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ABSTRACT 

A model which uses a convolutional neural network and a 

fully connected layer is proposed by applying the Soft Actor 

Critic (SAC) (Haarnoja et al., 2018), a deep reinforcement 

learning algorithm, to blowing and suction control. We 

performed reinforcement learning training to obtain further 

drag reduction rates in turbulent channel flow. A control law 

was adopted for the input for learning is the wall-normal 

velocity and the second invariant of the velocity gradient tensor 

on a detection plane parallel to the wall, and the output yields 

multiple coefficients that determine the blowing and suction 

flow on the wall. As training proceeded, the global coefficient 

of skin friction decreased, which means training proceeded 

properly. The control law obtained through the learning 

exhibits strong suction for regions where vortices move away 

from the wall, while it does weak blowing for regions where 

vortices move closer to the wall. The obtained control law is 

evaluated using the drag reduction rate, the net energy saving 

rate, and the gain. When the obtained control law was applied 

to turbulent channel flow, the drag reduction rate did not 

exceed that of the V-control (Choi et al., 1994). However, to 

uniformly adjust the velocities of blowing/suction returned by 

the obtained law, we achieved results that show the same drag 

reduction rate as the V-control with less input energy than the 

V-control. The gain of the obtained law is higher than the V-

control, and higher control effects can be obtained with less 

input energy. 

 

 

BACKGROUND AND OBJECTIVES 

Controlling turbulence and reducing frictional drag are 

expected to solve industrial or environmental issues, such as 

designing highly efficient and safe machinery, ensuring high 

quality in manufacturing processes, etc. On the surface of 

transport equipment, including airplanes, streamwise vortices 

are created, which cause large turbulent frictional drag. There 

have been many studies on methods of turbulence control, 

which can be classified broadly into passive control and active 

control. In this study, we focus on feedback control, one of the 

active control methods, in which the control is varied according 

to the conditions of the turbulent field. As to the V-control, a 

typical example of feedback control, streamwise vortices are 

suppressed by imposing flow velocity of blowing and suction, 

which has an opposite phase of wall-normal velocity at the 

detection plane. Choi et al. achieved a drag reduction rate of 

25 % at a bulk Reynolds number of 5000. 

Recently, reinforcement learning, one of the machine 

learning methods, has been used to control turbulence. 

Reinforcement learning is a learning method in which the 

learner executes actions according to specific rules, aiming to 

discover a control law that maximizes long-term reward. It also 

has a feature that allows the learner to collect data and conduct 

the learning process in parallel. Since the invention of deep 

reinforcement learning, which uses neural networks, it has 

become possible to express control laws with a high degree of 

freedom. This has been applied to diverse fields, such as robot 

control and chess. As to turbulence control, Sonoda et al. 

(2023) applied deep reinforcement learning to blowing and 

suction control for fully developed turbulent channel flow and 

obtained a drag reduction rate of 31 % at a bulk Reynolds 

number of 5000. However, they determined control law based 

on the limited information at the detection plane, and further 

use of physical quantities is required. According to the control 

law they obtained, it physically means that strong blowing acts 

to a high-speed streak, whereas strong suction to a low-speed 

streak requires much energy input.  

This study aims to obtain further drag reduction rates by 

focusing not only on the flow velocity at the detection plane 

but also on vortex structures near the wall. This paper reports a 

new control law and drag reduction effect on the blowing and 

suction control in fully developed turbulent channel flow. 

 

 

CALCULATION METHOD  

In this study, the flow field of turbulent channel flow was 

calculated by direct numerical simulation (DNS). The 

continuity and Navier-Stokes equations are the governing 

equations. The friction Reynolds number is set to Reτ = uτ δ / ν 

= 110, where uτ is the friction velocity based on mean wall 

shear stress, δ channel half width, and ν the kinematic viscosity. 

The computational domain is shown in Figure 1. Here, x, y, and 

z denote the streamwise, spanwise, and wall-normal directions, 

respectively. The computational domain in each direction is (Lx, 

Ly, Lz) = (1.25πδ, 2δ, 0.5πδ). The number of computational 

cells is (Nx, Ny, Nz) = (48, 108, 48), and grid resolution is (∆x+, 

∆y+, ∆z+) = (9.00, 0.55-4.80, 3.60). Here, ()+ denotes the value 

normalized by uτ and ν. 

The flow velocity of blowing and suction on the walls is 

determined by the control law f, which reinforcement learning 

decides using physical quantities at a virtual sensor surface  
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called the "detection plane" located at yd
+= 15. Schematic of the 

control method is shown in Figure 2. The control law f is 

expressed as follows: 

, (1) 

where φ is the flow velocity of blowing and suction on the 

walls, v’ is the wall-normal velocity at the detection plane, and 

II is the second invariant of the velocity gradient tensor at the 

detection plane. The control law determines the relationship 

between physical quantities at the detection plane and the flow 

velocities of blowing and suction on the walls, which are at the 

same location with respect to x and z. Thus, velocities of 

blowing and suction at each grid point on the walls is 
determined only from the physical quantities at the detection 

plane directly above it. 

 
Fig. 1 Calculation condition in the present study. 

 

 
 

Fig. 2 Visualization of blowing and suction φ at the walls from 

physical quantities at the detection plane located at yd
+= 15. 

 

 

DEEP REINFORCEMENT LEARNING 

 

Learning Model 

Deep reinforcement learning is a machine learning method 

in which a learner called an "agent" aims to maximize the total 

reward r within a predefined learning period in an 

"environment" that changes according to specific rules. 

Specifically, by performing multiple trials called "episodes," 

the agent discovers the strategy that maximizes the sum of the 

rewards r obtained in each episode. Figure 3 shows the 

schematic of a model in which SAC is applied to blowing and 

suction control in a fully developed turbulent channel flow. In 

this model, the state s is defined as two physical quantities, s1 

and s2, as shown in Fig. 3. One is the field of the wall-normal 

velocity v' at the detection plane, and the other is the field of 

the second invariant of the velocity gradient tensor II at the 

detection plane. The action a is defined as the seven 

coefficients ω1, ω2…, ω7, which constitute the control law f.  In 

this paper, the control law f is defined as follows: 

, 
(2) 

which is inspired by the two fully connected layers (FC). The 

 
 

Fig.3 Schematic of SAC model. Environment corresponds to 

the green region, Actor network to the blue region and Critic 

network to the red region.  The state s calculated by fluid 

solver (DNS) is input to the Actor network, which outputs 

action a, then the control f will be determined, and state s will 

be calculated again. To obtain a higher reward r, Critic 

network calculated the Q-value based on the state s and action 

a, and updates Actor network to obtain a higher reward r. 

 

 

hyperbolic tangent function is used as activation function, 

which is expected to fix flow velocity of blowing and suction 

between –1 to 1 and prevent divergence of DNS. The agent 

consists of two neural networks called Actor and Critic. Actor 

corresponds to the policy which determines the action a based 

on state s, which is located on the blue region in Fig.3. 

Specifically, it consists of both a convolutional neural network 

(CNN) and an FC and learns to maximize the Q-value, which 

indicates the expected value of the reward r obtained in each 

episode. The reward is calculated as follows:  



13th International Symposium on Turbulence and Shear Flow Phenomena (TSFP13) 
Montreal, Canada, June 25-28, 2024 

 

3 

 

, (3) 

where Δ is the flow rate adjusted when setting the net frow rate 

of blowing and suction to zero. Critic corresponds to the 

evaluator which estimates an accurate Q-value based on state s 

and action a, which is located on the red region in Fig.3. 

Specifically, it consists of both a CNN and FC, and learns to 

minimize the error between the reward r actually obtained and 

Q-value. The environment corresponds to the control law f and 

the DNS, which is located on the green region in Fig.3. From 

the above, Actor network and Critic network are mutually 

learned so that the control law f is determined based on a long-

term perspective. 

 

 

Learning Conditions 

In this model, 400 episodes of DNS, each with period ΔT+ 

= 550, were conducted to train the Actor network and Critic 

network. The Adam method was used for updating each 

network, with a learning rate of 0.001 for Actor network, 0.002 

for Critic network. The coefficients of the control law f were 

determined for each Δt+ = 0.55, and the flow velocity of 

blowing and suction at each position on the wall were updated 

using equation (2). Since the field of the detection plane 

changes from moment to moment, the coefficients of the 

control law f also change accordingly. Note that the control law 

f shown in equation (2) can change every Δt+ = 0.55.  While 

updating the flow velocity of the blowing and suction, a 

linearly interpolated value was given. 

 

 

RESULTS AND DISCUSSION 

 

Results of deep reinforcement learning 

Figure 4 shows the learning process of reinforcement 

learning. The horizontal axis is the time progressed in DNS, 

and the vertical axis is Cf, corresponding to the reward r of 

reinforcement learning. The color contour indicates the number 

of episodes, with blue representing the early stage of learning 

and red representing the end of learning.  The result of the V-

control is shown as a black line for comparison. Figure 4 shows 

that the Cf decreased as the episode proceeded overall. It shows 

that although learning failed and the Cf took a large value in 

some episodes, the Cf decreased around episode 300, shown in 

orange, which shows less value than the V-control. The 

adjustment of flow rate Δ also decreased with each episode, 

confirming that the control input determined by the model was 

imposed on the wall as we intended. Since the reward was the 

sum of – Cf and – Δ, the reinforcement learning objective, 

maximizing the sum of the rewards r obtained in each episode, 

was achieved. 

Figure 5 shows a visualization of the control law 

determined by equation (2). Figure 5(a) shows the control law f 

with the episode 300, where Cf decreased the most. Due to 

space limitations, although only the control law for t+ = 100 is 

shown in Fig. 5(a), the control law remained almost the same 

during the episode 300. Figure 5(b) shows the control law of 

the V-control for comparison. The horizontal axis is the wall-

normal velocity v’ at the detection plane yd
+= 15, and the 

vertical axis is the second invariant of the velocity gradient 

tensor II at the same plane. The color contour indicates the flow 

velocity of blowing and suction on the walls. Figure 5 shows 

that the obtained control law is almost the same as V-control  

 
Fig.4 Learning process of Cf at each episode. Color contour 

indicates episode. 

 

(a) 

 
(b) 

 
Fig. 5 Control law which determines the relationship between 

physical quantities at the detection plane and φ at wall: (a) 

Control law with the episode in which Cf  decreased the most at 

t+ = 100; (b) Control law of V-control. 

 

 

when II at the detection plane is 0, indicated by the black 

dotted box. It means that for regions where no vortex exists, the 

same control as V-control is applied. Figure 5(a) shows that the 

obtained control law indicates strong suction when II at the 

detection plane is –0.03 and v’ at the detection plane is 

positive; on the other hand, it indicates weak blowing when II 

at the detection plane is –0.03 and v’ at the detection plane is 

negative. This means that the obtained law indicates strong 

suction for regions where vortices move away from the wall; 

on the other hand, for regions where vortices move closer to the 

wall, the obtained law indicates weak blowing. As to the region 

indicated by the blue dotted box in Fig. 5, where II at the 
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detection plane is 0.03, it could be said the opposite of what the 

red dotted box indicates, but this is thought to be because the 

net flow rate is adjusted to zero. 

Figure 6(a-c) shows the input and output of SAC models in 

the x–z planes at t+ = 100. Figure 6(a, b) show the v’ and II 

field at the detection plane (yd
+= 15), respectively. Figure 6(c) 

shows the velocity field of blowing and suction φ at the wall (y 

= 0) calculated by the obtained control law shown in Fig. 5(a). 

Figure 6(d) shows the difference of φ between the obtained 

control law and V-control, which is calculated as follows: 

, (4) 

which means that when the value of equation (4) is positive, φ, 

determined by the obtained control law, is larger than that of 

the V-control, and when negative, it is smaller than that of the 

V-control. In Fig.6(a) and (b), the red dotted regions show that 

v’ at the detection plane is positive whereas II at the detection 

plane is negative, where Fig. 6(c) indicates strong suction. 

Conversely, the blue dotted regions show that both v’ at the 

detection plane and II at the detection plane are negative in 

Fig.6(a) and (b), where Fig.6 (c) indicates weak blowing. We 

could confirm that for regions where vortices move away from 

the wall, strong suction is imposed on the walls, whereas for 

regions where vortices move closer to the wall, weak blowing 

is imposed on the walls. The obtained control law shown in Fig. 

5(a) is physically consistent with the flow velocities of these 

blowing and suctioning on the walls. In Fig. 6(a) and (b), the 

black dotted regions show that v’ at the detection plane is 

positive, and II at the detection plane is slightly positive, where 

Fig. 6(c) indicates strong suction as the obtained law shown in 

Fig.5(a) indicates. As to Fig. 6(d), the red dotted regions and 

the blue dotted regions, both of which have a negative value 

of II at the detection plane, indicate a negative value, which 

means φ at the wall determined by the obtained control law is 

smaller than that of the V-control for regions where vortex 

exists. 

 

 

Evaluation of the obtained control law 

In this section, the control law obtained through 

reinforcement learning is confirmed. Since the SAC model 

optimizes Actor network which determines the relationship 

between physical quantities at the detection plane and φ at the 

walls, we performed DNS using Actor network with the 

episode 300 when Cf  most decreased. At this time, we fixed its 

weight, which means we performed DNS incorporating the 

obtained control. The initial field is the same as those used in 

reinforcement learning. The calculation time is set to t+ > 

50000, in which statistics will be converged and the other 

computational conditions are the same as those used in learning. 

To take into account the energy needed in applying a 

control law, we investigate not only the drag reduction rate RD 

but also the net energy saving rate S and the gain G, which 

Kasagi et al. (2009) suggested. These are defined as follows: 

 

(6) 

 

(7) 

 

(8) 

Figure 6. Input of SAC model at t+ = 100: (a) field of v’ at the 

detection plane; (b) field of II at the detection plane. Output of 

SAC model at t+ = 100: (c) field of φ at the lower wall. (d) the 

difference of φ between the obtained law and V-control at the 

lower wall. 

 

 

Here, Wp, Dean and Wa are the pumping work of fluid flow and 

the input energy by imposing blowing and suction on the wall 

respectively. Wp, Dean and Wa are defined as follows: 

 

(9) 

, 
(10) 

where –∂P / ∂x, ub, and pwall is the mean pressure gradient, the 

bulk mean velocity, and the pressure on the wall, respectively. 

Wp, Dean is estimated by using following equation reported by 

Dean (1978):   

(a) 

 
 

(b) 

 
 

(c) 

 
 

(d) 
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(11) 

Figure 7 shows the results of the obtained control law and 

the V-control in terms of RD, S, and G. The horizontal axis is 

the input energy on the walls shown in equation (10). The 

vertical axis is RD, S, and G in the order of Fig. 7(a), Fig. 7(b), 

and Fig. 7(c). The horizontal and vertical axes are time-

averaged values after t+ = 5000 when the statistics are stable. In 

all figures, the red dot indicates the result of the obtained 

control law, and the blue dot indicates the result of the V-

control for comparison. The red diamonds, squares, downward 

triangles, and upward triangles indicate the results in which the 

quantity of blowing and suction on the walls decided by the 

obtained control law are multiplied by 0.8, 0.6, 0.4, and 0.2, 

respectively. The quantity of blowing and suction was adjusted 

by uniformly multiplying the velocities determined from the 

obtained control law by a constant. In addition, the results of 

the V-control are also shown in the same manner, with the blue 

diamonds, squares, downward triangles, and upward triangles 

indicate the results in which the coefficient ω of the V-control 

shown in equation (4) is set to 0.8, 0.6, 0.4, and 0.2, 

respectively. Figure 7(a) shows that the RD of the obtained 

control law, indicated by the red dot, is lower than that of the 

V-control indicated by the blue dot, although it requires more 

input energy. Therefore, the obtained control law is inefficient 

comparing to the V-control. This is thought to be the obtained 

control law is only optimized for the flow field during the 

reinforcement learning, because the time progressed in DNS 

for reinforcement learning is only 1 / 100 of that for evaluating 

the obtained control law. The blue dashed line in Fig. 7(a) 

shows the approximation line with respect to the results of the 

V-control. For the results of the V-control shown in the figure, 

there is an approximately proportional relationship between the 

input energy and RD. Regarding the obtained control law, the 

result shown by the dots before adjustment requires more input 

energy than the V-control. However, in the results shown by 

red diamonds, squares, downward triangles, and upward 

triangles obtained by adjusting the quantity of blowing/suction, 

the input energy is smaller than that of the V-control. In other 

words, this adjustment does not directly change the input 

energy. In particular, as a black dotted line indicates, the red 

diamond, in which the obtained control law is multiplied by 0.8, 

has the same RD compared to the blue diamond, in which the 

coefficient ω of the V-control is set to 0.8, despite the input 

energy being smaller. Also, the red diamond has almost the 

same input energy compared to the blue square, which is set to 

0.6. Fig. 7(b) shows that the relationship between the input 

energy and S is almost the same as the one between the input 

energy and RD shown in Fig. 7(a). This is because the following 

relationship holds for RD, S, and G: 

Since G takes a value larger than 100 in all cases, as shown in 

Fig. 7(c), RD and S have almost the same value. Figure 7(c) 

shows that the gain G of the obtained control law is smaller 

than that of the V-control. On the other hand, as the black 

dotted line shows, G of the obtained control law which is 

multiplied by each coefficient are higher than that of the V-

control, which means the higher control effect is obtained with 

a small amount of the input energy. 

 

 

 

 

(a) 

 
 

(b) 

 
 

(c) 

 
 

Fig. 7 The results of the obtained control law and the V-

control: (a) Drag Reduction Rate, RD; (b) Net Energy Saving 

Rate, S; (c) Gain, G 

 

 

 

(12) 
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CONCLUSION 

Training in reinforcement learning was conducted, and the 

control law for blowing and suction was derived using wall-

normal velocity and the second invariant of the velocity 

gradient tensor field at the detection plane. The control law 

exhibits strong suction for regions where vortices move away 

from the wall; on the other hand, it does weak blowing for 

regions where vortices move closer to the wall. The control law 

obtained by reinforcement learning was applied to turbulent 

channel flow and evaluated using drag reduction rate RD, net 

energy saving rate S, and gain G in comparison with the V-

control. RD and S of the obtained control law are lower than 

that of the V-control despite requiring more input energy on the 

wall, which indicates the obtained control law is inefficient 

compared to the V-control. This is thought to be the obtained 

control law is only optimized for the flow field during the 

reinforcement learning. When the quantity of blowing and 

suction on the walls decided by the obtained control law is 

multiplied by 0.8, the result shows the opposite; it needs less 

input energy despite RD and S being the same as that of the V-

control under an identical condition. Since G is larger than the 

V-control, high control effects can be obtained with less input 

energy.  
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