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ABSTRACT
This work focuses on the control of Tollmien-Schlichting

(TS) through optimized unsteady suction and blowing jets with
the main aim of inducing a delay in laminar-turbulent transi-
tion and reducing the resulting skin friction drag. The suppres-
sion of TS waves via this Active Flow Control (AFC) system
is enabled through two artificial intelligence-based optimiza-
tion methodologies: Single-Step Deep Reinforcement Learn-
ing (SDRL) and Particle Swarm Optimization (PSO). The pri-
mary aim of this research is to assess the performance of these
methods in optimizing the AFC parameters with respect to
convergence rate, computational efficiency, and ability to find
an optimum control. The findings demonstrate the success of
both methods to find appropriate control parameters leading to
effective suppression of the TS waves. While both methods
are found to be effective in optimizing the AFC parameters for
TS waves’ suppression, SDRL outperforms PSO in terms of
convergence rate and computational efficiency and exhibits a
relatively better performance in finding an improved optimum.

INTRODUCTION
Controlling complex, transitional, and turbulent flows

plays a pivotal role in enhancing the overall aerodynamic per-
formance of modern transport and energy systems, enabling
the design of more efficient aircraft and wind farms. Ac-
tive flow control (AFC) methods have gained prominence in
various applications, encompassing drag reduction, wind en-
ergy power extraction, noise reduction, and more (Pino et al.,
2023). Controlling transition from laminar to turbulent flow
is particularly crucial, as delaying this process can lead to
aerodynamic drag reduction and fuel savings for aircraft and
other high speed vehicles, along with reduced greenhouse gas
emissions (Niu & Li, 2022). The intricate nature of bound-
ary layer transition however makes this challenging due to the
diverse and often contradicting nature of underlying instabil-
ities, such as crossflow vortices, Tollmien-Schlichting waves,
Kelvin-Helmholtz, and Rayleigh modes (Luo & Zhou, 1987).

Tollmien-Schlichting (TS) waves, crucial in laminar-to-
turbulent transition for two-dimensional boundary layers in
low-speed and low-disturbance flows, can be suppressed to
delay the transition, extend laminar flow, and reduce skin fric-
tion drag making them an attractive target for both passive and
active flow control methods (Cossu C., 2002; Kotsonis et al.,
2015). However, the control of naturally occurring TS waves
in real flows is challenging due to their unpredictable phase
and frequency spectrum. Thus, closed-loop strategies based
on wave superposition (Thomas, 1983; Liepmann et al., 1982)
and advanced adaptive control strategies (Tol et al., 2019; Kot-
sonis et al., 2015) work well for deterministic, artificially in-
troduced TS waves but not for naturally occurring ones (Tol
et al., 2019). This limitation has led to the exploration of mod-
ern flow control techniques involving Artificial Intelligence
(AI), such as Genetic Programming (GP) (Gautier N. et al.,
2015) and Deep Reinforcement Learning (DRL) algorithms
(Rabault et al., 2019; Ren et al., 2020).

This study focuses on optimizing the parameters of an
AFC system using unsteady suction and blowing jets with a
spatial sinusoidal velocity distribution, targeting TS wave sup-
pression. The study aims to evaluate the efficacy of the Single-
Step Deep Reinforcement Learning (SDRL) algorithm (Vi-
querat et al., 2022) and Particle Swarm Optimization (PSO)
method (Kennedy & Eberhart, 1995) in optimizing key AFC
parameters through a comparative study in terms of conver-
gence rate, computational efficiency, and the capability to dis-
cover an enhanced optimum. The investigation involves mul-
tiple test cases of increasing complexity, starting with a linear
single-frequency TS wave (Herbert, 1994), moving to weakly
nonlinear ensembles of multiple TS wave modes, and finally,
considering highly nonlinear scenarios with nonlinear multi-
frequency control cases.

AI-BASED CONTROLLER
The single-step deep reinforcement learning method as

a degenerative DRL and policy-based optimization (PBO)
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method is utilized for the optimization of the operating param-
eters of unsteady suction and blowing jets. The performance of
this method in maximizing TS wave attenuation is compared
with the PSO technique. The operating parameters include the
center location of the jet (Cx), the spatial wavelength (width)
(λAFC), the amplitude (JA), and the phase (Jφ ). The latter is
measured relative to the phase of the streamwise velocity com-
ponent of TS wave at the center location of the jet (Cx). The
primary goal of this study is to achieve the highest possible re-
duction in amplitude at a selected downstream location for TS
waves, all while minimizing the energy expenditure of the jets.

To simulate the TS wave instability, a Harmonic Navier-
Stokes (HNS) solution framework is employed. This solver
employs harmonic expansions in both the spanwise and tem-
poral directions for the perturbations. The solution to the HNS
equations is obtained through an in-house solver (Westerbeek
et al., 2023). The gray box in figure 1 represents the compu-
tational domain, where the time-invariant boundary layer pro-
file is established at the inflow using the Falkner-Skan-Cooke
equations. This boundary layer commences at the virtual ori-
gin of X0 = −400δ0 to ensure a developed boundary layer at
the computational domain’s inflow.

A single-frequency TS wave, introduced by Herbert
(1994) with frequency ω1 = 0.0344 at Re0 = 400, is consid-
ered as a reference scenario for all linear control cases. Fur-
thermore, two types of objective functions are used for the op-
timisation. A first group of cases focuses on directly reducing
the maximum amplitude of TS waves at a specified streamwise
coordinate. A second group shares the same goal but also in-
cludes penalties for the energy expended by unsteady suction
and blowing jets. A collection of 16 distinct test cases intro-
duced in Table 1 serves as a versatile and broad foundation for
evaluating the performance of SDRL when compared to PSO.
The notation of these cases follows a specific format: the first
two letters denote the optimization method, namely ”SD” for
SDRL and ”PS” for PSO. The initial number in the code signi-
fies the number of parameters under optimization. If the letter
”E” is present in the name, it indicates that the reward func-
tion is penalized based on the energy expenditure of unsteady
suction and blowing jets. Additionally, the number of attempts
for each case is denoted by t1, t2, and t3 in the event of three
different trials. For instance, SD3Et2 corresponds to the sec-
ond trial of single-step deep reinforcement learning, focusing
on optimizing three parameters while penalizing the reward
function with the energy consumption of the actuators.

RESULTS
The test cases introduced in Table 1 are explored to find

the optimal set of operating parameters for the respective AFC
system and to compare the performance of the SDRL with the
PSO technique. A typical example of successful suppression
of TS waves is presented in Figure 2.

Figure 2-a shows the perturbation velocity field in the
x− y plane for three different situations. Comparing the ve-
locity field of the TS wave and the wave generated by the un-
steady suction and blowing jets, the same amplitude and op-
posite phase of these waves is observed indicating the opposi-
tion control strategy. Near-complete elimination of TS wave
as illustrated in Figure 2-a is achievable through this control
strategy.

Considering the control case studies defined in Table 1,
it is possible to have a flexible and general enough baseline
to compare the performance of a machine learning algorithm
with a metaheuristic algorithm in terms of convergence rate,

computational efficiency, and ability to find the optimum pa-
rameters for the AFC system. The general control law ex-
tracted from all the obtained results of the SDRL and PSO
shows that these two methods discover an opposition control-
like law as an effective method of suppressing TS waves simi-
lar to the results observed in Figure 2.

Table 1: Linear control cases, Amplitude reduction in
TS wave streamwise velocity is denoted with Ared. after

reaching convergence at E pisode.

Dataset TS Convergence

Case Ared.(%) Episode

SD3t1 98.23 348

SD3t2 99.96 553

SD3t3 98.29 494

PS3t1 98.31 824

PS3t2 96.99 728

PS3t3 98.28 727

SD3Et1 97.69 477

SD3Et2 99.03 456

SD3Et3 98.68 485

PS3Et1 99.96 801

PS3Et2 99.95 748

PS3Et3 99.95 748

SD2Et1 98.87 286

PS2Et1 99.82 808

SD2t1 98.35 256

PS2t1 99.82 748

The overall suppression of TS waves of up to 99.96% (40
dB) based on results of Table 1 show the success of both the
PSO and SDRL algorithms in finding a proper control strategy
to suppress TS waves. Comparing the convergence episodes
in Table 1, it becomes evident that SDRL consistently outper-
forms PSO in terms of convergence speed when searching for
optimal parameters. The convergence behavior of these two
methods is illustrated in Figure 3. The convergence criterion
for these methods is considered by defining ±0.2% bandwidth
for the rate of variation of the reward’s moving average. The
observing window for the moving average is over 20 episodes.

By comparing the convergence trends of different op-
timization parameters in Figure 4 for SDRL and PSO, two
different strategies of optimization can be seen which finally
leads to a similar control performance. In the PSO, all the pa-
rameters to be optimized are converging at almost the same
rate and pass the convergence criterion after a similar number
of episodes while in SDRL the rate of convergence is differ-
ent for the three considered operating parameters of the AFC
system. For instance, in case SD3Et1 shown in Figure 4, the
phase is the first parameter that is converged while amplitude
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and width of AFC are the next parameters with a slower con-
vergence rate. It appears that the SDRL narrows down the ex-
ploration space dimension as it approaches convergence. This
potential reduction in dimensionality is hypothesized to be the
underlying factor behind SDRL’s faster overall convergence
when compared to the PSO. Nevertheless, more extensive in-
vestigations into SDRL’s optimization strategy are necessary
to gain a comprehensive understanding of the primary mecha-
nism behind its faster convergence.

The dashed vertical lines indicated in Figure 3 are rep-
resenting the minimum number of episodes required to reach
convergence for both the SDRL and PSO algorithms. The
number of episodes for SDRL and PSO is 477, and 748
episodes respectively, which shows a 57% faster performance
of SDRL compared to the PSO algorithm. This difference was
observed to be even higher for the cases with only two op-
timization parameters where SDRL was 3 times faster than
PSO. The faster convergence of SDRL compared to PSO is
a noticeable advantage of this machine-learning algorithm, es-
pecially for fluid dynamic problems with high computational
cost per episode.

The ability of SDRL in finding an improved optimum
is also evidence of SDRL outperforming the PSO method:
when comparing the maximum suppression of TS waves in
the different test cases presented in Table 1, SDRL shows an
increased suppression. Although the suppression of the TS
waves in all case studies is high, slightly different results can
still be seen by comparing the SDRL and PSO algorithms.
For instance, the maximum amplitude suppression for the PSO
method (case: PS3t1) is 38 dB compared to the 40 dB in the
SDRL method (case: SD3t2).

By comparing two different optimization scenarios with
and without energy penalization (SD3Et2, and SD3t2) in Ta-
ble 1, it becomes evident that the SDRL strategy is able to
compromise overall TS wave attenuation as a result of a trade-
off with energy expenditure of unsteady jets. Therefore, the
suppression of TS waves is slightly lower when defining the
target of optimization with energy penalization.

Nonlinear effects on controller performance
Two nonlinear test cases are considered in this part to

study the effect of multi-modal interactions on the control per-
formance of both SDRL and PSO methods. A nonlinear multi-
frequency control case with a combination of the first three
harmonics of the TS wave is considered while the frequency
of the third harmonic is the same as the previously consid-
ered linear control cases (ω1 = 0.0344). The initial amplitude
of the first two modes is the root mean square amplitude of
0.5% while the third mode is set at 0.25% (Herbert (1994)).
The spatial wavelength of the unsteady suction and blowing
jets is fixed for both cases (λAFC = λT S). The fixed upstream
(Cx = 660δ0) and downstream (Cx = 1653δ0) locations of the
actuator are selected for cases NL1 and NL2, respectively. This
positioning will help to assess the link between the controller
performance and the nonlinear evolution of the TS wave.

Optimal TS wave attenuation and convergence of these
control cases is provided in Table 2 which indicates similar
control performance of SDRL and PSO methods when the ac-
tuator is positioned upstream (NL1). However, when the actu-
ator is placed downstream (NL2), the SDRL-based controller
is outperformed by the PSO-based method. Specifically, the
SDRL-based controller is not able to effectively mitigate the
second harmonic of the TS wave when compared to the PSO-
based controller.

These findings indicate that the extended exploration

Table 2: Multi-frequency nonlinear control cases, NL1:
upstream control, NL2: downstream control

Cases Modes ∆umax (%)

# PSO SDRL

NL1

M1 99.93 99.22

M2 98.67 92.12

M3 95.3 98.97

NL2

M1 86.43 82.17

M2 98.89 77.64

M3 95.07 97.02

space in multi-frequency nonlinear control cases adversely
affects the convergence rate of the SDRL-based controller,
bringing it on par with that of the PSO-based controller. More-
over, the higher complexity of the optimization problem due to
the presence of developed nonlinear interactions downstream
poses a challenge for the SDRL-based controller resulting in
decreased performance.

It should be noted that the results presented in this section
are based on a small subset of nonlinear case studies. Draw-
ing a definitive conclusion regarding the two methods perfor-
mance in nonlinear control cases requires conducting addi-
tional control cases and sensitivity analyses to evaluate how
the SDRL-based controller’s initial randomization affects its
performance.

CONCLUSION
The application of Single-step Deep Reinforcement

Learning (SDRL) and Particle Swarm Optimization (PSO) al-
gorithms to find an optimum unsteady suction and blowing
jets as active flow control is studied with the main aim of
Tollmien-Schlichting waves’ suppression. The utilization of
SDRL and PSO-based controllers can suppress linearly devel-
oping Tollmien-Schlichting waves by up to 99.96% (40 dB).
This indicates the effectiveness of these methods in devis-
ing suitable control strategies. The strategy identified by the
SDRL and PSO involves an opposition control method, which
generates an active flow control wave of the same amplitude
but in the opposite phase to the TS wave.

A comparative analysis of SDRL and PSO methods is
performed across 16 different test cases. These cases vary in
the number of optimization parameters and the definition of
the reward function, which either includes or excludes the pe-
nalization of performance based on the energy expenditure of
the actuator. Faster convergence of SDRL by up to 3 times
when compared to the PSO method was observed in single-
frequency linear control cases resulting in notable computa-
tional power savings. The SDRL-based controller demon-
strated superior performance in identifying improved optima
compared to PSO. These findings underscore the effectiveness
of the SDRL-based controller in suppressing linearly devel-
oped TS waves.

Two additional nonlinear test cases were conducted in
a multi-frequency nonlinear control scenario to investigate if
the compelling features of SDRL-based controller still mani-
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fest when dealing with nonlinearly developing TS waves. The
findings reveal that the expanded exploration space in multi-
frequency nonlinear control cases adversely affects the conver-
gence rate of the SDRL-based controller, making it converge at
a slower pace similar to the convergence rate of the PSO-based
controller. The increased complexity resulting from down-
stream nonlinear interactions poses additional challenges for
the SDRL-based controller, resulting in a decline in its per-
formance, compared to PSO. Based on the initial investigation
into multi-frequency nonlinear control cases, it becomes ap-
parent that the SDRL-based controller no longer demonstrates
an advantage over the PSO-based controller in highly nonlin-
ear control scenarios. To fully assess the SDRL-based con-
troller’s capabilities in suppressing nonlinearly developed TS
waves, more comprehensive studies involving a greater variety
of test cases with different levels of nonlinearity are necessary.
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Figure 1: Schematic view of the computational domain, Ω = (0,Lx = 2480)× (0,Ly = 82) denoted by the gray region.
λAFC = L×λT S,L ∈ [0.5,2]: Width of AFC. The AFC center is located at Cx = 660,0. The inlet streamwise velocity U∞,
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Figure 2: a) Streamwise velocity of perturbation, top: velocity field when the only disturbance is triggered at the inflow,
middle: velocity field with only control implemented upstream, bottom: velocity field of the controlled TS waves, the

position of the AFC is illustrated with a red rectangle (xs = 660). b) Amplitude evolution of streamwise (u) disturbance
velocity, Nondimensionalized data using Blasius length scale (δ0)
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Figure 3: Evolution of reward function for SDRL and PSO algorithm (SD3Et1 vs PS3Et3), the solid lines are referring to
moving average of the reward function
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Figure 4: Convergence of SDRL and PSO algorithm towards optimum control (SD3Et1 vs PS3Et3), a) Reward function,
b) Amplitude of unsteady suction and blowing jets (AFC), c) Phase of AFC, d) Relative Width of AFC
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