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ABSTRACT
Turbulent flow through a concentric annular square duct

is studied at varying Reynolds numbers of Reb = 3500, 7000
and 10500 using direct numerical simulations (DNS). The
Reynolds number effects on the statistical moments of the tur-
bulence field are investigated systematically in both physical
and spectral spaces. The annular configuration introduces ad-
ditional complexity to the flow physics due to the presence of
the convex corners of the inner duct. It is observed that the
convex corners have a significant impact on the mean velocity
field and wall shear stress, and promotes generation of sec-
ondary flow structures as the Reynolds number increases. It
is particularly interesting to observe that the counter-rotating
vortex pair commonly seen in the concave corners of a square
duct vanishes at higher Reynolds numbers. The appearance
of strong secondary flows drastically alters the distribution of
turbulence kinentic energy (TKE) and shear stresses across the
annular gap. The influence of the inner and outer ducts on the
turbulence field is further examined through analyses of energy
spectra of velocity fluctuations and coherent structures.

INTRODUCTION
Turbulent flow within a concentric annular square duct

has many practical engineering applications such as heat ex-
changers and HVAC systems. Unlike two-dimensional (2-D)
flow in a plane channel, turbulent duct flow is inherently three-
dimensional (3-D) featuring interactions of the boundary lay-
ers developing over all eight sidewalls. Smooth square duct
flow features secondary flows that manifest as four symmetric
counter-rotating vortex pairs that act to draw high-momentum
fluid towards the concave corners from the duct core. By con-
trast, the degree of complexity is significantly elevated when
the square duct is made concentric with an inner (convex) and
an outer (concave) duct. In such a configuration, the flow
is characterized by not only the intense interaction of eight
boundary layers developing over the walls of the inner and
outer ducts, but also vortexes triggered by the convex and con-
cave corners.

Prandtl (1926) was among the first to investigate tur-
bulent flow along a streamwise cornerered channel. In this
early study, it was observed that the secondary flows in the
cross-stream direction were influenced by the boundary geom-
etry, pressure gradients and turbulent stresses. As explained
by Bradshaw (1987), streamwise vorticity in a square duct
is produced by the anisotropy of turbulent stresses, known
as Prandtl’s secondary flow of the second kind, or perhaps
more informatively, turbulent-stress driven secondary flow

(TDSF). Turbulent flow through a single square duct has
been widely studied both experimentally and numerically.
Huser et al. (1993) conducted DNS of a fully-developed tur-
bulent flow in a square duct and investigated the budget bal-
ance of the Reynolds shear stresses to further examine the
mechanism underlying TDSFs. Their data supported the idea
that TDSFs were triggered by the anisotropy of Reynolds shear
stresses and the redistribution of TKE through the production
and velocity-pressure gradient terms of the Reynolds stress
transport equation. Xu and Pollard (2001) conducted LES to
study a concentric annular duct flow and further confirmed that
the origins of TDSFs along the convex corner related to the
Reynolds stress anisotropy. They observed that the secondary
flow structures in a concentric annular duct differed signifi-
cantly from those of a smooth square duct flow. Xu and Pol-
lard (2008) followed up their LES study using DNS with on
aim of characterizing the wall scaling laws of the resolved ve-
locity field near concave and convex corners. Recently, Wang
et al. (2019) conducted DNS of a concentric annular square
duct flow at a bulk Reynolds number of Reb = 6400 (based on
half the hydraulic diameter) and compared their results with
those of the earlier DNS results of Xu and Pollard (2008).
They showed that the secondary flow structures featured addi-
tional vortex pairs developing around the four convex corners
of the inner duct in contrast to the flow going through a single
smooth duct.

Not withstanding the previous contributions reviewed
above, the number of high-fidelity DNS and LES studies of
turbulent flow in concentric annular square ducts is rather lim-
ited in the literature and the physical mechanisms underlying
the TDSFs and their impacts on turbulence statistics and co-
herent structures are still not well understood. In view of this
knowledge gap, the current study aims to conduct a compre-
hensive DNS study of concentric annular duct flows using a
spectra-element code. The influence of the convex and con-
cave duct geometry on the turbulence is thoroughly examined.
Furthermore, three Reynolds numbers are compared to deter-
mine the dynamics of the turbulence field and structures under
different mean axial pressure gradients.

TEST CASE AND NUMERICAL ALGORITHM
Figure 1(a) illustrates the computational domain and coor-

dinate system of a concentric annular duct flow. Here, x, y and
z represent the spanwise, vertical and streamwise coordinates
and the corresponding velocity components are u, v, and w, re-
spectively. The outer square duct has dimension D = 2δ where
δ is the half width of the outer duct. The length of the domain
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Figure 1: Computational domain and coordinate system of a
concentric annular duct. The duct cross-section shows the two
data extraction lines of the wall bisector (WBS) and corner
bisector (CBS). The relative coordinates (x′ and dn) along the
WBS and CBS have been non-dimensionalized by h.

is Lz = 20πδ and the ratio of the inner to outer duct width is
fixed at d/D= 1/3. Figure 1(b) displays the two data extraction
lines used in the analysis, i.e, the wall bisector (WBS) and cor-
ner bisector (CBS). The coordinates (i.e., x′ and dn) along the
WBS and CBS have been non-dimensionalized by the annu-
lar gap (h) between the inner and outer ducts. Three different
Reynolds numbers of Reb =DhWb/2ν = 3500, 7000 and 10500
are tested, where Dh, Wb, and ν denote the hydraulic diame-
ter, bulk mean velocity, and kinematic viscosity of the fluid,
respectively. It can be shown that the hydraulic diameter is
Dh = 2h = 2D/3. The continuity and momentum equations that
govern the incompressible flow read

∂ui

∂xi
= 0 , (1)

∂ui

∂ t
+u j

∂ui

∂x j
= −δi3

Π

ρ
− 1

ρ

∂ p
∂xi
+ν

∂
2ui

∂x2
j

, (2)

where ui, ρ , and p represent the velocity, density and pressure
of the fluid, respectively. Following the convention of tensor
notation, coordinates (x,y,z) and velocities (u,v,w) are also
denoted as (x1 ,x2 ,x3) and (u1 ,u2 ,u3), respectively. The flow
is driven by a constant mean pressure gradient Π, and δi3 is the
Kronecker delta. The flow is fully developed, with a periodic
boundary condition applied to the streamwise direction, and a
no-slip condition enforced on all solid walls.

The DNS was performed using a spectral-element code
called “Semtex” developed by Blackburn and Sherwin (2019),
which has a spectral accuracy and is highly suitable for con-
ducting rigorous DNS. The code is written in the C/C++ and
FORTRAN coding languages and is made parallel using mes-
sage passing interface (MPI) standard. The x-y plane of the
mesh was constructed out of four identical isosceles trape-
zoids, each containing 99 quadrilateral finite elements. An
8th-order Guass-Labatto-Legendre Lagrange polynomial was
used for further spatial discretization within each finite ele-
ment, and 2048 Fourier modes were applied to the homoge-
neous z-direction. The grid spacing in the x- and y-directions
ranges from ∆x+ = 1 to 5, and the spacing in the z-direction is

Table 1: Geometry and flow parameters of the test cases.

Test case D/d Reτ Reb ⟨w⟩+max f

C1 3 240 3532 17.95 0.037

C2 3 430 6991 19.05 0.031

C3 3 600 10489 20.37 0.026

XP 2 200 3058 18.69 0.034

uniform ranging from ∆z+ = 11 to 25.
For each simulated case, at least 600 instantaneous flow

fields were collected over at least 45 large-eddy turnover times
(LETOTs, defined as h/uτ ). In the analysis, the instantaneous
velocity is decomposed as u = ⟨u⟩+u′, where ⟨⋅⟩ represents av-
eraging over time and over the homogeneous z-direction, and
(⋅)′ represents fluctuations from the mean. In result analysis,
variables expressed in wall coordinates (denoted using super-
script ‘+’) were calculated based on the average wall friction
velocity defined as ua

τ =
√

τa
w/ρ , where the surface-averaged

wall shear stress is determined as (Bagheri et al., 2020)

τ
a
w =

Aiτ
a
wi+Aoτ

a
wo

Ai+Ao
. (3)

In the above equation, Ai = 4dLz and Ao = 4DLz are the
surface areas of the inner and outer ducts, respectively. The
average wall shear stresses at the inner and outer duct walls are
defined as τ

a
wi = ∫P τwidl/P and τ

a
wo = ∫P τwodl/P, respectively,

where P = 4d or 4D is the perimeter of the inner and outer
duct. Also, τwi = ρν∂ ⟨w⟩/∂n and τwo = −ρν∂ ⟨w⟩/∂n are the
local streamwise-averaged wall shear stresses at the inner and
outer duct walls, respectively, where n denotes the wall-normal
coordinate (either x or y). All simulations and data storage are
executed on the Grex supercomputer located at the University
of Manitoba.

RESULTS AND DISCUSSION
Table 1 summarizes the key flow parameters of the three

test cases along with those of the DNS study of Xu and Pol-
lard (2008), denoted here as ‘XP’ and cited for the purpose of
comparison. Here, Reτ = hua

τ/ν is the friction Reynolds num-
ber, ⟨w⟩+max is the maximum mean streamwise velocity and
f = 8(ua

τ/Wb)2 is the friction factor. From Table 1, it can be
seen that the friction factor decreases from f = 0.037 to 0.026
for case C1 to C3. The result of case C1 is comparable to
that of XP at a similar Reynolds number. It is interesting to
note that ⟨w⟩+max is located between the inner and outer walls
for the lower Reynolds number cases C1 and XP. In stark con-
trast, ⟨w⟩+max is located along the corner bisector for C2 and C3.
This indicates that as the Reynolds number increases, the sec-
ondary flows induced by the convex and concave corners act
to transfer momentum away from the WBS and to the CBS.
It is also worth noting that as the Reynolds number increases
from Reb = 7000 to 10500, the location of ⟨w⟩+max shifts along
the CBS towards the concave corner of the outer duct.

Figure 2 presents the contours of the mean streamwise
velocity ⟨w⟩ non-dimensionalized by the bulk velocity Wb for
cases C1, C2 and C3, superimposed with the streamlines in
the cross-stream direction. Due to the symmetry of the flow
domain, only the bottom left corner is displayed for each case.
As shown in Figure 2(a), there exists 2 counter-rotating vortex
pairs centered along the CBS in case C1. One of the pairs is
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(a) Case C1 (b) Case C2

(c) Case C3

Figure 2: Contours of the non-dimensional mean streamwise
velocity ⟨w⟩/Wb superimposed with streamlines in a cross-
stream plane. Due to the symmetry of the mean flow field,
only the bottom left corner of the concentric duct is displayed
for each case.

focused near the outer concave corner while the other is fo-
cused around the inner convex corner. This secondary flow
pattern was also observed by Xu and Pollard (2009). By con-
trast, as shown in Figures 2(b) and (c), it is interesting to
note that the vortex pair commonly associated with streamwise
turbulent flow along a concave corner vanishes at relatively
higher Reynolds numbers. By comparing Figures 2(a)-(c), it
is observed that the convex corner contributes increasingly to
the generation of secondary flow as the Reynolds number in-
creases. This suggests that as the flow rate increases, the sec-
ondary flows generated by the inner convex corner eventually
become strong enough to overpower the vortex pair generated
by the concave corner.

Figure 3 presents profiles for the mean streamwise veloc-
ity ⟨w⟩/Wb along the WBS and CBS. In the annular duct cases,
the profiles along the CBS span from the bottom left concave
outer corner to the bottom left convex inner corner. By con-
trast, in a single smooth square duct (SQD) flow case, the pro-
files along the diagonal line span from the bottom left concave
corner to the top right concave corner. From the profiles along
the WBS shown in Figure 3(a), it is evident that the gradient
at the inner wall (x ′ = 1.0) increases monotonically with Reb.
Turning our attention to Figure 3(b), it is shown clearly that
the peak value of ⟨w⟩/Wb shifts towards the concave corner as
the Reynolds number increases. Clearly, the velocity profile
approaches the convex corner differently than it approaches
the concave corner. Specifically, the profile of ⟨w⟩ expresses
a zero gradient at dn = 0 due to the damping in the concave
corner, while the mean velocity increases abruptly at dn = 1.0
due to the flow enhancement in the convex corner.

The profiles of the average wall shear stresses τ
+

wi and
τ
+

wo (non-dimensionalized by ua
τ and ρ) along the bottom in-

ner and outer walls are displayed in Figure 4. The profiles
along the outer wall in the region of the concave corner in-
crease more rapidly as the Reynolds number increases. Mov-
ing along the x-direction, the profiles of the average wall shear
stresses in the annular duct cases are comparable to that of the

(a) WBS (b) CBS

Figure 3: Profiles of the mean streamwise velocity ⟨w⟩/Wb
along the WBS and CBS.

Figure 4: Profiles of the wall shear stresses along the inner and
outer bottom walls (τ+wi and τ

+

wo, respectively).

smooth square duct, and only begin to diverge when the WBS
is reached (x/δ = 1.0). This is consistent with the profiles of
the mean velocity in Figure 3, which show decreased velocity
gradients at the WBS for all three annular duct cases. Unlike
the concave corner at x/δ = 0.0, the average wall shear stress
is non-zero at the convex corner of the inner duct and shows a
sharp change in range 0.67 ≤ x/δ ≤ 0.69. At the convex corner,
the wall shear stress is τ

+

wi = 2.186, 1.791 and 1.661 for cases
C1, C2, and C3, respectively.

Figure 5 presents horizontal profiles of the mean
viscous τvisc = ν (∂ ⟨w⟩/∂x+∂ ⟨w⟩/∂y), turbulent τturb =
−(⟨u′w′⟩+ ⟨v′w′⟩) and total τtot = τvisc + τturb shear stress
across the annular gap along the WBS and CBS. From Fig-
ures 5(a), it is seen that along the WBS, the profiles of cases
C2 and C3 closely resemble that of the SQD case. Meanwhile,
the profile of case C1 deviates slightly within a distance of
∆y/δ = 0.2 from both the outer and inner walls. Similar to
the profiles shown in Figure 4, the viscous shear stress near
the outer WBS and the convex corner reduces as the Reynolds
number increases. This trend is attributed the fact that as the
Reynolds number increases, the secondary flow strengthens
(as seen in Figure 2) which acts to transfer momentum away
from the outer WBS and inner CBS. In effect, this reduces the
velocity gradient at the outer WBS and the inner CBS, and thus
reduces the viscous shear stress at these locations. This line of
reasoning was also used by Prandtl (1926) to explain the mi-
gration of ⟨w⟩+max into the concave corner. Figures 5(c) and (d)
show the Reynolds stress profiles τ

+

turb along the WBS and
CBS, respectively. It can be seen that the region in which the
profiles are linear is limited for all annular duct cases in con-
trast to the SQD case. The total shear stress along the WBS
and CBS is presented in Figures 5(e) and (f), respectively.

The contours of the mean turbulence kinetic energy k+ =
⟨u′iu′i⟩/2(ua

τ)2 for cases C1, C2 and C3 are presented in Fig-
ures 6(a), (b) and (c), respectively. The contours reveal that the
TKE is significant near the inner and outer walls, with damp-
ened regions near the concave corners, and an enhanced ‘bulb’
around the convex corner in all three annular duct cases. As the
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(a) WBS (b) CBS

(c) WBS (d) CBS

(e) WBS (f) CBS

Figure 5: Profiles of the viscous, Reynolds and total shear
stress across the gap of the annulus along the WBS and CBS.

Reynolds number increases, this ‘bulb’ shrinks while values of
k+ enhance greatly close to the entire inner wall. Additionally,
the region of dampened TKE in the concave corner reduces
monotonically from cases C1 to C3. Qualitatively, the contour
patterns of k+ in the WBS region are similar to those of a plane
channel flow, while the values of k+ along the CBS are greatly
augmented.

Figures 7(a) and (b) further present the profiles of k+

along the WBS and CBS, respectively. From Figure 7(a), it
is seen that the minimum value of TKE is similar in all test
cases with k+ ≈ 0.8, occurring at x′ ≈ 0.5 in the SQD case,
but at x′ ≈ 0.65 in the three annular duct cases. Turning our
attention to the CBS presented in Figure 7(b), it is seen that
the profiles for the annular duct flows are very different from
those of the SQD case. From these profiles, it is seen that as
the Reynolds number increases, the TKE level enhances near
both the inner and outer corners. It is interesting to observe
that although the profiles of the TKE along the CBS change
significantly with Reynolds number, the location of the maxi-
mum value remains relatively stable near both the concave and
convex corners. Near the concave outer corner, the peak occurs
at a distance of ∆dn ≈ 0.1 from the wall. By contrast, the peak
near the convex inner corner occurs at a distance of ∆dn ≈ 0.04
from the wall.

The transport equation for the TKE is given by

0 =Hk +Pk +εk +Dt
k +Dp

k +Dv
k , (4)

where Hk, Pk, εk are the convection, production and dissipa-
tion terms, respectively. The TKE diffusion is broken up into
the turbulent, pressure and viscous components, denoted by

(a) Case C1 (b) Case C2

(c) Case C3

Figure 6: Contours of the non-dimensionalized TKE k+.

(a) WBS (b) CBS

Figure 7: Profiles of the non-dimensionalized TKE k+ across
the gap of the annulus along the WBS and CBS.

Dt
k, Dp

k and Dv
k, respectively. The budget balance of the TKE

transport equation across the annular gap along the WBS and
CBS are presented in Figure 8. For all four test cases, the pro-
files are qualitatively similar in the sense that the production
(Pk) and dissipation (εk) act as the main source and sink terms,
respectively. Additionally, along the WBS of all four of the
test cases, the dissipation (εk) and viscous diffusion (Dv

k) are
the main source and sink terms at the inner and outer walls.
A comparison of Figures 8(c), (e) and (g) shows that as the
Reynolds number increases, the magnitude of the production
peak increases monotonically. Along the CBS, the profiles be-
have similar to those along the WBS in the core region, but
differ in the near-wall regions. For all four test cases, all the
budget terms fall to zero as the concave corner is approached.
Near the convex corner, the convection (Hk) is greatly en-
hanced compared to other locations, and is seen to increase
in strength as the Reynolds number increases from case C1 to
C3. At the convex corner, the dissipation and viscous diffu-
sion terms increase dramatically compared to the inner WBS
region.

Figure 9 displays the isopleths of the 1-D pre-multiplied
energy spectra k+z φ

+

k of all four test cases. Here, k+z denotes
the streamwise wave number and λ

+

z = 2π/k+z represents the
streamwise wavelength non-dimensionalized by ua

τ and δ . The
yellow star symbol ‘*’ indicates the peak location of the pre-
multiplied spectrum, i.e. (k+z φ

+

k )max. Figures 9(a), (c), (e)
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(a) WBS of case SQD (b) CBS of case SQD

(c) WBS of case C1 (d) CBS of case C1

(e) WBS of case C1 (f) CBS of case C2

(g) WBS of case C3 (h) CBS of case C3

Figure 8: Profiles of the budget balance terms of the TKE
transport equation along the WBS and the CBS for all four
test cases.

and (g) present the isopleths along the WBS in the x/δ −λ
+

z
plane, while Figures 9(b), (d), (f) and (h) present the iso-
pleths along the CBS in the dn −λ

+

z plane. In Figure 9, the
three isopleth levels are defined by 62.5%, 25% and 12.5%
of (k+z φ

+

k )max. The energy for the SQD case peaks at a dis-
tance of ∆y+ ≈ 13.5 along the WBS. In all annular duct flow
cases, there are two energy peaks, one near the inner duct and
one near the outer duct. The energy peak is always greatest
near the inner duct compared to the outer duct. The loca-
tion of (k+z φ

+

k )max near the inner WBS is x/δ = 0.622, 0.647,
0.653 for cases C1, C2 and C3, respectively. For the outer
WBS, the location of (k+z φ

+

k )max occurs at x/δ = 0.039, 0.023,
0.021 for cases C1, C2 and C3, respectively. Clearly, as the
Reynolds number increases, the inner and outer energy peaks
along the WBS migrate towards their respective walls. This is
in agreement with the TKE profiles along the WBS presented
in Figure 7(a) earlier where the peak values of TKE shifted
towards the walls as the flow rate increases. The plots show

(a) WBS of case SQD (b) CBS of case SQD

(c) WBS of case C1 (d) CBS of case C1

(e) WBS of case C2 (f) CBS of case C2

(g) WBS of case C3 (h) CBS of case C3

Figure 9: Isopleths of the 1-D pre-multiplied energy spectra
k+z φ

+

k along the WBS and CBS with respect to the stream-
wise wavelength λ

+

3 . Three energy levels are plotted which
correspond to 62.5%, 25% and 12.5% of (k+z φ

+

k )max. The
yellow star symbol ‘*’ denotes the location of the peak value
(k+z φ

+

k )max.

that the wavelength associated with (k+z φ
+

k )max near the in-
ner WBS decreases from λ

+

z = 1000 to 600 as the Reynolds
number increases from Reb = 3532 to 10489. Meanwhile, the
wavelength for max(k+z φ

+

k ) at the outer WBS increases from
λ
+

z ≈ 800 to 1000 as the Reynolds number increases. Along
the CBS, it is observed that the location of (k+z φ

+

k )max away
from the walls remains unchanged from case C1 to C3. Again,
this is in agreement with the TKE profiles along the CBS pre-
sented in Figure 7(b) that the peak values of TKE were shown
to be independent of the Reynolds number. From Figure 9, it
is observed that the wavelengths corresponding to (k+z φ

+

k )max
near the inner CBS decreases from λ

+

z ≈ 400 to 300. Mean-
while, the wavelength for (k+z φ

+

k )max at the outer CBS de-
creases from λ

+

z ≈ 600 to 300. From Figure 9, it is observed
that as the Reynolds number increases, the range of relevant
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(a) Case C1

(b) Case C2

(c) Case C3
Figure 10: Vortex structures for each of the annular duct flows
visualized using swirling strength λci colored with the instan-
taneous non-dimensionalized streamwise velocity w/Wb. The
swirling strength for all of the cases was set to λci = 5.

wavelengths expands to include smaller length scales in both
WBS and CBS planes. Notably, a small amount of energy
(12.5% and 25% of the peak value) is not contained in the
plot of Figures 9(e) and (f). This suggests that at the highest
Reynolds number tested (Reb = 10500) in case C3, the small-
est energetically relevant length scales along WBS and CBS
planes are not fully captured. The grid resolution will need to
be increased to capture the smallest scale velocity fluctuations
at this high Reynolds number.

Figures 10(a), (b) and (c) compare the vortex structures of
cases C1, C2 and C3, respectively, in the lower left quarter of
the domain. For clarity, only a partial streamwise domain of
0 ≤ z/δ ≤ 4 is displayed for each case. The coherent structures
are visualized using the instantaneous swirling strength (λci)
non-dimensionalized using Wb and δ , further colored by the
instantaneous non-dimensional velocity w/Wb. To allow for a
meaningful comparison, the structures are visualized by set-
ting λciδ/Wb = 5 for all three annular duct cases. It is seen that
the structures for all test cases are clustered near the inner and
outer walls of the annular square duct. Additionally, it is ob-

served that the structures are more heavily concentrated near
the convex corners. It is clear that as the Reynolds number
increases, the density of the flow structures becomes greatly
increased.

CONCLUSION
Direct numerical simulations of fully-developed turbulent

flow through a concentric annular square duct have been per-
formed to investigate the Reynolds number effects on the sta-
tistical moments of the velocity field and vortex structures. In
order to identify the Reynolds number effects, three Reynolds
numbers of Reb = 3500, 7000 and 10500 were compared. Ad-
ditionally, a square duct flow of Reb = 3500 was performed as
a baseline case for comparison.

The friction factor f in the annular duct is seen to decrease
monotonically as the Reynolds number increases. Due to the
presence of the four additional convex corners, the secondary
flows of a concentric annular duct flow are considerably more
complex than those of a smooth duct flow. It is observed that
the peak position of the mean streamwise velocity moves from
the region of the wall bisector to the region of the corner bi-
sector as the Reynolds number increases. The secondary flows
are strengthened at higher Reynolds numbers and act to trans-
fer momentum from the wall bisector towards the concave cor-
ner. Furthermore, at higher Reynolds numbers, the vortex pair
near the concave corner disappeared. The location of the peak
TKE value along the CBS was shown to be independent of
Reynolds number. The plots of the 1-D pre-multiplied en-
ergy spectra k+z φ

+

k concluded that as the Reynolds number in-
creases, the characteristic length of the coherent structures in-
creases along the outer WBS, but decreases along the inner
WBS and the concave and convex corners. A visualization of
turbulence structures using the swirling strength λci showed
the coherent structures congregate near the duct walls and cor-
ners, which become increasingly populated with vortexes as
Reynolds number increases.
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