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ABSTRACT
The control of turbulent fluid flows represents a prob-

lem in several engineering applications. The chaotic, high-
dimensional, non-linear nature of turbulence makes it difficult
to design control strategies with traditional frameworks. Re-
cently, deep reinforcement learning (DRL) has been shown to
be an effective approach to obtain control policies that reduce
the friction drag in different wall-bounded turbulent flows. In
this work we compare different drag-reduction strategies that
compute their actuation based on the fluctuations at a given
wall-normal location in turbulent open channel flow. In par-
ticular, we consider the policies learnt using deep reinforce-
ment learning (DRL) based on sensing planes at the follow-
ing inner-scaled locations: y+s = (10, 15, 30, 50), and compare
them with opposition control (Choi et al., 1994). By using
the deep deterministic policy gradient (DDPG) algorithm, we
are able to discover control strategies that outperform exist-
ing control methods at two inner-scaled locations closer to the
wall. When using information farther from the wall, opposi-
tion control increases the drag. By contrast, DRL is able to
learn drag-reducing policies in a minimal channel flow using
observations at y+s = 30 and 50.

INTRODUCTION
Deep reinforcement learning (DRL) has recently emerged

as a promising technique to learn novel, adaptive flow-control
strategies in an automated way (Vignon et al., 2023). This
is particularly relevant for discovering drag-reduction poli-
cies, as they may be applied in different industries, such as
aerospace, automotive, and marine engineering. Recent works
have applied the reinforcement-learning framework in numeri-
cal simulations of different flow cases: the flow around a cylin-
der has been studied both in 2D (Rabault et al., 2019) and
3D (Suárez et al., 2023), obtaining different policies depend-
ing on the Reynolds number investigated (Varela et al., 2022).
DRL has enabled the discovery of drag-reducing policies in
three-dimensional wall-bounded cases such as Couette (Zeng
et al., 2022) and Poiseuille flows (Guastoni et al., 2023; Son-
oda et al., 2023). DRL has also been used to reduce the size
of a recirculation bubble in a turbulent boundary layer (Font

et al., 2024). Other notable applications in fluid mechanics
of this technique are the maximization of the efficiency of
agents swimming in a turbulent flow (Biferale et al., 2019;
Verma et al., 2018), mesh optimization (Lorsung & Barati Fa-
rimani, 2023) and turbulence modelling (Novati et al., 2021;
Kurz et al., 2023).

In reinforcement learning (RL), a controlling agent learns
through trial and error how to control the environment, which
is characterized at a given time t by a state variable st ∈ S,
where S indicate the set of all possible states of the environ-
ment. The agent picks an action at ∈ A and it receives a re-
ward rt based on the effect of the action just performed. Here
A represents the set of possible actions in a given state. In
this work, we compare different drag reduction strategies in
turbulent channel flow, building on the reinforcement-learning
formulation of the problem from our previous study (Guastoni
et al., 2023). In particular, we analyze the relationship be-
tween the state observation and the learned policy in the con-
text of drag reduction. We compare the results with an estab-
lished non-data-driven control techniques, namely opposition
control (Choi et al., 1994).

The state observation is the only information about the
current fluid system state, that is provided to the learning agent
to develop a control strategy. The challenge related to this con-
trol task is two-fold: first, the agent needs to learn how the ac-
tion performed affects the reward and the observed state, then
it needs to devise a successful strategy to maximize the col-
lected reward. These two tasks are performed at the same time
during the learning phase. We consider the observation of the
velocity at different wall-normal locations in order to identify
which flow features enable the learning of the best performing
policies.

METHODOLOGY
As in our previous study (Guastoni et al., 2023) on the

application of reinforcement learning for drag reduction, we
study a 3D turbulent open channel flow. In order to apply DRL
to a fluid-dynamics problem, we need to define the observed
state, the actions that can be performed by the agent and the
reward function r = r(st+1,st ,at) : S2 ×A → R that quantifies
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the effect of the actions performed by the agent. We provide
the streamwise and wall-normal components of the velocity at
a given wall-normal location as state observation. The control
is implemented as a wall-normal velocity distribution at the
wall and the reward is defined as the wall-shear stress variation
with respect to the uncontrolled case.

The control problem is formulated as a multi-agent rein-
forcement learning (MARL) problem. In this setting, a grid
of NCTRLx ×NCTRLz control agents determines the control ac-
tions at the wall. The number of agents depends on the flow
simulation. Each agent receives the velocity fluctuations at a
given (x,z) position and it computes the action value right be-
low it. Since the flow simulation is incompressible, the average
of the control signal is removed to obtain zero-net-mass-flux
actions at each timestep.

In this study, we aim to analyze the effect of state observa-
tions on the DRL learning process and policy. To this end, we
perform several separate learning runs during which we sam-
ple the streamwise and wall-normal velocity fluctuations sens-
ing planes located at progressively larger inner-scaled wall-
normal locations, namely y+s = (10, 15, 30, 50). Since the
control is imposed at the wall, the closer is the sensing plane
to the wall, the faster the observed state will be affected. Fur-
thermore, the flow modifications caused by the control will be
less evident and localized as we move farther away from the
wall. This depends on the combined effect of diffusion and ad-
vection in the flow. Overall, higher wall-normal distances for
the sensing plane will result in a harder learning task for the
agent, as the reward signal becomes noisier as y+ increases.

We perform the learning process using deep determinis-
tic policy gradient (DDPG) algorithm (Lillicrap et al., 2015)
in a minimal open channel flow (Jiménez & Moin, 1991).
The learned policy is evaluated in both in a minimal chan-
nel (with domain size Ω = Lx × Ly × Lz = 2.67h× h× 0.8h
and h is the open-channel height) and in a larger channel
(Ω = Lx × Ly × Lz = 2πh× h× πh), both with uncontrolled
friction Reynolds number Reτ = 180. In the minimal chan-
nel flow NCTRLx ×NCTRLz = 16× 16, whereas in the larger
channel NCTRLx×NCTRLz = 64×64. The results at each wall-
normal location in both the minimal channel and larger chan-
nel are compared with an opposition control policy that re-
ceives as input the velocity field at the corresponding sensing
plane y+s .

RESULTS
As described more in detail in Guastoni et al. (2023), the

policy learnt using the state observations at y+s = 15 is con-
sistently providing an average drag reduction that is higher
than the one obtained with opposition control. After the ini-
tial transient (t+ > 500) the DDPG policy provides 43% drag
reduction, while opposition control is limited to 26%. Further-
more, having a local and translational invariant policy allows
us to apply it to a different domain size with no modifications.
This way, we are able to obtain 30% drag reduction in the
larger channel, whereas opposition control is limited to 20%.
Here we apply the same approach to study the DRL policies
obtained by observing the state at different wall-normal loca-
tions. All the policies are tested on 6 different initial condi-
tions, both in the minimal and larger channel. The drag reduc-
tion comparison of the two control strategies is summarized in
figure 1.

First we analyze the performance of the control strategies
in the minimal channel. Closer to the wall (at y+s = 10 and
y+s = 15), both control techniques are able to effectively reduce

drag. At y+s = 30, opposition control barely yields drag reduc-
tion and at y+s = 50 it generates a substantial drag increase.
This is due to the fact that the opposition-control strategy is
based on the suppression of the near-wall turbulent structures
that are more difficult to observe farther from the wall. By con-
trast, the same DRL algorithm used in our previous study can
be used to learn effective drag-reduction policies in the min-
imal channel even when the state of the flow is reconstructed
using observations at y+s = 30 and y+s = 50. It is important to
note how the performance can differ significantly in the min-
imal and regular channels: for instance, the DRL policy with
input at y+s = 30 provides almost 20% drag reduction in the
smaller domain, but it is much less effective in the larger one.
When moving to y+s = 50, the considered policy yields a drag
increase in the larger channel. This highlights the importance
of testing the DRL policy in both domains, to test how it gen-
eralizes.

At all wall-normal positions of the sensing plane, the DRL
allows the discovery of drag-reducing policies. With the use
of a MARL approach, the observation space of each individ-
ual agent is A ⊆ R2. This allows a two-dimensional repre-
sentation of the learnt policy. Since we are considering the
streamwise and wall-normal fluctuations as inputs, this repre-
sentation is similar to the one obtained through quadrant anal-
ysis (Wallace et al., 1972). We compare the best-performing
policies obtained with different observation sampling planes
y+s in figure 2. y+s = 10 and y+s = 15 are close and the RL
policies are also qualitatively similar. Differently from oppo-
sition control, the action mainly depends on the sign of the
streamwise velocity fluctuations, while the intensity and sign
of the wall-normal velocity fluctuations do not affect the ac-
tions. The control sign changes abruptly as the u-fluctuations
sign changes. The policy learnt with y+s = 30 exhibits a sim-
ilar dependency on the velocity fluctuations, but the variation
with the streamwise component intensity is smoother. The pol-
icy with input at y+s = 50 conceptually different, focusing on
the Q4 (+u′, − v′) quadrant. It should be noted that the RL
optimizes the policy in a black-box fashion. This prevent us
from verifying whether the policy learning can be potentially
improved further and whether the improvement is hindered by
the observability of the action effects from the state or in mod-
elling the reward signal (i.e. deciding which action to perform
based on the state observation). It is important to highlight
that a naı̈ve application of the policy learnt at y+s = 15 using
the observations father away from the wall will result in a drag
increase.

After analyzing the actions that are performed as a func-
tion of the observed state, we consider another approach to
compare the classical and learnt policies, by monitoring the
distribution of the velocity fluctuations when the control is ap-
plied. Independently from the sampling plane y+s used by the
policy, we consider the same wall-normal location y+ = 15
to sample the velocity. Figure 3 shows the distribution in the
larger channel of the inner-scaled velocity-fluctuation compo-
nents after the initial transient (t+ > 500) in the streamwise
(u) and wall-normal (v) directions. Opposition control yields a
reduction of the intensity of the fluctuations in both directions
when y+s = 10 or y+s = 15. The opposite effect is obtained
when y+s is further from the wall, leading to general increase
both in the streamwise and wall-normal direction. When con-
sidering the DRL policies, a sensing plane close to the wall
will lead to an increase of the wall-normal fluctuations and a
reduction of the streamwise fluctuations, determining a signifi-
cant modification of the fluctuations distribution. The changes
are much less pronounced with y+s = 30, where the DRL pol-
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icy determines a slight reduction of intensity in both x and y
direction, in a way that reminds the effect of opposition con-
trol with a sensing plane positioned closer to the wall. Finally,
when y+s = 50, the control has the opposite effect, with a slight
increase of the fluctuations in both directions, which results in
a small drag increase.

CONCLUSIONS
In this work we assess the effect of the location of the

wall-parallel observation plane in both opposition control and
in the DRL learning process. Both approaches yield drag re-
duction when the flow is sampled at y+s = 10 and 15. In both
these cases the policy obtained with DRL performs better than
opposition control. Furthermore, if the sensing plane is lo-
cated farther from the wall, the application of opposition con-
trol leads to significant drag increase. By contrast, the DRL
algorithm is able to identify drag-reduction strategies also with
observations at y+s = 30 and y+s = 50 in the minimal channel
flow. We compare both the policies using input-output maps
and the effect of the control on the velocity-fluctuation distri-
bution in the flow.

When testing the policies in a larger channel flow, a
performance reduction can be observed in all the considered
cases. DRL agents trained in the minimal channel did not ex-
perience the entire range of physical features that are present
in the larger channel, thus preventing their policies from pro-
viding equally good results in this latter setting. Sampling the
flow at y+s = 30 yields a limited drag reduction, whereas at
y+s = 50 we observe a drag increase. These results need to be
improved to allow the described DRL approach to find applica-
tion in all cases in which sensing the flow very close to the wall
can be difficult. Different approaches can be used to achieve
such goal, for instance transfer learning Pan & Yang (2009) or
curriculum learning Bengio et al. (2009). Both leverage the
fact that, even if the policies learnt in the minimal channel are
not as effective in the larger channel, they represent a valid
starting point for the training in the larger setting. The use of
these techniques will be the subject of our future work.
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Figure 1. Average drag reduction with respect to the reference uncontrolled case using opposition or DRL control in the minimal
channel and larger channel, as a function of the inner-scaled location of the sensing plane. The error bars represent the standard
deviation of the drag reduction with respect to the initial conditions. Solid-color bars represent the results in the minimal channel, while
the ones with white stripes denote the drag reduction in the larger channel.

Figure 2. Input-output maps of the DRL control policies learnt in the minimal channel, using the state observed at the various sensing-
plane locations y+s .
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Figure 3. Joint probability density function (JPDF) of the inner-scaled velocity-fluctuation components in the streamwise (u) and
wall-normal (v) directions at y+ = 15 in the larger channel. Each row refers to a different observation sampling height y+s .
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