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ABSTRACT
We propose a construction method of a closure model that

reproduces the quasi-periodic dynamics of large-scale struc-
tures of turbulence driven by a steady force in a periodic
cube. More concretely, using machine learning, we construct
a model closed by variables that describe the dynamics of the
largest eddies in the turbulence. Our novel model successfully
reproduces the spatial structure and the quasi-periodic dynam-
ics of the largest eddies. Furthermore, the fluctuation period is
consistent with the results of direct numerical simulations.

INTRODUCTION
Turbulence is ubiquitous; therefore, its prediction is es-

sential in many engineering applications. For this, we often
employ large-eddy simulations (LES) to reduce computational
cost by resolving only large-scale flow. To conduct LES, we
need a turbulence model that characterizes how smaller-scale
fluid motion impacts larger-scale one. Although LES with tra-
ditional turbulence models, such as the Smagorinsky model
[Smagorinsky (1963)], has proven successful in real-world en-
gineering applications [Meneveau & Katz (2000)], we must
place the cut-off scale on a scale where the universality holds,
i.e., within the inertial range. However, when considering
transport phenomena, the relatively large-scale flows directly
maintained by external force, mean flow, and boundary condi-
tions are of utmost importance. If the cut-off scale exceeds an
inertial-range scale, LES with conventional turbulence models
often fails to be inaccurate, deviating greatly from the results
of direct numerical simulations (DNS) [Fauconnier & Dick
(2014)]. This significantly limits the ability to save compu-
tational costs.

The present study aims to construct an accurate closure
model for turbulence motion larger than the inertial range.
Here, we focus on turbulence driven by a steady force in a
periodic cube. The dynamics of large-scale structures in the
turbulence are quasi-periodic, and their fluctuation period is
about twenty times the turnover time TL of the largest eddies
[Goto et al. (2017)]. When the cut-off scale is smaller than

L/4, where L is the size of the largest eddies, LES with the
Smagorinsky model can quantitatively reproduce the quasi-
periodic dynamics [Yasuda et al. (2014)]. However, in our
preliminary numerical experiments, LES with a cut-off scale
larger than L/4 fails to reproduce such quasi-periodic dynam-
ics. In this paper, we show that our novel model can correctly
reproduce the quasi-periodic dynamics of the large-scale struc-
tures even when the cut-off scale is L, i.e., resolving only the
largest eddies of the turbulence.

To model the turbulence motion larger than the inertial
range, we employ a recurrent neural network called the echo
state network (ESN) [Jaeger & Haas (2004)]. Machine learn-
ing (ML), such as ESN, has the potential to build appropriate
models using only data without assuming the existence of the
inertial range. Indeed, many previous studies have shown that
ML is useful for turbulence modeling [Brunton et al. (2020)].
However, the required size, i.e., the number of nodes, of neu-
ral networks significantly increases with the dimensions of the
input and output variables. Therefore, to construct the desired
model, it is essential to appropriately reduce the dimensions of
the input and output variables to ESN.

In the present study, we reduce the dimensions based on
the physical properties of the turbulence in addition to using
neural networks, and then model the dynamics of latent vari-
ables using ESN. Our approach differs from previous reduced-
order modelings (ROM) [Hasegawa et al. (2020); Nakamura
et al. (2021); Linot & Graham (2023)] because of the fol-
lowing two reasons. First, our modeling target is the three-
dimensional turbulence with the hierarchical structures [Goto
et al. (2017)]. In contrast, most previous ROM studies tar-
geted turbulence without them, such as minimal wall turbu-
lence [Jiménez & Moin (1991)]. Second, we model only the
largest hierarchical structures, i.e., the largest eddies of the
turbulence, which can be extracted by using a low-pass filter
[Goto et al. (2017)]. Focusing on the hierarchical structures of
turbulence, we study the ROM that is constructed in the fol-
lowing three steps: (i) extracting the largest eddies using the
low-pass filter based on the recent knowledge of turbulence
physics [Goto et al. (2017)], (ii) further reducing the dimen-
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sions of the low-pass filtered data using a convolutional neu-
ral network-based autoencoder (CNN-AE) [Hasegawa et al.
(2020); Nakamura et al. (2021)], resulting in a few latent vari-
ables, and (iii) modeling the dynamics of the latent variables
using ESN.

METHODS
Data Generation

We consider flow governed by the incompressible
Navier–Stokes equations,

∂uuu
∂ t

+(uuu ·∇∇∇)uuu =−∇∇∇p
ρ

+ν∇2uuu+ fff , ∇∇∇ ·uuu = 0, (1)

under periodic boundary conditions in the domain [0,2π]3,
where uuu(xxx, t), p(xxx, t), ρ , and ν are the velocity field, pressure
field, density, and kinematic viscosity, respectively, and fff is
the steady force described as,

fff (xxx) = (−sinxcosy, cosxsiny, 0)⊤. (2)

Training and test datasets for neural networks are generated by
DNS with a Fourier spectral method, which has been verified
against the results from the study of Goto et al. (2017). The
resolution N3, density ρ , kinematic viscosity ν , and time steps
∆tDNS are chosen as N3 = 643, ρ = 1.0, ν = 1.6× 10−2, and
∆tDNS = 3.0×10−3, respectively.

As mentioned in the introduction, the primary purpose of
the present study is to construct the closure model for turbu-
lence motion larger than the inertial range. To this end, we
use lowpass-filtered turbulence data for the modeling. More
concretely, we extract flow fields for |kkk| ≤ 2, where kkk is the
wavenumber. These flow fields correspond to the largest ed-
dies directly maintained by the steady force (2) and have a me-
andering structure in the z-direction (see the blue isosurfaces
of figure 2).

Dimensionality Reduction
The following three steps achieve the dimensionality re-

duction of the input and output variables to ESN. First, we use
only z-component of the lowpass-filtered vorticity ω>

3 (xxx, t) for
the modeling. This variable selection reduces the dimension
by a factor of 1/3. This approach is appropriate because the
flow field for |kkk| ≤ 2 can be nearly perfectly captured by only
ω>

3 , as is evident from the definition (2) of fff and the visu-
alization results (figure 2). Next, we further reduce the di-
mension by a factor of (1/4)3 by spatially sampling the grid
points for every fourth point. Since the grid width for DNS
is set to resolve the smallest eddies, the number (643) of orig-
inal grid points is unnecessarily large for resolving only the
largest-scale eddies. Therefore, we reduce the grid points as
long as the fluctuations of the largest eddies are correctly cap-
tured. Finally, we reduce the dimension of ω>

3 (x̄xx, t) by CNN-
AE, where x̄ is the sampled field. We describe the details of
dimensionality reduction using CNN-AE below.

We show a schematic of the CNN-AE structure in fig-
ure 1. CNN-AE consists of an encoder, which maps input
signals into a latent space, and a decoder, which expands the
latent dimension and reconstructs the flow field. The encoder
has alternating convolutional and pooling layers that reduce
the input dimension by (1/2)3. The decoder has alternating

convolutional and upsampling layers that expand the latent di-
mension by a factor of 23 until it equals the input dimension.
In the present study, we reduce the input dimension to 8. This
value is chosen throughout the numerical experiments so that
the reconstruction error of CNN-AE is small and ESN cor-
rectly reproduces the dynamics of largest eddies.

We use 5000 snapshots of the lowpass-filtered and sam-
pled vorticity field ω>

3 (x̄xx, t) to train CNN-AE. These snap-
shots are generated by DNS and sampled with a time interval
∆τ = 4.5× 10−1, corresponding to 150∆tDNS. The turnover
time TL of the largest eddies is about 0.56 in this case. There-
fore, the training data length is about 4200TL. The weights
of CNN-AE are optimized to minimize the squared error be-
tween the true vorticity field and the reconstructed one. The
Adam algorithm proposed by Kingma & Ba (2014) is used as
the optimizer for CNN-AE weights, and early stopping crite-
ria proposed by Prechelt (1998) are applied to the training to
avoid overfitting. We set the batch size and maximum epochs
as 32 and 1000, respectively.

Modeling Dynamics of Latent Variables
For modeling the dynamics of the latent variables ob-

tained by the dimensionality reduction, we use ESN proposed
by Jaeger & Haas (2004). See Nakajima & Fischer (2021) for
the details of ESN. The modeling of the latent variable dynam-
ics consists of following three parts. Let hhh(t) denote the latent
variables at time t. The first part is the one-step-ahead pre-
diction of the sequence {hhh(t)}; that is, we train ESN so that
its output h̃hh(t + ∆τ) is close to the true variables hhh(t + ∆τ),
where the input to ESN is hhh(t). We use the time series {hhh(t)}
of the latent variables corresponding to 3000 snapshots of
ω>

3 (x̄xx, t) for the training. Once the first part is completed,
ESN can approximate the map from hhh(t) to hhh(t + ∆τ), i.e.,
hhh(t +∆τ) ≃ h̃hh(t +∆τ) = FFF(hhh(t),rrr(t)), where FFF is a map de-
termined by the trained ESN, and rrr(t) is the state variable of
ESN at t. In the second part of the modeling, the ESN dy-
namics is switched to the “self-feedback” mode; namely, the
approximated latent states h̃hh(t +∆τ) are used for the input to
ESN at the next step, and we obtain the future latent variables
as h̃hh(t + 2∆τ) = FFF(h̃hh(t +∆τ),rrr(t +∆τ)). Repeating this pro-
cedure generates the time series {h̃hh(t)}. Finally, the decoder
reconstructs the dynamics of the largest eddies from the time
series {h̃hh(t)}.

RESULTS
First, we demonstrate the CNN-AE ability to reconstruct

the lowpass-filtered vorticity fields when the latent dimen-
sion is 8. Figure 2 shows the visualization of the recon-
structed ω>

3 (x̄xx, t) by CNN-AE, using isosurfaces of the en-
strophy |ω>

3 |2. CNN-AE appropriately reconstructs the vortex
magnitudes and fluctuations in the z-direction. To quantify this
result, we define the reconstruction error,

E (t) =
1

σ2V

∫
V
|ω>

3 (x̄xx, t)− ω̃>
3 (x̄xx, t)|2 dx̄xx , (3)

where ω>
3 and ω̃>

3 are the true vorticity field and reconstructed
one, respectively, and σ2 is the variance of ω>

3 evaluated with
the DNS result. Then, evaluating the time-averaged recon-
struction error ⟨E (t)⟩t of E (t), we obtain ⟨E (t)⟩t ≈ 4.4 ×
10−2. This result implies that CNN-AE accurately recon-
structs the lowpass-filtered vorticity field and achieves the high
dimensionality reduction ratio (about 1.0×10−5).
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Figure 1. Schematic of CNN-AE structure. CNN-AE has two parts: an encoder and a decoder. The encoder consists of a convolution
layer and a pooling layer connected alternately and reduces the input dimension. In the present study, we reduce the input dimension
to 8. The decoder consists of a convolution layer and an upsampling layer connected alternately, which expands the latent dimension
to the input dimension.

Figure 2. Visualization of the reconstructed vorticity field by
CNN-AE (isosurfaces of |ω>

3 |2). The blue and red isosur-
faces are the true and reconstructed vorticity fields, respec-
tively. Here, the threshold is chosen as mq + 2σq, where mq

and σq are the mean and standard deviation of |ω>
3 |2, respec-

tively.

The remarkable success in the dimensionality reduction
encourages us to construct the desired closure model. In fact,
our model works well. Figure 3(a) shows the temporal evolu-
tion of the latent variable h1 predicted by ESN. Although the
time series of the model deviates from the true time series with
time due to the chaotic nature of the sensitivity to initial con-
ditions, and its magnitudes are smaller than the true ones, it
shows irregular fluctuations similar to the true time series. We
show in figure 3(b) the visualization result of the reconstructed
flow. The model correctly reproduces the spatial structure of
the largest eddies, such as the vortex magnitude and the wind-
ing in the z-direction. Figure 3(c) shows the time series of
⟨|ω>

3 |2⟩V evaluated from the reconstructed vorticity field. We
can confirm the quasi-periodic fluctuation. Furthermore, its
period is about 20TL, which is consistent with the DNS result
by Goto et al. (2017). These results imply that it is possible to
construct a model to describe the quasi-periodic dynamics of
the largest eddies even when only they are resolved.

CONCLUSIONS
We have constructed a closure model using ESN to de-

scribe the quasi-periodic dynamics of the largest eddies in tur-
bulence driven by the steady force (2) in a periodic cube. The

(a)

(b)

(c)

Figure 3. Modeling results. (a) Temporal evolution of the la-
tent variable h1. The blue dotted and red solid lines are the true
and the modeled time series, respectively. (b) Visualization of
the reconstructed vorticity field (isosurfaces of |ω>

3 |2). Here,
the threshold is chosen the same as figure 2. (c) Time series
of the volume-averaged enstrophy. To clarify the fluctuation
period, we plot vertical lines every 20TL. Here, t is normalized
by the turnover time TL of the largest eddies.

following two steps achieve this modeling. The first step is
the dimensionality reduction of the input and output variables
to ESN. In the present study, we have reduced the dimension
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of variables describing the dynamics of the largest eddies to 8
using a low-pass filter based on the recent knowledge of tur-
bulence physics [Goto et al. (2017)], variable selection, spatial
sampling, and CNN-AE (figure 1). Even with such a drastic di-
mensionality reduction, where the reduction rate is 1.0×10−5,
the reconstructed flow field is well consistent with the DNS
results (figure 2). The second step is, using ESN, to build a
model closed with the latent variables obtained in the first step.
Although the instantaneous agreement of the temporal evolu-
tion is limited to finite time due to the sensitivity of initial con-
ditions [figure 3(a)], our model reproduces the spatial structure
[figure 3(b)] and the quasi-periodic dynamics [figure 3(c)] of
the largest eddies directly generated by the steady force (2).
Furthermore, the fluctuation period agrees well with the DNS
result [Goto et al. (2017)]. These results support the feasibil-
ity of a model that describes the quasi-periodic dynamics of
large structures in turbulence, even when resolving fluid mo-
tions larger than an inertial-range scale. At the same time, our
results have opened the way to establish a new method that
bridges the gap between Reynolds-averaged Navier–Stokes,
which only captures the mean flow, and LES, which only cuts
off the smaller scale than an inertial-range scale.

In the present study, we have investigated the general-
ization performance of the model for a single fixed Reynolds
number. However, exploring its performance across various
Reynolds numbers is crucial for real-world applications. Here,
we recall the fact that the dynamics of large-scale structures
in the turbulence are almost the same even when the Reynolds
number increases [Goto et al. (2017)]. Since our approach fo-
cuses only on large-scale structures in turbulence, the model
can be readily applied to cases with higher Reynolds numbers
without the need for fine-tuning. Verifying this assertion is a
target of our study in the near future.
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