed in Lee et al. (1998) which correspond
to the cases with a1 > 0 and ai = 0 (i 6= 1), and a5 < 0 and

ai = 0 (i 6= 5) in the present study. We also note that the de-
rived suboptimal control input is normalized, so that its root-
mean-square value becomes φ

+
RMS = v+RMS(y

+ = 10) at each
time step. Furthermore, although not explicitly stated in Eq.
(3), each term ( ∂w/∂yj2 , ∂u/∂y∂ p/∂x etc.) is normalized to
be unit with the value at the onset of the control. Therefore,
only the ratios among the weight coefficients ai are important,
while their magnitudes do not affect the control input.

BAYESIAN OPTIMIZATION
As the optimization tool, we employed Bayesian opti-

mization, with which one can effectively find the optimum de-
sign parameters with a small number of trials in a probabilis-
tic manner. In the present study, the Bayesian optimization
framework is implemented via the open-source Python library
Optuna with Tree-structured Parzen Estimator as a surrogate
function.

The coefficients ai in the cost function (3) are optimized
so as to minimize the time-averaged C f � τw/(1/2ρU2

b ) value
within t+ 2 [600,1200], where t+ = 0 indicates the onset of
the control. Depending on the cost function, the computation
becomes unstable and eventually diverges. In such a case, we
set a large value to C f , i.e., unity in the present study, for pe-
nalization. The weight coefficients are updated at the onset
of the control and kept constant throughout each trial starting
from the same initial condition. The diagram in Fig. 2 outlines
the steps involved in the current framework.

In the present study, the Bayesian optimization frame-
work is implemented via the open-source Python library Op-
tuna Akiba et al. (2019), with Tree-structured Parzen Estima-
tor Bergstra et al. (2011) as a surrogate function. The readers
are reffered to the literature for details.

RESULTS AND DISCUSSIONS
Figure 3 shows the obtained C f with the trial number. Al-

though about 50 trials have yielded drag reduction rates that
exceed that of Lee et al. (1998), the optimization is further con-
tinued to ensure that it is converged. After 150 trials, we obtain
the lowest value of C f around 6.5� 10�3, which is slightly
lower than C f achieved with the existing cost functions.

The weight coefficients in the five successful cases with
the highest drag reduction rates are shown in Fig. 4. First,
concerning the weight of ∂w/∂yj2, the top five trials all have
large negative values, consistent with the results of Lee et al.
(1998) where the control tries to maximize the spanwise shear
at each time step. Also, the resultant drag reduction rate is
almost comparable to that of Lee et al. (1998).

Meanwhile, we note that the weights for other terms be-
sides ∂w/∂yj2 are non-zero, indicating that they would also
affect the control performance. For instance, the weights for
∂ p/∂xj2 and ∂ p/∂x∂ p/∂ z have large positive values, and the
effectiveness of these terms are newly identified in the present
study. These terms may contribute to stabilize streaky struc-
tures (Koumoutsakos, 1999; Endo & Kasagi, 2001). In addi-
tion, the weight coefficient for ∂ p/∂ z2 is given a negligible
value, while the sole use of this term as a cost function is re-
ported to be effective by Lee et al. (1998) and also confirmed
by our pilot study.

In order to clarify the sensitivity of each weight coeffi-
cient to the resulting drag reduction rate, the FANOVA im-
portance(Hutter et al., 2014) of each term is evaluated and
the results are shown in Fig. 5. These results indicate that
the present successful cost functions commonly have negative
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weight coeffficents for ∂w/∂yj2, and this agrees with that pro-
posed by Lee et al. (1998), where it is demonstrated that ap-
plying a control input so as to enhance the fluctuation of the
spanwise wall shear stress in a short term is effect in reducing
the skin friction drag in a long-term perspective. Even though
our exploration space is still limited to the prescribed library,
our result is consistent with numerous literature (Choi et al.,
1994; Lee et al., 1998) in the point that linear cancellation of
streamwise vortex structures provides an effective control law
when only using short-period information.

Finally, the instantaneous distribution of the streamwise
velocity component, the applied control input, and quasi-
streamwise vortex structures are visualized in Fig. 6 with the
best weights from the optimization.The current control algo-
rithm is observed to apply robust blowing and suction near the
vortical structures, akin to the opposition control approach de-
scribed by Choi et al. (1994). However, the algorithm is ca-
pable of handling each flow scale independently. Additionally,
the structure of the control input appears to be tilted at an an-
gle relative to the primary flow direction, which represents a
subtle difference compared to the approach proposed by Lee
et al. (1998).

CONCLUSION
The optimal control theory has been successfully applied

to determine the spatio-temporal distribtuion of a control input
for turbulence control. Meanwhile, it requires to specify a cost
function to be minimized, and it has conventionally been made
by researchers’ insights. The present study aimed to systemat-
ically optimize a cost function in order to obtain novel control
strategies leading to better control performances. Specifically,
within the framework of the suboptimal control, the cost func-
tion was formulated as a weighted sum of squared wall quanti-
ties such as wall shear stress and wall pressure, and the weight-
ing coefficients were optimized using the Bayesian optimiza-
tion. The results showed that, in addition to the term related to
the spanwise wall shear stress reported to be effective in pre-
vious studies, the optimal weighting coefficients indicates in-
cluding other novel terms in the cost function also contributes
to considerable drag reduction. Although the present study
considers the control of a canonical flow, the proposed frame-
work can be easily extended to more complex flow configu-
rations, and therefore is expected to yield novel flow control
strategies and achieve higher control performances.
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Figure 1. Flow configuration and coordinate system in the present study
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Figure 2. Flowchart of the present optimization framework. The left blue box is a process of direct numerical simulation, whereas the
right green box is a process of Bayesian optimization.
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Figure 3. Time averaged friction coefficient C f from t+ = 600 to 1200 in the optimization process of Case 2; each black dots indicates
each trials; blue dotted line indicates the elite case so far; red dash line indicates uncontrolled case; yellow dash-dot line indicates the
original suboptimal control Lee et al. (1998) with spanwise shear stress.
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Figure 5. fANOVA importance (Hutter et al., 2014) among the present weights to be optimized in Case 2; The values show how
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through ten computations.

5



13th International Symposium on Turbulence and Shear Flow Phenomena (TSFP13)
Montreal, Canada, June 25–28, 2024

Figure 6. Instantaneous flow visualization for the best cost function. The side walls show streamwise velocity, while the bottom wall
shows the wall-normal velocity (control inputs). The three-dimensional contour shows the iso-surface of the second-invariant of the
velocity gradient tensor.
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