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ABSTRACT
In this work, we study the causality of near-wall inner

and outer turbulent motions. Here we define the inner motions
as the self-sustained near-wall cycle and the outer motions as
those living in the logarithmic layer exhibiting a footprint on
the near-wall region. We perform causal analysis using two
different methods: one is the transfer entropy, based on the
information theory, and the other one is the Liang–Kleeman
information-flow theory. The causal-analysis methods are ap-
plied to several scenarios, including a linear and a non-linear
problem, a low-dimensional model of the near-wall cycle of
turbulence, as well as the interaction between inner and outer
turbulent motions in a channel at a friction Reynolds number
of Reτ = 1000. We find that both methods can well predict the
causal links in the linear problem, and the information flow
can identify more of the nonlinear problem. Despite richer
causalities revealed by the transfer entropy for turbulent-flow
problems, both methods can successfully identify the streak-
vortex regeneration mechanism that majorly sustains the near-
wall turbulence. It is also indicated that both bottom-up and
top-down influences of inner and outer motions may coexist in
addition to the multiscale self-sustaining mechanism. Lastly,
we mention that the computation of the information flow is
much more efficient than the transfer entropy. The present
study suggests that the information flow can have great po-
tential in causal inference for turbulent-flow problems besides
the transfer entropy.

INTRODUCTION
It is well known that wall-bounded turbulent flows are

populated with energy-containing coherent structures span-
ning a wide range of spatial and temporal scales (Robinson,
1991; Adrian, 2007; Smits et al., 2011; Jiménez, 2018), e.g.
streamwise streaks, hairpin vortices, large-scale motions, very-
large-scale motions and superstructures among others. An
open question is what are the causal links of these turbulent
motions, especially in the context of inner and outer motions,
either bottom-up (Adrian et al., 2000), top-down (Hunt & Mor-
rison, 2000), co-supporting (Toh & Itano, 2005; Zhou et al.,

2022) or independently self-sustained at all scales (Cossu &
Hwang, 2017). For this purpose, We resort to the two widely
adopted metrics which have been applied in physics, atmo-
spheric sciences as well as fluid dynamics research recently,
i.e. the transfer entropy (Schreiber, 2000) and the Liang–
Kleeman information flow (Liang & Kleeman, 2005; Liang,
2013, 2014, 2016). Here we define the inner motions as
the universal near-wall cycle (Hamilton et al., 1995; Waleffe,
1997), and the outer motions as those living in the logarithmic
layer exhibiting a footprint on the near-wall region (Hutchins
& Marusic, 2007; Marusic et al., 2010).

METHODOLOGY
Inner-outer decomposition of near-wall turbu-
lent motions

The turbulent-flow velocity components of inner and
outer motions are decomposed by a scaling-improved inner-
outer decomposition method (Wang et al., 2021a), which is
generally based on the predictive inner-outer model (PIOM)
(Marusic et al., 2010; Mathis et al., 2011; Baars et al., 2016).
In the PIOM, the near-wall turbulent-flow velocities can be de-
composed by ui = ui,S + ui,L, where ui is the turbulent-flow
velocity in the ith direction, ui,S is the small-scale velocity of
the inner motions or near-wall cycle modulated by large-scale
outer footprint velocity ui,L.

The large-scale outer footprint velocity is calculated by:

ui,L(x,y,z, t) = F−1
x

{
Hi,L(λx,y)Fx [ui(x,yO,z, t)]

}
, (1)

in which Fx and F−1
x denote the Fourier transform and inverse

Fourier transform, respectively, λx is the streamwise wave-
length, (x,y,z) are the coordinates in streamwise, wall-normal
and spanwise directions, respectively, y+O = 100 is the outer
reference wall-normal height (in inner units) for calculating
near-wall footprint (Wang et al., 2021a), and Hi,L is the scale-
dependent complex-valued kernel function of the spectral lin-
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ear stochastic estimation (Baars et al., 2016), which is:

Hi,L(λx,y) =
⟨ûi(λx,y,z, t)ûi(λx,yO,z, t)⟩z,t

⟨ûi(λx,yO,z, t)ûi(λx,yO,z, t)⟩z,t
, (2)

where, ˆ(·) represents variables in Fourier space, ⟨·⟩z,t denotes
averaging in spanwise and time.

Causal-analysis methods
Causal discovery or causal inference has recently become

one of the most popular topics and a tool to discover the un-
derlying causal structure of physical systems. There is an ever-
growing number of methods designed to work under different
assumptions since the seminal work of Granger (1969). There
are several reviews dedicated to introducing different methods
(Pearl, 2009; Liang, 2013; Camps-Valls et al., 2023; Runge
et al., 2023). In this study, we choose two widely-used causal-
inference methods, i.e. transfer entropy and information flow,
and apply them to several scenarios including interactions of
near-wall inner and outer turbulent motions.

Transfer entropy. The framework of information
theory (Shannon, 1948) can be employed to quantify causality
among time signals of different variables. A key metric is the
transfer entropy (Schreiber, 2000), which has been applied in
turbulent-flow problems recently (Lozano-Durán et al., 2020;
Wang et al., 2021b, 2022; Martı́nez-Sánchez et al., 2023).

Here we follow Martı́nez-Sánchez et al. (2023) to cal-
culate the Shannon entropy S(X) of variable X through esti-
mations of the probability density function of each signal us-
ing the k-nearest-neighbour entropy estimator (Kozachenko &
Leonenko, 1987), as:

S(X) = ψ(N)−ψ(k)+ logcd +
d
N

N

∑
i=1

logε(i), (3)

where X is a discrete-valued variable, N is the number of dis-
crete data, ψ(·) donates the digamma function, d is the dimen-
sion of X , cd = 1 for the L∞-norm, and ε(i) is the distance
from xi to its kth neighbour.

For a multivariate problem, we use the following formula

Tj→i(∆t) = S(Vi(t)|V ̸ j(t −∆t))−S(Vi(t)|V(t −∆t)), (4)

to calculate the conditional transfer entropy (Lizier, 2014;
Lozano-Durán et al., 2020), where ∆t is the time lag, S(Vi|V)
is the conditional Shannon entropy and V ̸ j is equivalent to V
but excluding the component j. The conditional Shannon en-
tropy is defined by S(Y |X) = S(X ,Y )−S(X). Transfer entropy
quantifies the amount of uncertainty in a future signal reduced
by a past signal. A larger transfer entropy Tj→i represents a
stronger causality from V j to Vi.

Information flow. Information flow refers to the
transfer of information between two entities in a dynamical
system. In information-flow theory, the quantity that quantifies
causalities is the rate of information flow. Liang & Kleeman
(2005) argued that, as a two-dimensional system ({x1,x2})
steers a state forward, the marginal entropy of x1 is replen-
ished from two different sources: one is from x1 itself, and

another one from x2. The latter is through the very mecha-
nism namely information flow. This gives a decomposition
of the marginal entropy increase according to the underlying
mechanisms: dS1/dt = dS∗1/dt + L2→1, the term dS∗1 is the
x1 own contribution, the other term L2→1 is the rate of infor-
mation flow from x2 to x1. Liang (2013) firstly established a
rigorous formalism of information flow for deterministic and
stochastic systems. After that, Liang (2014) used maximum-
likelihood estimation to derive an estimation formula for in-
formation flow consisting only of correlation. A preliminary
application of information flow in turbulence can be found in
Liang & Lozano-Durán (2016).

We evaluate multivariate information flow according to
Liang (2021), as

L j→i =
dSi

dt
−

dSi̸ j

dt
≈ 1

det(C)
·

d

∑
m=1

∆ jmCm,di ·
Ci j

Cii
, (5)

where Ci j is the covariance between Vi and V j, and Ci,d j is the
covariance between Vi and V̇ j, V̇ j is the time derivative of V j, C
is the covariance matrix, det(·) is the determinant of a matrix,
and d is the number of variables. The ∆i j is the cofactors of
the covariance matrix. dSi/dt is the temporal variation rate of
S(Vi), and dSi̸ j/dt is the evolution of S(Vi) with the effect of
V j excluded. So, L j→i denotes the rate of information flow
from V j to Vi.

In the following, the self-causalities are set to zero. The
largest causality is used for normalization so that the causali-
ties are between 0 and 1. The absolute value of the normalized
metrics is preserved only if greater than 0.01, otherwise it is
set to zero.

RESULTS AND DISCUSSION
Linear problem. First, we study the causalities of a

linear problem, which is a six-dimensional vector autoregres-
sive process (Liang, 2021):

X(n+1) = α +AX(n)+Be(n+1),

A =


0 0 −0.6 0 0 0

−0.5 0 0 0 0 0.8
0 0.7 0 0 0 0
0 0 0 0.7 0.4 0
0 0 0 0.2 0 0.7
0 0 0 0 0 −0.5

,

α = (0.1,0.7,0.5,0.2,0.8,0.3)T ,

(6)

where B is a diagonal matrix with Bii = 100 (i = 1, ...,6), and
the errors ei ∼ N(0,1) are independent variables. We gener-
ated 500 independent sets of data consisting of six series with
10000 steps (randomly initialized). The time lag for causal
analysis is set to ∆t.

The results are shown in figure 1. It shows that the two
methods yield the same qualitative causalities in the linear
problem, despite some numerical differences. The identified
non-zero causalities of x1 → x2, x2 → x3, x3 → x1, x4 → x5,
x5 → x4, x6 → x2 and x6 → x5 are consistent with equation (6).
Therefore, both the transfer entropy and information flow are
effective in evaluating the causalities of the linear problem.

Nonlinear problem. The second case is the causal-
ities of a nonlinear problem. We choose the coupled system
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Figure 1. Causal maps of the linear problem: (a) transfer entropy; (b) information flow. Red boxes: causalities identified by both
transfer entropy and information flow.

Figure 2. Causal maps of the nonlinear problem: (a) transfer entropy; (b) information flow. Red boxes: causalities identified by
both transfer entropy and information flow. Blue boxes: causalities identified by transfer entropy but information flow. Green boxes:
causalities identified by information flow but transfer entropy.

investigated by Paluš et al. (2018):



dx1/dt =−ω1x2(t)− x3(t),

dx2/dt = ω1x1(t)+0.15x2(t),

dx3/dt = 0.2+ x3(t) [x1(t)−10] ,

dy1/dt =−ω2y2(t)− y3(t)+ ε [x1(t)− y1(t)] ,

dy2/dt = ω2y1(t)+0.15y2(t),

dy3/dt = 0.2+ y3(t) [y1(t)−10] ,

(7)

in which ω1 = 1.015 and ω2 = 0.985, and ε is set to 0.25.
The above nonlinear system is solved using the fourth-order
Runge-Kutta scheme with a time step ∆t = 0.001. Initialized
with random numbers, the equations are integrated forward for
N = 50000 steps, in which the first 10000 steps are discarded
to eliminate the effects of initial conditions. A total of 500
independent sets of data are generated finally. The time lag for
causal analysis is set to 2∆t.

The results are displayed in figure 2, It is seen that the
causalities identified by the two metrics are not the same. Both
of the two methods can identify the causalities of x2 → x1,
x1 → x2, y2 → y1, x1 → y1 and y1 → y2, which exist in equa-

tion (7). However, the causalities of x3 → x1, x1 → x3, y3 → y1
and y1 → y3 are missing in the results of transfer entropy,
which are preserved in the results of information flow. There-
fore, in this nonlinear problem, the information flow is more
effective for identifying causalities than the transfer entropy. It
is also noted that some identified causalities are not explicitly
found in equation (7) which may be attributed to the nonlinear
effects.

Low-dimensional model of the near-wall cy-
cle of turbulence. Next, we analyze the causal rela-
tions present in a low-dimensional model of the plane Couette
flow with a sinusoidal body force developed by Moehlis et al.
(2004). This model presents an improvement of the eight-
mode model of Waleffe (1997). The self-sustaining process
of near-wall turbulence, i.e. the streak-vortex cycle, can be
well captured by the low-dimensional model. There are nine
modes of the model, which are: the basic profile mode (1), the
streak mode (2), the downstream vortex mode (3), the span-
wise flow modes (4, 5), the normal vortex modes (6, 7), a fully
three-dimensional mode (8) and the mode of the modification
of the basic profile (9). The first eight modes are the same as
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Figure 3. Causal maps of the low-dimensional model of self-sustaining near-wall turbulence: (a) transfer entropy; (b) information
flow. Red boxes: causalities identified by both transfer entropy and information flow. Blue boxes: causalities identified by transfer
entropy but information flow. Green boxes: causalities identified by information flow but transfer entropy.

those in Waleffe (1997). By applying the Galerkin projection
to the Navier-Stokes equations without the pressure term, one
can obtain a set of nine ordinary differential equations for the
temporal amplitude coefficient ai(t), featuring quadratic non-
linearities. In the present study, we follow Martı́nez-Sánchez
et al. (2023) to use the same parameter setup. The ordinary dif-
ferential equations were numerically solved to obtain 500 sets
of solutions, each spanning 4000 time units and the time step is
0.01 time units (400 000 time steps). These data are generated
by introducing a random perturbation to a4 (Martı́nez-Sánchez
et al., 2023). The time lag for the causal analysis is set to one
time step.

The results are given in figure 3. It is seen that there are
quite a lot of differences between the results of the two ap-
proaches. First, we focus on the core sustaining mechanism
of near-wall turbulence, i.e. the generation of streaks (mode
2). It has been well recognized that the streaks are generated
by the streamwise vortex acting on the mean flow, that is the
so-called lift-up mechanism. In the low-order model, it is the
causality from mode 1 and 3 to mode 2. We can see from
figure 3 that the information flow can successfully capture the
causal links of a1 → a2 and a3 → a2, while the transfer entropy
only can predict a3 → a2. For the other nonlinear interaction
mechanism for a2, both transfer entropy and information flow
can identify the causal links which are present in the dynam-
ical equation of a2, except that a4 → a2 is only detected by
the transfer entropy. Second, we look into the generation of
streamwise vortex (mode 3). Both the transfer entropy and
information flow can identify a2 → a3 (streak to streamwise
vortex), a6 → a3 (normal vortex to streamwise vortex), and
a9 → a3. However, the causal links of a4 → a3 (spanwise flow
to streamwise vortex) and a8 → a3 (three-dimensional mode
to streamwise vortex), which exist in the dynamical equation
of a3, can be found in the result of the transfer entropy analy-
sis, but that of the information flow. Lastly, if further surveying
other modes, one can find that the transfer entropy can identify
more causal links in the dynamical equations than the informa-
tion flow.

Near-wall inner and outer turbulent mo-
tions. Finally, we apply the transfer entropy and informa-
tion flow to analyze the causalities of inner and outer motions
of near-wall turbulence. A time-resolved direct numerical sim-

ulation (DNS) of turbulent channel flow at a friction Reynolds
number of Reτ = 1000 is carried out in this work. The DNS
adopts a fourth-order accurate compact difference scheme in
the homogeneous directions and a second-order accurate cen-
tral difference scheme in the wall-normal direction for the dis-
cretization of the incompressible Navier-Stokes equations on
a staggered grid (Hu et al., 2018). A series of low-Reynolds-
number channel DNS (up to Reτ = 600) were conducted using
the code (Hu & Zheng, 2018; Wang et al., 2021a) and the re-
sults were well validated against Lee & Moser (2015). In the
present DNS, the flow time span is 19.8δ/uτ (δ is channel
half-height and uτ is the friction velocity) and the DNS data
are stored with a time step of ∆t = 0.03 (20 000 snapshots in
total). The transfer entropy in equation (4) is estimated using a
time lag ∆t = 0.03 and the nearest-neighbour parameter k = 4
following Martı́nez-Sánchez et al. (2023).

Figure 4 shows the causal maps of local velocity fluctu-
ations of inner and outer turbulent motions and pressure fluc-
tuations, i.e. V = (uS,vS,wS,uL,vL,wL, p), where u, v and w
are the streamwise, wall-normal and spanwise velocity fluc-
tuations, respectively, and p is pressure fluctuation. The sub-
scripts ”S” and ”L” indicate inner and outer motions, respec-
tively. The time series of local velocity and pressure fluctu-
ations at 10 000 random locations at y+ = 15 are adopted to
calculate the causalities. It is seen that there are many more
causalities identified by the transfer entropy including all of
those by the information flow. On the other hand, the com-
pactness of the causal links identified by the information flow
could provide a concise picture that helps to find the most cru-
cial causalities. For example, one can find the causal links
of uS ↔ vS and uL ↔ vL, which are the streak-vortex self-
sustaining cycles of inner and outer motions, respectively. It
is also seen that there exists a non-zero causality of uS → vL,
indicating a possible bottom-up generation mechanism for the
wall-normal outer motions. The pressure fluctuation is also
found to be an active component in the causal cycles with in-
ner and outer motions.

Figure 5 shows the causal maps of the local velocity and
pressure fluctuations of inner and outer turbulent motions at
y+ = 70. Compared to figure 4, more causal links can be iden-
tified as the outer motions are stronger. Similar to figure 4,
the transfer entropy can predict more causalities than the in-
formation flow. However, we still discuss the results focusing
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Figure 4. Causal maps of the inner and outer motions of near-wall turbulence at y+ = 15: (a) transfer entropy; (b) information flow.
Red boxes: causalities identified by both transfer entropy and information flow. Blue boxes: causalities identified by transfer entropy
but information flow. Green boxes: causalities identified by information flow but transfer entropy.

Figure 5. Causal maps of inner and outer motions of near-wall turbulence at y+ = 70: (a) transfer entropy; (b) information flow. Red
boxes: causalities identified by both transfer entropy and information flow. Blue boxes: causalities identified by transfer entropy but
information flow. Green boxes: causalities identified by information flow but transfer entropy.

on the causal links that can be identified by both the transfer
entropy and information flow. Similarly, the inner and outer
self-sustaining causalities of the streak-vortex cycle can also
be well observed at this height as well as the bottom-up causal-
ity of uS → vL and the pressure-velocity causalities. In addi-
tion, two new groups of links with non-zero causalities can be
found. The first one includes uS → wS, uL → wL and wS → vS,
which may be related to the streak instabilities and generation
of streamwise vortex. The other one reflects the top-down in-
fluence, like (uL,vL,wL)→ (uS,vS,wS). These results indicate
that the inner and outer turbulent motions are not only self-
sustained but also engage in complex interaction mechanisms
that we may not fully understand at the current stage.

SUMMARY
In this work, we have applied two popular causal-analysis

methods, i.e. transfer entropy and information flow, to sev-
eral problems from simple linear and nonlinear dynamical sys-
tems to complex turbulent flows. The two methods can pre-
dict the same results for the linear problem, but some differ-
ences exist for the other nonlinear problems and the complex

turbulent-flow problems. To be more specific, more causal
links that exist in the dynamical system can be revealed by the
information flow in the nonlinear problem. However, for the
low-dimensional model of the near-wall cycle of turbulence,
it seems that richer causalities can be identified by the transfer
entropy. Despite this, both methods can capture the major self-
sustaining mechanism of near-wall turbulence, i.e. the streak-
vortex regeneration cycle. Some insight into the inner and
outer near-wall turbulent motions has been achieved through
the present causal analysis. The inner and outer motions may
be not only self-sustained but also exhibit non-negligible in-
fluence on each other, beyond the common opinion of either
bottom-up or top-down, and more details on these will be in-
vestigated in future work.

Lastly, we need to mention that the computation is time-
consuming using the transfer entropy for high-dimensional
problems, while it is much more efficient with the informa-
tion flow (nearly a hundred of speed-up in our experience).
Therefore, we believe that the information flow may have great
potential in applications of causal inference for turbulent-flow
problems besides the transfer entropy.
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Causality, dynamical systems and the arrow of time. Chaos:
An Interdisciplinary Journal of Nonlinear Science 28 (7).

Pearl, J 2009 Causal inference in statistics: An overview.
Statistics Surveys 3, 96–146.

Robinson, SK 1991 Coherent motions in the turbulent bound-
ary layer. Annual Review of Fluid Mechanics 23, 601–639.

Runge, J et al. 2023 Causal inference for time series. Nature
Reviews Earth & Environment 4 (7), 487–505.

Schreiber, T 2000 Measuring information transfer. Physical
Review Letters 85 (2), 461.

Shannon, CE 1948 A mathematical theory of communication.
The Bell System Technical Journal 27 (3), 379–423.

Smits, AJ, McKeon, BJ & Marusic, I 2011 High-Reynolds
number wall turbulence. Annual Review of Fluid Mechanics
43, 353–375.

Toh, S & Itano, T 2005 Interaction between a large-scale struc-
ture and near-wall structures in channel flow. Journal of
Fluid Mechanics 524 (2005), 249–262.

Waleffe, F 1997 On a self-sustaining process in shear flows.
Physics of Fluids 9 (4), 883–900.

Wang, L, Hu, R & Zheng, X 2021a A scaling improved in-
ner–outer decomposition of near-wall turbulent motions.
Physics of Fluids 33 (4), 045120.

Wang, W, Lozano-Durán, A, Helmig, R & Xu, C 2022 Spatial
and spectral characteristics of information flux between tur-
bulent boundary layers and porous media. Journal of Fluid
Mechanics 949, A16.

Wang, W, Xu, C, Lozano-Durán, A, Helmig, R & Weigand,
B 2021b Information transfer between turbulent boundary
layers and porous media. Journal of Fluid Mechanics 920,
A21.
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