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ABSTRACT
In this study we investigate the possibility of uncover-

ing innovative strategies for reducing drag through deep rein-
forcement learning. We consider a three-dimensional cylinder,
considering Reynolds numbers (ReD) from 100 to 400. The
transition to 3D wake instabilities appears in this regime. The
active-flow-control (AFC) setup is based on multiple zero-net-
mass-flux jets positioned on the top and bottom surfaces. A
computational-fluid-dynamics solver is coupled with a multi-
agent reinforcement-learning (MARL) framework based on
the proximal-policy-optimization algorithm. The introduction
of a MARL approach facilitates the exploitation of local in-
variance, adaptability of the control across different geome-
tries, transfer learning, cross-application of agents and accel-
erating training. Our results demonstrate 21% and 16.5% drag
reduction for ReD = 300 and 400, respectively, outperform-
ing classical periodic control, which yields up to 6% reduction
for both. The current MARL-based framework marks the first
instance of deep-reinforcement-learning training being carried
out on 3D cylinders. This advancement opens doors for im-
plementing AFC on increasingly more complex turbulent-flow
setups.

Introduction
Flow-control systems, both passive and active, are crucial

for developing sustainable solutions that can significantly cut
emissions in the aviation industry (Choi et al., 2008). Con-
trol devices use aerodynamics to reduce drag by manipulating
pressure and viscosity. Examples include slats, flaps, winglets,
and vortex generators, which improve aircraft performance
and efficiency. Despite their promising potential, creating the
best shapes or methods for these devices is challenging be-
cause it takes a lot of computing power to handle the complex
interaction between pressure and viscosity in all flying condi-
tions.

Alongside recent advancements in flow control, the inte-
gration of machine-learning (ML) techniques has brought sig-
nificant promise to the aeronautics sector. This includes ex-
ploring fundamental issues in fluid mechanics (Vinuesa et al.,

2023) and developing entirely new approaches for active and
passive flow control (AFC and PFC) (Le Clainche et al.,
2023). Deep reinforcement learning (DRL) stands out as a
rapidly growing field within ML and garners substantial in-
terest. Building on its success in board games, DRL proves
effective in systems where a controller interacts with an en-
vironment to enhance a task, a characteristic relevant to most
AFC scenarios. In such cases, DRL dynamically engages with
the flow, receiving feedback and refining actions over time.

Designing AFC setups involves tackling complex, high-
dimensional challenges that demand significant computational
power to explore the vast parameter space of the control sys-
tem and identify optimal values. DRL and neural networks
are helpful tools that make this process easier, allowing us to
develop effective control strategies without needing too much
computational power.

The literature on DRL for AFC applications grows at
a fast pace, exhibiting studies on flow control for two-
dimensional (2D) cylinders ranging from ReD = 100 and
8000 (where ReD is the Reynolds number based on inflow
velocity U∞ and cylinder diameter D) with 17% and 33%
drag reduction, respectively (Tang et al., 2020; Li & Zhang,
2022; Ren et al., 2021; Chatzimanolakis et al., 2024), aircraft
wings (Vinuesa et al., 2022), fluid-structure interaction (Chen
et al., 2023), promising results in controlling highly turbu-
lent flows such as (Font et al., 2024, accepted), where a tur-
bulent separation bubble reaching Reτ = 750 was success-
fully reduced, turbulent channels (Guastoni et al., 2023) or
Rayleigh–Bénard convection (Vignon et al., 2023a). Some
recent literature demonstrates the possibility of transfer learn-
ing from exploration done in 2D cylinders to 3D domains and
higher ReD (Wang et al., 2023). The present work extends
this state-of-the-art in 3D cylinders by using multiple actua-
tors controlled via a novel multi-agent reinforcement learning
(MARL) framework. The AFC is achieved through indepen-
dent zero-net-mass-flow (ZNMF) jets aligned along slots on
the top and bottom cylinder surfaces. This marks the first ex-
ploration of its kind directly within 3D cylinders.

Initially, at approximately ReD ≈ 40, there are symmet-
ric counter-rotating vortices in the near wake. Beyond ReD ≈
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190, laminar vortex shedding starts, forming the well-known
Kármán vortex street. Between 190 < ReD < 260, mode-A
instability prevails with dominant spanwise wavelengths of
λz = 4D (Williamson, 1996; Barkley & Henderson, 1996).
Past ReD ≈ 260, mode B becomes dominant, with finer three-
dimensional features having shorter wavelengths of λz = 1D.
Beyond these stages, the cylinder wake becomes more chaotic
and turbulent. Developing flow-control strategies for the tran-
sition from 2D to 3D wake around a cylinder is challeng-
ing. The MARL setup needs to utilize spanwise characteristic
structures as the wake becomes 3D to create effective control
methods, with implications for drag reduction. DRL maxi-
mizes rewards (R) for an agent interacting with an environment
via actions A and partial observations S. Episodes of consec-
utive actions are used to update neural network weights, opti-
mizing policies for maximizing expected rewards. For recent
advances in flow control with MARL, we refer to Brunton &
Noack (2015); Vignon et al. (2023b).

Methodology
Problem configuration and numerical setup

This study involves a 3D cylinder subjected to constant
inflow in the streamwise direction, with all lengths non-
dimensionalized using the cylinder diameter D as a reference.
The computational domain, depicted in Figure 1, has dimen-
sions Lx = 30D, Ly = 15D, and Lz = 4D, with the cylinder
centered at (x,y) = (7.5D,7.5D). Periodic boundary condi-
tions are applied in the cylinder spanwise direction.

At the inlet, we set a constant velocity U∞ with a Dirich-
let condition. The cylinder’s surfaces follow no-slip, no-
penetration conditions, while the top, bottom, and outflow sur-
faces of the domain act as outlets. The cylinder features two
sets of njet = 10 aligned synthetic jets at the top and bottom (at
θ

top
0 = 90◦ and θ bottom

0 = 270◦, respectively) controlled exter-
nally to adjust mass-flow rate. A similar control strategy was
discussed in Kim & Choi (2005), referred to as the out-phase
approach. It involves implementing sinusoidal mass-flow dis-
tributions with different wavelengths along the spanwise di-
rection. In this present work, the surface normal jet-velocity
profile is defined in terms of the angle θ and the desired mass-
flow rate Q per unit width:

∥U(Q,θ)∥= Q
π

ρDω
cos

(
π

ω
(θ −θ0)

)
, (1)

where Q = ṁ/Lz and |θ − θ0| ∈ [−ω/2,ω/2], ṁ is the mass
flow rate. For each pseudo-environment, we set opposite ac-
tion values within the pair of top and bottom jets, i.e. Q90◦ =
−Q270◦ , in order to ensure the global zero net mass flux. An
earlier setup was developed in Suárez et al. (2023).

The numerical simulations are carried out by means of
the numerical solver Alya, which is described in detail in
Vázquez et al. (2016). The spatial discretization is based
on the finite-element method (FEM) and the incompressible
Navier–Stokes equations are integrated numerically. For the
time discretization, a semi-implicit method is used where the
convective term follows a second-order Runge–Kutta scheme
and a Crank–Nicholson scheme is used for the diffusive term
(Crank & Nicolson, 1947). To select the appropriate time step,
Alya uses an eigenvalue-based time-integration scheme (Trias
& Lehmkuhl, 2011).

Multi-agent reinforcement learning (MARL)
We implemented a deep-reinforcement-learning (DRL)

framework using Tensorforce libraries (Schaarschmidt et al.,

Figure 1. Schematic representation of the computational do-
main with cylinder diameter D as the reference length. Note
that ω is the jet width and θ0 is the angular location of each jet
center. In green we show the uniform-velocity condition for
the inlet and the sinusoidal profile in the jet azimuthal direc-
tion. Note that this representation is not to scale.

2017). DRL is very well suited for unsteady flow-control
problems. It provides the possibility to dynamically interact
with an environment, being able to dynamically set the actu-
ation based on the varying flow state. We use the proximal-
policy-optimization (PPO) algorithm (Schulman et al., 2017),
which is a policy-gradient approach based on a surrogate loss
function for policy updates to prevent drastic drops in perfor-
mance. This algorithm demonstrates robustness, as it is forgiv-
ing with hyperparameter initializations and can perform ade-
quately across a diverse range of RL tasks without extensive
tuning.

The neural-network architecture consists of two dense
layers of 512 neurons each. The batch size, i.e. the total num-
ber of experiences that the PPO agent uses for each gradient-
descent iteration, is set to 80, which is bigger than the values
used in 2D trainings (Varela et al., 2022). The limitation is
that we have 10 actuators per environment and we need 10
streamed experiences which will be synchronized, so we have
to work with a total of 10nenvironments set of experiences. A
streamed experience consists of a set of states, actions, re-
wards, and the predicted state that the agent expects to achieve.
It is denoted as (S,A,R,S′)i,t for each pseudo-environment,
and each of the Reynolds numbers under consideration has its
own agent and policy.

Previous work on 2D cylinders implemented the various
training stages by means of a single-agent reinforcement learn-
ing (SARL) configuration. If the action space handles multiple
jets at once, as is the case in the present 3D cylinder setup
with distributed input forcing and distributed output reward
(so-called DIDO scheme), SARL is not a viable option. As op-
posed to SARL, the MARL framework avoids the curse of di-
mensionality by exploiting invariances and aims to train local
pseudo-environments. Doing so, the high-dimensional control
becomes tractable and the agent is trained in smaller domains
to maximize the local rewards. All the agents share the same
neural-network weights, which is a key factor in significantly
accelerating the training process. Note that each agent is cou-
pled to a pair of jets that actuate independently from the others
through the training process. The observation state Si provided
to the agent consists of partial pressure values along the do-
main. This information contains three slices with 99 pressure
values each which are aligned with the corresponding jet. The
probes or pressure values are concentrated in the wake and
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near-cylinder regions. This enables the agent to exploit the
spanwise pressure gradients.

The total reward R(t, ijet) defined in Equation (2) is ex-
pressed as a sum of the local, rlocal, and global, rglobal, rewards
that correspond to each jet ijet. The scalar K adjusts the values
approximately within the range [0,1] and β balances the local
and global rewards; β = 0.8 is used in this work. The rewards
r, defined in Equation (3), are functions of the aerodynamic
force coefficients Cd and Cl (Cdb is the averaged value for un-
controlled). The user-defined parameter α is a lift penalty and
we considered α = 0.6- The latter is essential to avoid un-
desired asymmetric strategies which favor a reduction of the
component parallel to the incident velocity (drag) towards the
perpendicular one (positive or negative lift). This is commonly
referred to as the axis-switching phenomenon.

R(t, ijet) = K
[
β rlocal(t, ijet)+(1−β )rglobal(t)

]
, (2)

r(t, ijet) =Cdb −Cd(t, ijet)−α|Cl(t, ijet)|, (3)

where Cd =
2Fx

ρA f U2
∞

and Cl =
2Fy

ρA f U2
∞

. (4)

The aerodynamic forces in Equation (4) involve the
frontal area A f = DLz from the local pseudo-environment sur-
faces for Clocal

d and the whole cylinder for Cglobal
d .

The interactions between the agent and the physical envi-
ronment are denoted as actions A, and they influence the sys-
tem during Ta time units. We update the jet boundary condi-
tions using Equation (1). The shift in time between actions,
Qt → Qt+1, is done by exponential functions. The smooth
transition diminishes the appearance of sudden discontinuities
which can spoil a training process. The DRL library requires
rescaling as Q = AQmax to avoid excessively large actuations.
Hence, Qmax = 0.176 was set based on our experience with
DRL for flow control, and corresponds to twice the values used
in the 2D cylinder setups (Varela et al., 2022).

The episode duration is specifically defined to include
at least six vortex-shedding periods (Tk = 1/ fk). We set
Ta = 0.05Tk, based on the experience gathered with previous
studies (Rabault et al., 2019). Note that the vortex-shedding
period is Tk = 1/St ≈ 1/0.2 = 5, where St = f D/U∞ is the
Strouhal number and f is the vortex-shedding frequency. This
allows sufficient time between actions to produce an effect on
the flow. If Ta is too short, there will be noise in the train-
ing process and it will become difficult to explore and cor-
relate trajectories. On the other hand, if Ta is too large the
agent will not be able to control the shorter characteristic time
scales. Thus, a total of 120 actuations per episode is deemed
sufficient for evaluating the cumulative reward. It is notewor-
thy that each episode starts from an uncontrolled converged
state of the problem. This corresponds to what happens during
training, but when we evaluate the DRL model in exploitation
mode (also denoted as a deterministic mode). We also compare
the DRL-based control with results from the classical periodic
control (PC). The latter is chosen with the same jet flow rate as
that of the DRL, and the frequency is chosen based on a para-
metric analysis of the frequency around the vortex-shedding
frequency of the wake. We selected the frequency yielding the
highest drag reduction.

Results
Training

An essential aspect of the training process is to leverage
the physical understanding of the controlled phenomenon to

evaluate anticipated reward values and physical control strate-
gies thoughtfully. With these considerations in mind, Figure 2
shows the training curves for the four investigated cases in this
study, at Reynolds numbers ReD = 100, 200, 300, and 400.
Commonly, sequences of actions A, states S, and rewards R
are referred to as “environment episodes”. However, in this
case, it is more appropriate to call them “pseudo-environment
episodes” due to the difference between SARL and MARL,
where MARL involves multiple pseudo-environments within
an environment. Hence, this Figure shows all the final re-
wards from the raw pseudo-environments, together with the
pure drag reduction and lift-biased penalization contributions.
As an example, the ReD = 300 scenario closely resembles the
ideal training condition. This is because the curves exhibit
minimal lift bias and result in a total reward that matches the
pure drag reduction. Similar patterns are obtained for the other
ReD cases indicating that the discovered policies are promising
for all the cases. Note that we also observe several instances
of apparent unlearning such as for ReD = 400 at the episode
500 approximately. This is due to additional exploration of
the agent, aimed at increasing the lift asymmetry (note the de-
crease of the red line), but quickly returning to exploiting what
the agent has identified as a well-performing policy.

Figure 2. Evolution of the final reward R during the explo-
ration phase as a function of the MARL episodes together with
its lift-bias and pure drag-reduction contributions during train-
ing sessions. Signals are smoothed by a moving average of 15
values. From top to bottom, ReD = 100, 200, 300 and 400.

In terms of computational cost, training is the most sig-
nificant part. On average, each training session requires about
1200 MARL episodes, which is equivalent to running 120 nu-
merical simulations for the entire domain. All exploration ses-
sions were conducted on the Dardel high-performance com-
puter in the PDC Center at KTH Royal Institute of Technol-
ogy. The sessions run on 8 nodes simultaneously, each running
one numerical simulation comprising 10 simultaneous pseudo-
environments. Hence, 80 pseudo-environments in total. Each
node has two AMD EPYC™ Zen2 2.25 GHz 64-core proces-
sors with 512 GB memory. With each batch of 8 simulations
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taking ideally five hours in this particular architecture, it re-
quires less than four days of continuous operation.

Exploitation of the model
At this point, the agent policies are evaluated without any

exploration. As a result, the agent calculates the most likely
value of the action A within its learned probability distribution,
aiming to maximize the expected reward. The DRL-based con-
trol exhibits a clear two-phase process that starts with a short
transient period followed by the stationary control policy. It
takes less than 4Tk for the DRL-based control to reach the
stationary behavior. It exhibits a first suction/ejection over-
shoot which destabilizes the wake, and then it proceeds to re-
stabilize it in a second phase. During the latter, the jet mass
flux exhibits lower values which barely reach 75% of those
in the transient overshoots. This control strategy persists until
control stabilizes into stationary behavior, which is monitored
by assessing mean quantities and fluctuations in aerodynamic
forces. The averaged drag-reduction results for all ReD are re-
ported in Figure 3. It is important to note that all the cases lead
to effective drag-reduction rates. The overall performance is
much better than what can be obtained with the classical PC
strategies. The values are averaged in time by considering an
interval of at least 20Tk, i.e. over 100 time units, excluding the
transients obtained after applying the control. The root-mean-

square of the fluctuations, RMS=
√

(1/n)∑
n
i=1(xi − x)2, min-

imum and maximum values provide deeper insights into the
mentioned robustness. While the mean values alone may sug-
gest a good performance of the PC, the merits of the control
should not be assessed solely based on this quantity. When
considering an optimal control strategy, the preferred choice
typically involves selecting a control with minimal variability
and few extreme values, which are characteristics exhibited as
evidenced by the DRL-based control. We also study the ra-
tio between the total fluid mass intercepted by the frontal area
of the cylinder E∞ and the total mass used by the actuators Ec.
Based on the definitions used in Chatzimanolakis et al. (2024),
we propose the following expression for the ratio E∗

c :

E∗
c =

Ec

E∞

=
Ljet

(t2 − t1)Q∞Lz

t2

t1

njets

∑
i=1

|Qi(t)| dt, (5)

where t1 and t2 define the start and end of our time interval for
evaluating the control and Q∞ = ρDU∞ define the mass-flow
intercepted by the cylinder. Note that a complete evaluation
of the mass used by the actuators would depend on the actual
jets used in the experimental setup, and in this work we adopt
a purely numerical approach based on modifying the Dirichlet
boundary condition at the cylinder surface. Keeping this as-
pect in mind, the present numerical work shows that the mass
cost is minimal compared to the gains achieved through drag
reduction.

Uncontrolled Periodic control DRL control

ReD St Qmax QRMS fc St Qmax QRMS fc St

100 0.170 0.053 0.037 0.115 0.113 0.016 8.4×10−3 0.153 0.139

200 0.186 0.053 0.037 0.130 0.117 0.031 9.5×10−3 0.173 0.157

300 0.206 0.018 0.013 0.175 0.177 0.031 7.6×10−3 0.200 0.189

400 0.202 0.012 0.008 0.172 0.194 0.025 5.7×10−3 0.200 0.169

Table 1. Main characteristics of control strategies, including
the Strouhal number St, maximum and fluctuations RMS of
mass-flow rates per unit width (Qmax and QRMS) and control
frequency fc.

Figure 3. Summary of (top) mean drag (Cd) and (middle) lift
(Cl) coefficients shown as white dots, RMS of fluctuations are
represented as thick bars, and maximum-minimum shown as
dashed intervals for each case. (Bottom) Non-dimensionalized
cost metric per drag reduction rate E∗

c /∆Cd (lower is better),
as defined in Equation (5).

Additional physical insight has been studied by assessing
the power-spectral density (PSD) of the streamwise velocity.
The change of frequency impacts the wake topology after ap-
plying the various control strategies. In particular, both the
DRL-based control and PC cases exhibit a reduction in St.
Further insight into the various control strategies is provided
in Table 1, where several characteristic variables of the vari-
ous controls are shown. The first important observation is the
fact that the root-mean-square (RMS) of the jet mass-flow rate
(computed by averaging in time and the spanwise direction) is
one order of magnitude lower in the DRL than in the PC. This
indicates that the DRL-based control strategies lead to more
stable and robust configurations, avoiding large peak-to-peak
variations in the actuation. Although the fc values are not dra-
matically different in the PC and DRL cases (in this case fc
is just the dominant frequency), the latter exhibit significantly
more complex control laws than the former.

Figure 4 demonstrates the biggest advantage of a MARL
implementation: the control policy can act locally, exploit-
ing wake vortical structures and distributing the flow of the
jets in the spanwise direction to maximize the global objective
of minimizing the overall drag. The agent utilizes less than
10%Qmax. While cases up to ReD = 200 exhibit a uniform dis-
tribution in the spanwise direction, beyond this Reynolds num-
ber, the control exhibits spanwise variations. As mentioned
in the Introduction, for ReD ≥ 250 the wake displays three-
dimensional features, effectively utilized by the DRL control
to maximize the achieved drag-reduction rates. During the ex-
ploration stage, for ReD = 100 and 200, the agent could not
find any strategy with spanwise variations leading to better
performance, indicating that the wake is two-dimensional in
these cases, favoring spanwise-uniform control strategies. On
the other hand, at ReD = 300 and 400, we see patterns in the
flow related to the transitional ReD, including spanwise struc-
tures of approximately one cylinder diameter (λz = 1D) asso-
ciated with mode-B instabilities. In Figure 5 we illustrate how
the flow topology is influenced by the various drag-reduction
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Figure 4. Evolution in time of the mass-flow rate per unit
width Q for all jets individually, showing also their spanwise
distribution for the DRL cases. From top to bottom: ReD =

100, 200, 300 and 400.

strategies, on three representative phases: uncontrolled, tran-
sient, and stabilized control. The flow visualizations indicate
that the control strategies based on DRL aim to enhance the
spacing between successive vortical structures, resulting in a
reduction of the vortex-shedding period Tk. Hence, mode-B
instabilities are diminished when the control is applied, and the
intensity of the vortex shedding is attenuated. These changes
lead to a more organized wake structure, resembling the char-
acteristic two-dimensional laminar wake. Figure 4 corrobo-
rates these findings, illustrating diminished oscillations dur-
ing the controlled phase. Studying flow statistics offers deeper
insight into the mechanisms employed by the DRL agent to
discover flow-control strategies, particularly when analyzing
the mean flow and the Reynolds stresses. To compute the
latter, the Reynolds decomposition is used to decompose the
flow variables (u) into time-averaged mean (u) and fluctuat-
ing (u′) components, u = u + u′. In Figures 6, we observe
the impact of the DRL-based control: the wake nearly doubles
the recirculation-bubble length, delaying the wake-stagnation
point by approximately one diameter in the streamwise direc-
tion. We only present ReD = 400 as a representative case. The
back pressure increases by ∆Cb

p ≈ 0.4, which is directly related
to the drag reduction mechanism. The Reynolds stresses are
presented in Figure 6, which shows that the peaks move down-
wards in the streamwise direction after applying the control,
with only small changes in the vertical location. DRL-based
control generally leads to the reduction of the peak magnitude
in almost all the fluctuating quantities. All ReD cases elucidate
that the same behavior occurs within this regime range.

Discussion
In this study a multi-agent reinforcement-learning

(MARL) framework is coupled with a numerical solver to dis-
cover effective drag-reduction strategies by controlling multi-
ple jets placed along the span of three-dimensional cylinders.
We study cases at ReD = 100, 200, 300, and 400, where wake
transition from 2D to 3D is observed. All DRL-based con-
trol policies outperform the classical periodic control in this
ReD range. Such a range is characterized by the emergence of
spanwise instabilities, which the DRL agent can exploit to dis-
cover effective drag-reduction strategies. This is achieved by
taking advantage of exploiting the underlying physics within

pseudo-environments and optimizing the global problem in-
volving multiple interactions in parallel. One of the main
advantages of employing MARL is the possibility to deploy
trained agents across various cylinder lengths and numbers of
actuators while ensuring consistency in the spanwise width of
the jets (Ljet) and their corresponding pressure values as ob-
servation states (S). Note that the training focuses on symme-
tries and invariant structures. This would not be possible with
SARL, which is restricted to a certain number of actuators (and
also the corresponding algorithm limitations). MARL allows
cheaper training sessions in smaller and simplified computa-
tional domains, thereby speeding up the process, which is re-
quired to perform flow control in high-fidelity simulations.

These findings highlight the effectiveness of the DRL ap-
proach, which can discover flow-control strategies more so-
phisticated than those obtained with the classical periodic con-
trol, spanning wide ranges of frequencies and tackling differ-
ent flow features in the wake. DRL-based control achieves a
remarkable performance, reducing drag by 21% and 16.5% for
Re = 300 and 400 respectively, outperforming PC strategies
which only achieve around 6% reduction for both Re. Fur-
thermore, the results presented here represent the first training
conducted in 3D cylinders. This sets a new benchmark for the
DRL community, which may motivate its use in future appli-
cations for DIDO schemes.
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