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ABSTRACT 

Tensor Basis Neural Networks (TBNNs) have become a 

popular machine learning model choice for improving 

Reynolds stress and subsequent mean flow field predictions in 

Reynolds-averaged Navier Stokes (RANS) approaches. 

However, there is still limited understanding of the target 

values when using TBNNs (i.e., the most accurate TBNN 

prediction values possible), especially when a constraint to 

ensure non-negative eddy viscosity is enforced. This work 

shows that anisotropy reconstructed with the target values may 

not ensure realizability for all components in regions of two-

dimensional flows where the constraint is applied. Hence, this 

indicates that the best possible TBNN prediction of anisotropy 

may be unable to give realizable values for all components. 

We show that two sets of target values can satisfy 100% 

accuracy and realizability in all anisotropy components if 

predicted by TBNNs. Therefore, it is suggested that two 

TBNNs may be trained – each on a set of target values to give 

predictions with the possibility of achieving 100% accuracy 

and satisfying realizability. 

 

 

INTRODUCTION 

Different computational fluid dynamics (CFD) 

approaches for simulating turbulent flows have been 

developed to capture various scales of turbulence, such as 

direct numerical simulation (DNS) and large eddy simulation 

(LES). However, these methods are still computationally 

infeasible for most industrial CFD practitioners. Reynolds-

averaged Navier-Stokes (RANS) approaches are therefore still 

commonly used to model turbulent flows, even though they 

are known to predict certain flows inaccurately, including 

separated flows (Duraisamy et al., 2017). 

To address the shortcomings in RANS, there has been 

growing interest in using machine learning (ML) to augment 

RANS models (Duraisamy et al., 2019). A particular type of 

model that has gained popularity is the tensor basis neural 

network (TBNN) proposed by Ling et al. (2016). The TBNN 

models Reynolds stress anisotropy using mean strain rate, 

mean rotation rate, and their higher order tensor products as 

inputs. As a result, TBNNs have been shown to model 

Reynolds stress and mean flow fields more accurately than 

typical RANS turbulence models, which usually model 

anisotropy as only a function of mean strain rate (Ling et al., 

2016). Many modifications to the TBNN have been proposed 

in the literature, including ensemble TBNNs (Man et al., 

2022), modular TBNNs (Man et al., 2023), the tensor basis 

random forest by Kaandorp and Dwight (2020), and the use of 

recurrent neural networks by Jiang et al. (2021). 

Anisotropy predicted by a TBNN may be substituted back 

into the RANS equations in a process known as a posteriori. 

To mitigate ill-conditioning in the RANS equations, Wu et al. 

(2019) showed that the linear term in anisotropy should be 

treated implicitly to give effective viscosity, while the rest of 

the prediction should be treated as an explicit source term. To 

ensure a non-negative eddy viscosity, a constraint must be 

placed on the linear term of anisotropy. 

This work shows that values of anisotropy that have been 

constrained may not be realizable. Anisotropy that is 

unrealizable may introduce normal Reynolds stresses that are 

negative or shear Reynolds stresses that violate Schwartz 

inequality in the a posteriori process (Durbin and Pettersson-

Reif, 2011). Hence, the effect of Reynolds stress becomes a 

sink in the momentum equations, which results in unphysical 

behaviour in the flow (Pope, 2000; Durbin and Petterson-Reif, 

2011). To prevent this, we show that two separate sets of 

predictions are required by TBNNs to satisfy accuracy and 

realizability of all anisotropy components in two-dimensional 

flow. 

 
 
TENSOR BASIS NEURAL NETWORK 

Tensor basis neural networks (TBNNs) are based on the 

general effective-viscosity hypothesis (GEVH), which shows 

that Reynolds stress 𝜏𝑖𝑗  can be expressed with a finite sum of 

basis tensors containing mean strain rate and mean rotation 

rate (Pope, 1975; Ling et al., 2016). The GEVH contains four 

terms in two-dimensional (2D) flows: 

 

 
𝜏𝑖𝑗 = 𝑢𝑖

′𝑢𝑗
′ = 2𝑘 (𝑏𝑖𝑗 +

1

3
𝛿𝑖𝑗) (1) 

 

where 𝑘 and 𝛿𝑖𝑗 represent turbulent kinetic energy (TKE) 

and Kronecker delta, respectively. The anisotropy tensor, 𝑏𝑖𝑗 

contains three of the terms: 

 

 𝑏𝑖𝑗 = 𝑔1𝑺 + 𝑔2(𝑺𝑹 − 𝑹𝑺)

+ 𝑔3 (𝑺2 −
1

3
𝑡𝑟(𝑺2)𝛿𝑖𝑗) 

(2) 

 

where 𝑺 (= 𝑘𝑆 𝜀⁄ )  and 𝑹 (= 𝑘𝑅 𝜀⁄ )  are the non-

dimensionalized form of mean strain and mean rotation rate 
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tensor, respectively, and 𝜀 denotes the TKE dissipation rate. 

𝑔𝑛  {𝑛 = 1,2,3} are scalar coefficients that must be determined 

to relate anisotropy 𝑏𝑖𝑗 on the left-hand side with the tensor 

products of 𝑺 and 𝑹 on the right-hand side of Eq. (2). As this 

work focuses on the 2D GEVH, scalar coefficients 𝑔𝑛  {𝑛 =
1,2,3} will simply be referred to as 𝑔𝑛 hereafter. 

A TBNN can be trained to predict the 𝑔𝑛 coefficients in a 

point-wise manner for any flow case. The invariants of 𝑺 and 

𝑹  are used as inputs for predicting 𝑔𝑛 , which are then 

multiplied with the 𝑺 and 𝑹 tensor products denoted 𝑻𝑛  and 

summed in accordance with Eq. (2) to obtain an anisotropy 

𝑏𝑖𝑗  prediction. These operations are shown schematically in 

Fig. 1. Training flow cases must have been simulated using 

RANS and run experimentally or computationally in a scale-

resolved manner, as the 𝑺  and 𝑹  used in calculating the 

invariants and tensor products should be from RANS 

simulations, while target 𝑏𝑖𝑗  values deemed accurate are 

required to evaluate the 𝑏𝑖𝑗  prediction from the TBNN. 

Backpropagation is then undertaken to update the TBNN 

weights and biases. Thus, the aim of training a TBNN is to 

develop a model that takes the invariants of 𝑺 and 𝑹 as inputs 

to predict 𝑔𝑛 coefficients that when combined with the tensor 

products of 𝑺 and 𝑹 in accordance with Eq. (2), can give 𝑏𝑖𝑗 

predictions on the same order of accuracy as those obtained 

from experiments or scale-resolved methods. 

 

 
Figure 1 Two-dimensional tensor basis neural network 

 

 

 

TARGET COEFFICIENTS 

To evaluate TBNN prediction accuracy, anisotropy 𝑏𝑖𝑗 

predicted by a TBNN can be readily compared with target 𝑏𝑖𝑗 

from experiments or scale-resolved methods. However, it is 

useful to examine the target 𝑔𝑛 that can give the target 𝑏𝑖𝑗 in 

Eq. (2), as the mapping that a TBNN learns is the input 

invariants of 𝑺 and 𝑹 ↦ target 𝑔𝑛 . Moreover, the predicted 

anisotropy 𝑏𝑖𝑗  may be substituted back into the RANS 

governing equations to obtain improved mean flow field 

predictions in a process known as a posteriori. Wu et al. 

(2019) showed that to improve conditioning of the RANS 

equations during this process, the linear term in predicted 𝑏𝑖𝑗 

should be treated implicitly to give an effective viscosity, 

while the other terms should be combined and treated as an 

explicit source term. 

To ensure a non-negative eddy viscosity, 𝑔1  must be 

predicted ≤ 0 by the TBNN, and therefore target 𝑔1  values 

for the purpose of TBNN training should be ≤ 0. However, it 

is found that target 𝑔1 ≤ 0 does not occur everywhere in some 

flow cases. Whilst the target 𝑔1 values may be constrained so 

that they become ≤ 0, this has implications on the other target 

𝑔𝑛  coefficients, which can change the upper predictive 

performance limit (i.e., most accurate possible prediction) of 

the TBNN. Moreover, 𝑏𝑖𝑗  given by the new upper 

performance limit may fall outside of the realizability bounds. 

This work aims to be the first investigation in the literature on 

these issues. 

 For any 2D flow case without the constraint of target 

𝑔1 ≤ 0, Eq. (2) can be solved simultaneously to give the target 

𝑔𝑛 coefficients. Eq. (2) in its component form is as follows: 

 

 
𝑏11 = 𝑔1𝑆11 − 2𝑔2𝑆12𝑅12 +

1

3
𝑔3(𝑆11

2 + 𝑆12
2 ) 

𝑏22 = −𝑔1𝑆11 + 2𝑔2𝑆12𝑅12 +
1

3
𝑔3(𝑆11

2 + 𝑆12
2 ) 

𝑏33 = −
2

3
𝑔3(𝑆11

2 + 𝑆12
2 ) 

𝑏12 = 𝑔1𝑆12 + 2𝑔2𝑆11𝑅12 

(3a) 

(3b) 

(3c) 

(3d) 

 

where 𝑆𝑖𝑗  and 𝑅𝑖𝑗  are the components of 𝑺  and 𝑹 , 

respectively in the i and j directions. Subscript 1, 2, and 3 on 

the 𝑏𝑖𝑗 , 𝑺  and 𝑹  components represent the streamwise, 

perpendicular, and spanwise directions, respectively. 

Components 𝑏13 and 𝑏23 reduce to zero. Solving Eq. (3a-d) 

simultaneously for 𝑔𝑛  gives the following expressions 

(Jongen and Gatski, 1998; Man et al., 2023): 

 

 
𝑔1 = (

𝑆11

2(𝑆11
2 + 𝑆12

2 )
) (𝑏11 − 𝑏22) + (

𝑆12

𝑆11
2 + 𝑆12

2 ) 𝑏12 

𝑔2 =
2𝑆11𝑏12 + 𝑆12(𝑏22 − 𝑏11)

4𝑅12(𝑆11
2 + 𝑆12

2 )
 

𝑔3 =
3(𝑏11 + 𝑏22)

2(𝑆11
2 + 𝑆12

2 )
 

(4a) 

(4b) 

(4c) 

 

Eq. (4a-c) gives the target 𝑔𝑛  coefficients if 𝑆  and 𝑅 

components from RANS, and target 𝑏𝑖𝑗 from experiments or 

scale-resolved simulations are used on the right-hand side. 

These are the target 𝑔𝑛 values for the TBNN to predict which 

lead to the target 𝑏𝑖𝑗 values being calculated and thus giving 

100% 𝑏𝑖𝑗 prediction accuracy. 

Now we examine the target 𝑔𝑛  coefficients when the 

following constraint is enforced to ensure target 𝑔1 ≤ 0: 

 

 target 𝑔1𝑐 = min(0, target 𝑔1) (5) 

 

where the inclusion of subscript ‘c’ denotes the constrained 

version of the target coefficient. Similar to how target 𝑔𝑛 were 

determined, it is reasonable to suggest that target 𝑔2𝑐  and 𝑔3𝑐  

may be found by substituting target 𝑔1𝑐  into Eq. (3) and 

solving them simultaneously. However, it is found that one set 

of target 𝑔𝑛𝑐  coefficients cannot satisfy all four equations in 

Eq. (3a-d). At locations in the flow domain where target 𝑔1 >
0, Eq. (5) causes the first terms in Eq. (3a), (3b) and (3d) to 

be omitted. Then by choosing two equations in Eq. (3) to solve 

for target 𝑔2𝑐  and 𝑔3𝑐 , it is found that target 𝑏𝑖𝑗 can only be 

reconstructed with 100% accuracy in two to three 

components. Different 𝑏𝑖𝑗  components are satisfied 

depending on the equations in Eq. (3) chosen to solve for 

target 𝑔2𝑐  and 𝑔3𝑐 . As this process determines the target 𝑔𝑛𝑐  

values that would give 100% accuracy for certain 𝑏𝑖𝑗 

components if predicted by a TBNN, only two to three 𝑏𝑖𝑗 

components can ever be predicted with 100% accuracy by a 
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TBNN with the constraint and one set of 𝑔𝑛 coefficients. The 

𝑏𝑖𝑗 components that are satisfied resulting from the choice of 

equations in Eq. (3) used to solve for target 𝑔2𝑐  and 𝑔3𝑐  are 

summarized in Table 1, where the 𝑏11 , 𝑏22 , 𝑏33 , and 𝑏12 

equations represent Eq. (3a-d), respectively. 

 

Table 1. 𝑏𝑖𝑗 equations that can be satisfied given those 

used to solve for target 𝑔2𝑐  and target 𝑔3𝑐  in Eq. (3) 

 

Equation for 

solving 𝑔2𝑐  

Equation for solving 𝑔3𝑐  

𝑏11 (Eq. 3a) 𝑏22 (Eq. 3b) 𝑏33 (Eq. 3c) 

𝑏11 (Eq. 3a) - 𝑏11, 𝑏22, 𝑏33 𝑏11, 𝑏22, 𝑏33 

𝑏22 (Eq. 3b) 𝑏11, 𝑏22, 𝑏33 - 𝑏11, 𝑏22, 𝑏33 

𝑏12 (Eq. 3d) 𝑏11, 𝑏12 𝑏22, 𝑏12 𝑏33, 𝑏12 

 

 

REALIZABILITY 

As the target 𝑔𝑛𝑐  coefficients cannot satisfy all 𝑏𝑖𝑗 

components in Eq. (3) where target 𝑔1𝑐  is given by Eq. (5), 

the 𝑏𝑖𝑗 values that are reconstructed with target 𝑔𝑛𝑐  may fall 

outside of the realizability ranges: 

 

 − 1 3⁄ ≤ 𝑏𝜇𝜇 ≤ 2 3⁄  

− 1 2⁄ ≤ 𝑏𝜇𝜈 ≤ 1 2⁄  
(6) 

 

where 𝜇 ≠ 𝜈  and 𝜇, 𝜈 = {1,2,3} (Durbin and Pettersson-

Reif, 2011). Unrealizable values of predicted 𝑏𝑖𝑗  substituted 

back into the RANS equations in the a posteriori process are 

undesirable as they can lead to unphysical flow predictions 

(Pope, 2000; Durbin and Pettersson-Reif, 2011). To ensure 

that the values of all target 𝑏𝑖𝑗  components (which are 

realizable) can be predicted by a TBNN, Table 1 shows that 

two sets of 𝑔𝑛𝑐  coefficients can be predicted to satisfy all 𝑏𝑖𝑗 

components collectively. For example, the set of coefficients 

obtained by solving for target 𝑔2𝑐  using Eq. (3d) and target 

𝑔3𝑐  using Eq. (3a) may satisfy target 𝑏11  and 𝑏12  , while a 

second set of coefficients obtained by solving for target 𝑔2𝑐  

using Eq. (3b) and target 𝑔3𝑐  using Eq. (3a) may satisfy target 

𝑏22  and 𝑏33 . This idea is demonstrated in the following 

section using an example flow case. 

 

 

RESULTS 

To show that only some target 𝑏𝑖𝑗  components can be 

reconstructed with 100% accuracy if only one set of target 𝑔𝑛𝑐  

coefficients is predicted by TBNNs, target 𝑔𝑛𝑐  were 

calculated for a flow over periodic hills case at every cell 

centre. The Reynolds number is 5600 based on a bulk inlet 

velocity of 0.028 m/s and hill crest height 𝐻ℎ  of 1m 

(McConkey et al., 2021). Firstly, target 𝑔1  was calculated 

using Eq. (4a) and constrained with Eq. (5) to give target 𝑔1𝑐 . 

Then, target 𝑔2𝑐  and 𝑔3𝑐  values were calculated by 

rearranging Eq. (3d) and Eq. (3a), respectively, and the 

resulting anisotropy 𝑏𝑖𝑗  components were reconstructed by 

substituting these target 𝑔𝑛𝑐  values into Eq. (3). This set of 

target 𝑔𝑛𝑐  values will be referred to as ‘set 1’, and the resulting 

𝑏𝑖𝑗 fields are shown in subfigures (a) in Figs. 2-5. The same 

process was repeated by using target 𝑔2𝑐  and 𝑔3𝑐  calculated 

by rearranging Eq. (3a) and Eq. (3b), respectively. This set of 

target 𝑔𝑛𝑐  values will be referred to as ‘set 2’, and the resulting 

𝑏𝑖𝑗 fields are shown in subfigures (b) in Figs. 2-5. 

A comparison of the reconstructed 𝑏𝑖𝑗  fields from set 1 

and the target 𝑏𝑖𝑗 fields from DNS in Figs. 2-5 shows that the 

reconstructed 𝑏11 and 𝑏12 fields have no error in comparison 

to their respective target counterparts. This is because the 𝑏12 

and 𝑏11  equations were used to solve for 𝑔2  and 𝑔3 , so the 

values of these coefficients will have satisfied those equations. 

However, differences between reconstructed and target 𝑏22 

and 𝑏33 which are circled in Figs. 3 and 4 can be observed in 

some regions of the flow field. These coincide with where 

target 𝑔1 has been constrained to equal zero. Hence, while the 

target 𝑔𝑛𝑐  values satisfy Eq. (3a) and Eq. (3d), they do not 

satisfy Eq. (3b) and Eq. (3c). The rest of the domain does not 

contain constrained coefficients, allowing all reconstructed 

𝑏𝑖𝑗 components to be equal to the target 𝑏𝑖𝑗. 

The reconstructed 𝑏𝑖𝑗  fields from set 2 only shows 

discrepancy compared to the target 𝑏𝑖𝑗  fields in component 

𝑏12. This is because even though only the 𝑏11 equation (Eq. 

3a) and 𝑏22 equation (Eq. 3b) were used to calculate set 2, 

setting target 𝑔1  to zero in the constrained locations still 

conserves 𝑏11 + 𝑏22 + 𝑏33 = 0  as shown in Eq. (3a-c). 

Hence, 𝑏33  is also perfectly reconstructed with set 2. 

Therefore, Figs. 2-5 show that with target 𝑔1𝑐 , two sets of 

target 𝑔𝑛𝑐  coefficients may be found that can collectively 

reconstruct all four target anisotropy components correctly. 

The colorbar limits in Figs. 2-5 have been chosen such that 

regions with reconstructed 𝑏𝑖𝑗  values outside of the 

realizability limits given in Eq. (6) are shown in white. This 

indicator in Figs. 3-5 shows that the blue circled regions where 

reconstructed 𝑏𝑖𝑗 (using target 𝑔𝑛𝑐) is not equal to target 𝑏𝑖𝑗 

may give unrealizable values. Hence, training TBNNs with 

one set of target 𝑔𝑛𝑐  values may not only lead to the TBNN 

predicting inaccurate 𝑏𝑖𝑗 values, but also unrealizable values 

in some components. With two sets of target 𝑔𝑛𝑐  values, two 

TBNNs can be trained in parallel, where the first aims to 

predict the first set and the second aims to predict the second 

set. Then predicted 𝑏𝑖𝑗 component values may be chosen from 

the TBNN that is trained on target 𝑔𝑛𝑐  values that can 

perfectly reconstruct the target 𝑏𝑖𝑗 component. For example, 

if the first set of target 𝑔𝑛𝑐  values can reconstruct target 𝑏12 

with 100% accuracy such as the example given in Fig. 5, then 

the 𝑏12 predictions should be taken from the TBNN trained on 

this set. As the second set of target 𝑔𝑛𝑐  values lead to 

reconstructed target 𝑏22  and 𝑏33  with 100% accuracy, 

predicted 𝑏22 and 𝑏33 should be taken from the second TBNN 

that is trained on the second set. This ensures that all 𝑏𝑖𝑗 

components have the possibility of being predicted perfectly 

(and thus respecting realizability) across the two TBNNs, 

while the TBNNs are trained to predict 𝑔1 ≤ 0 due to all target 

𝑔1𝑐  values being ≤ 0. 
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𝑥
2

/𝐻
ℎ
 

  

 𝑥1/𝐻ℎ 𝑥1/𝐻ℎ 

 (a) Reconstructed 𝑏11 calculated with the first set of 𝑔𝑛𝑐  

coefficients 

(b) Reconstructed 𝑏11 calculated with the second set of 𝑔𝑛𝑐  

coefficients 

 

𝑥
2

/𝐻
ℎ
 

 
 𝑥1/𝐻ℎ 

 (c) Target 𝑏11 

 Figure 2 Contour plots of reconstructed 𝑏11 and target 𝑏11 for the periodic hills case. 

𝑥
2

/𝐻
ℎ
 

  
 𝑥1/𝐻ℎ 𝑥1/𝐻ℎ 

 (d) Reconstructed 𝑏22 calculated with the first set of 𝑔𝑛𝑐  

coefficients 

(e) Reconstructed 𝑏22 calculated with the second set of 𝑔𝑛𝑐  

coefficients 

 

𝑥
2

/𝐻
ℎ
 

 
 𝑥1/𝐻ℎ 

 (f) Target 𝑏22 

 Figure 3 Contour plots of reconstructed 𝑏22 and target 𝑏22 for the periodic hills case. Regions of reconstructed 𝑏22 that 

are different to target 𝑏22 are circled in blue, while regions in these circles that are beyond the bounds of realizability are 

shown in white. 



13th International Symposium on Turbulence and Shear Flow Phenomena (TSFP13) 

Montreal, Canada, June 25-28, 2024 

 

5 

 

𝑥
2

/𝐻
ℎ
 

  
 𝑥1/𝐻ℎ 𝑥1/𝐻ℎ 

 (g) Reconstructed 𝑏33 calculated with the first set of 𝑔𝑛𝑐  

coefficients 

(h) Reconstructed 𝑏33 calculated with the second set of 𝑔𝑛𝑐  

coefficients 

 

𝑥
2

/𝐻
ℎ
 

 
 𝑥1/𝐻ℎ 

 (i) Target 𝑏33 

 Figure 4 Contour plots of reconstructed 𝑏33 and target 𝑏33 for the periodic hills case. Regions of reconstructed 𝑏33 that 

are different to target 𝑏33 are circled in blue, while regions in these circles that are beyond the bounds of realizability are 

shown in white. 

𝑥
2

/𝐻
ℎ
 

  
 𝑥1/𝐻ℎ 𝑥1/𝐻ℎ 

 (j) Reconstructed 𝑏12 calculated with the first set of 𝑔𝑛𝑐  

coefficients 

(k) Reconstructed 𝑏12 calculated with the second set of 𝑔𝑛𝑐  

coefficients 

 

𝑥
2

/𝐻
ℎ
 

 
 𝑥1/𝐻ℎ 

 (l) Target 𝑏12 

Figure 5 Contour plots of reconstructed 𝑏12 and target 𝑏12 for the periodic hills case. Regions of reconstructed 𝑏12 that are 

different to target 𝑏12 are circled in blue, while regions in these circles that are beyond the bounds of realizability are shown 

in white. 
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CONCLUSION 

To improve conditioning of the Reynolds-averaged 

Navier Stokes equations, it is recognized in the literature that 

the linear term in tensor-basis neural network (TBNN) 

anisotropy predictions should be treated implicitly. Therefore, 

the first coefficient 𝑔1 that TBNNs predict should be less than 

zero, and the target 𝑔1 coefficient should also be less than zero 

for the purpose of model training. This work has shown that 

when target 𝑔1 is constrained to be less than zero, it is only 

possible for the TBNN to predict two to three components of 

anisotropy with 100% accuracy and guarantee realizability in 

those components for two-dimensional flows. Therefore, 

when this constraint is enforced, it is suggested that two 

TBNNs may be deployed with the possibility of collectively 

predicting all four anisotropy components perfectly and with 

realizable values. 
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