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ABSTRACT

Probability distributions of the normalized Reynolds

shear stress (RSS) and joint cumulants of the normalized

streamwise and wall-normal velocity components up to sixth

order are presented spanning over three decades of friction

Reynolds numbers Reτ in several wall-bounded flows. It is

shown that the fourth-order joint cumulants are non-zero and

essentially invariant with Reynolds number for Reτ & 2000 de-

spite changes in the correlation coefficient between the two ve-

locity components. Several sixth order joint cumulants are also

non-zero and appear to become invariant with Reynolds num-

ber, albeit more slowly than the fourth-order ones. This indi-

cates that the interactions between the streamwise and wall-

normal velocities do not become reducible to those implied by

their second-order moments (i.e. their covariance matrix) with

increasing Reynolds number, but also that the Reynolds num-

ber dependence of the RSS distribution (at least out to a sub-

stantial number of standard deviations) is attributable almost

entirely to that of the second-order moments. The fidelity of

a model distribution given by Antonia & Atkinson (J. Fluid

Mech., vol. 58, 1973, pp. 581–593) that includes the effects

of cumulants up to 4th order is also evaluated against the ex-

perimental data. It is shown that this distribution is accurate

to roughly 25 times the mean RSS in the negative tail and 15

times the mean RSS in the positive tail. Beyond this, the model

distribution predicts negative probabilities in the negative tail

when the present experimental cumulant values are inputted,

and thus a higher order expansion is necessary if one aims to

obtain a general model distribution equation for the RSS.

INTRODUCTION

Self-similarity is a central concept underlying several

noteworthy models of wall-bounded turbulent flows, includ-

ing those stemming from the attached eddy hypothesis (e.g.

Townsend (1976), Perry & Chong (1982)) mean-momentum-

balance (MMB) analysis (Fife et al., 2005) and resolvent mode

analysis (e.g. McKeon & Sharma (2010), Moarref et al.

(2013)). Owing to its connection to the mean velocity (via

the MMB), the Reynolds shear stress (RSS) in particular rep-

resents both a likely exhibitor of self-similarity in the log-layer

as well as an attractive modeling target for its exploitation. In-

deed, MMB analysis reveals that self-similarity of the mean

dynamics (i.e. invariant properties of the RSS profile) is in-

extricably linked to distance-from-the-wall scaling and thus

to the logarithmic mean velocity profile. With self-similarity

properties of the mean RSS profile fairly well characterized,

we turn our attention at present to the fluctuations in an effort

to better understand the degree to which this self-similarity is

reflected in the turbulent fluctuations.

Markers of self-similarity in a fluctuating signal may in-

clude those relating to the length/time scales and those relating

to signal magnitude. The former may be uncovered via analy-

sis of energy distribution across various modes (e.g. Fourier or

proper orthogonal modes, Hellström & Smits (2017)), struc-

ture functions, or zero-crossing length distributions (Morrill-

Winter et al., 2017b), while the latter may be uncovered via

analysis of the probability distributions, including interroga-

tion of moment profiles (e.g. mean, variance, skewness, kur-

tosis) (Zimmerman et al., 2019), cumulant profiles (Antonia

& Atkinson (1973), Nakagawa & Nezu (1977)) or Kullback-

Leibler divergence Lindgren et al. (2004) (or similar) from

a reference distribution. Here we will focus on manifesta-
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tions of self-similarity in the fluctuation magnitude by decom-

posing the probability distribution into ‘product-of-Gaussians’

and non-‘product-of-Gaussians’, or PoG and non-PoG, com-

ponents. The PoG component is self-similar by construction

at fixed correlation coefficient r, and thus departures from self-

similarity will be captured purely by changes in the non-PoG

component of the distribution.

Table 1. Summary of the present datasets. M06 collec-

tively refers to Del Alamo & Jiménez (2003), Del Alamo

et al. (2004) and Hoyas & Jimenez (2006), YT18 refers to

Yamamoto & Tsuji (2018), Z19 refers to Zimmerman et al.

(2019), MW17 refers to Morrill-Winter et al. (2017a), and P04

refers to Priyadarshana (2004). † See text for details concern-

ing DNS turnover ‘times’.

Dataset Flow Reτ (·103) Uts/δ (·103)

M06 Channel 0.5–2 23–46†

YT18 Channel 1–8 0.16†

Z19 TBL/Pipe 5–10 5–25

MW17 TBL 2–16 1.6–103

P04 ASL ∼1000 ∼ 0.1

DATASETS
Data for the present analysis were aggregated from sev-

eral earlier studies, including the channel DNS of Hoyas &

Jimenez (2006) (HJ06) and Yamamoto & Tsuji (2018) (YT18),

the laboratory hotwire measurements of Morrill-Winter et al.

(2017a) (MW17) and Zimmerman et al. (2019) (Z19), and

the atmospheric surface layer (ASL) hotwire measurements

of Priyadarshana (2004) (P04). The Z19 and MW17 datasets

each contain measurements from the Flow Physics Facility

(FPF) (Vincenti et al., 2013) as well as the Melbourne Wind

Tunnel (MWT) Marusic et al. (2015), while Z19 also contains

measurements from the Center for International Collaboration

in Long Pipe Experiments (CICLoPE) (Talamelli et al., 2009).

The Reynolds number ranges and sample lengths (measured in

number of boundary layer turnovers) of these studies are given

in table 1.

The DNS fields associated with Del Alamo & Jiménez

(2003), Del Alamo et al. (2004), and Hoyas & Jimenez (2006)

(hereafter referred to as M06 or the ‘Madrid DNSs’) mea-

sured (8π × 4π)δ , (8π × 3π)δ , and (8π × 3π)δ respectively

in their streamwise-spanwise extent, where δ is the channel

half-height. These DNS fields were probed for statistics at

full resolution in x and (π/100)δ intervals in z for between

3−6 snapshots for each of the three Reynolds numbers stud-

ied. The DNS fields from Yamamoto & Tsuji (2018) were

each probed across the full simulation domain of (16.0 ×
10)δ in streamwise-spanwise extent for a duration of approx-

imately 160 half-height turnovers. The low number of bound-

ary layer turnovers for the ASL case is primarily due to the

60–90m boundary layer thickness rather than an abnormally

short recording time. The distributions associated with the

ASL dataset appear more converged for the limited number of

turnovers than would the lower Reynolds number data at the

same number of turnovers, but we cannot rule out a potential

effect of under-converged contributions from very large scale

motions (i.e. O(100δ )) that are known to contribute to the

RSS (Guala et al., 2006). The hotwire arrays used to collect

the ASL data were held between 18–50cm from the ground,

which would put them at y+ =O(103)–O(104) (superscipt ‘+’

denotes normalization by the wall shear scales), well within

the logarithmic layer. Taken together, the distributions pre-

sented herein span a considerable range of Reynolds numbers

and fluctuation strengths (i.e. ‘tail’ probabilities) compared to

those shown in Antonia & Atkinson (1973), whose work we

aim to extend.

CUMULANTS

We begin by presenting the expression originally derived

by Antonia & Atkinson (1973) for the probability distribution

of the product of two random variables with unit variance in

terms of their joint cumulants k jk. Here the two random vari-

ables are the fluctuating streamwise and wall-normal veloc-

ities normalized by their standard deviations, or uσ ≡ u/σu

and vσ ≡ /σv, and their product is w ≡ uσ vσ . This makes

the mean value of w equal to the RSS correlation coefficient,

i.e. 〈w〉 = r. The subscripts j and k respectively represent the

order of the streamwise and wall-normal velocities in the joint

cumulant as well as the standard joint moments m jk ≡ 〈u j
σ vk

σ 〉.
The expression given by Antonia & Atkinson (1973), derived

from a generalized Gram-Charlier expansion of the joint PDF

of uσ and vσ up to order four, is as follows:

pw(w) =
exp

[

rw
1−r2

]

π
√

1− r2

{

K0

( |w|
1− r2

)

[

1+aw2 +bw+c
]

− |w|
1− r2

K1

( |w|
1− r2

)

[dw+e]

}

(1)

where K0 and K1 are modified Bessel functions of the second

kind of order 0 and 1 respectively. The polynomial coefficients

a, b, c, d, and e are each comprised of rational polynomials in r

with coefficients dependent on groups of summed fourth-order

terms of the form Di j ≡ k jk/ j!k! (e.g. with coefficients like

D31 +D13 or D40 +D22 +D04, see equation (12) in Antonia

& Atkinson (1973) for details). If the fourth order cumulants

are zero, then so too are the coefficients a–e, and thus (1) re-

duces to the equation for the PDF of the product of two jointly-

normal dependent variables. Note that all cumulants above 2nd

order are zero for Gaussian/multivariate normal distributions.

The above formulation invites an interpretation of high-

order cumulants as relating to the ‘non-Gaussian’ components

of the underlying random variables. This is not, however, the

complete picture. Moments of multivariate normal distribu-

tions are always expressible in terms of covariances alone (i.e.

second order moments) (Isserlis, 1918), whereas the cumulant

k jk quantifies the contributions to m jk that are not attributable

to any lower-order interactions. Thus, a joint distribution for

which all 6th order cumulants were zero would not necessar-

ily indicate ‘Gaussianity’ of the 6th order moments, but rather

that m33 (for example) could be expressed in terms of lower or-

der moments such as m30m03 (in addition to covariance terms).

This property is also illustrated by the following relationships

between m jk and k jk (for zero-mean, unit variance variables),

which are given up to order 6 in accordance with the analysis
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to follow:

k40 = m40 − (3)

k31 = m31 − (3r)

k22 = m22 − (2r2 +1)

k60 = m60 − (15m40 +10m2
30 −30)

k51 = m51 − (5m40r+10m30m21 +10m31 −30r) (2)

k42 = m42 − (m40 +4m30m12 +6m2
22 +6m2

21 +8m31r

−24r2 −6)

k33 = m33 − (m30m03 +9m21m12 +9m22r+3m31 +3m13

−12r3 −18r)

Here the terms in the parentheses amount to factorizations of

the corresponding moment m jk outside the parentheses into

products of lower order moments. Note that all terms would

have subscripts that sum to the corresponding order of the cu-

mulant, but that m11 = r, and m20 = m02 = 1 are used for

brevity. Note further that the coefficients in (2) can be checked

by setting uσ = vσ and assuming Gaussianity so that r = 1,

m jk = 0 when j + k is odd, m jk = 3 when j + k = 4, and

m jk = 15 when j+k = 6.

RESULTS
As noted in the previous section, the fourth order cumu-

lants appear in equation (1) in the form D jk ≡ k jk/ j!k!. Scal-

ing by the factorials of the component orders is therefore the

approprate way to compare the magnitude of one cumulant to

the next in the context of their effects on the probability dis-

tribution. Profiles of these scaled cumulants along with the

correlation coefficient r are plotted in the left column of fig-

ure 1, while individual values taken from the outer edge of the

log layer (y/δ ≈ 0.1) are plotted against Reynolds number in

the right column of figure 1. The cumulant profiles in the left

column are grouped by dataset, and shifted vertically relative

to one another for clarity. The ordinate scale of the profiles is

linear with a magnitude indicated by the bottom two tick la-

bels. The total range of the cumulant profile plots in figure 1

is 0.25 with each successive dataset shifted up by 0.05, while

the total range of the correlation coefficient profile plots is 1.2
with each successive dataset shifted up by 0.2.

Inspection of the profile plots in figure 1 reveals that all

five of the fourth order cumulants tend to plateau in the log-

layer in sharp contrast to their behavior in the wake and buffer

layers. Within each dataset, darker shaded lines and symbols

represent higher Reynolds numbers. While this allows rough

Reynolds number trends to be observed in some cases, pick-

ing off the values of these profiles at the approximate outer

edge of the log-layer allows for a closer inspection of these

trends. For all fourth-order cumulants, there is considerably

more systematic variation between the three Madrid channel

DNS cases than is observed amongst the laboratory datasets.

This can be seen from the profiles in the left column to be the

result of the emergence of a distinct overlap region between the

near-wall and wake regiones (i.e. a log-layer for the mean ve-

locity). The highest Reynolds number DNS case does exhibit a

distinct overlap layer, and as a result is in excellent agreement

with the experimental data at similar Reynolds numbers. For

the next decade change in friction Reynolds number δ+ there

is far less variation, as the overlap layers have emerged and

the plateaus essentially developed. Bearing in mind the uncer-

tainty and potential under-convergence of the ASL cases in the

extreme Reynolds number regime, all five fourth-order cumu-

lants appear to become essentially invariant once this overlap

layer emerges around δ+ = 2000. This is not the case, how-

ever, for the correlation coefficient. The correlation coefficient

decreases steadily across the complete range of Reynolds num-

bers presented, which in light of the fact that 〈uv〉+ ≈ 1 at this

location indicates that one or both of u+σ and v+σ are increas-

ing with δ+. Whether or not r eventually reaches a plateau

is unresolved, with some models suggesting u+σ is unbounded

in the limit of infinite Reynolds number (Marusic & Kunkel,

2003) and others suggesting it eventually saturates (Chen &

Sreenivasan, 2022).

Probability densities of three cases are plotted in figure 2

along with the model given by equation (2) using the measured

values r and k jk. The three densities shown correspond to the

y/δ = 0.1 locations taken from the δ+ = 934 M06 channel

DNS and the δ+ = 7700 Z19 pipe experiment, and the log-

layer location from the δ+ ≈ 890,000 P04 ASL experiment.

Note that the location of the ASL cases are known with less

certainty as δ was not measured directly, but that they are well

within the log-layer and y+ = O(103)–O(104). These three

cases are selected as they span a wide Reynolds number range,

but do not reflect any behavior that is not also present in the

other measurements. The distributions show that increasing

Reynolds number has the effect of increasing the probability

density of very large positive RSS events but very little effect

on that of the large negative RSS events. Although difficult to

see in figure 2, there is cumulatively a large shift in probabil-

ities from negative to positive events within the range |w|< 5

with increasing Reynolds number, which largely accounts for

the correlation coefficient becoming more positive. This effect

can also be seen in (1), where the prefactor that is proportional

to exp(rw) can be visualized in terms of a multiplication of

the otherwise symmetric Bessel functions by a line of slope

∝ r when plotted on a logarithmic ordinate. Overall, negative

events decrease in likelihood from 64.3% for the DNS case at

δ+ = 934 to 59.6% for the ASL case at δ+ ≈ 890,000, with

over 97% of that shift attributable to the range |w|< 5.

The Reynolds number dependencies observed in the con-

text of figure 2(a) are almost entirely attributable to changes

in the correlation coefficient. This fact is illustrated by figure

2(b) which shows the ratio of each PDF in figure 2 to the joint-

normal distribution having the same correlation coefficient but

zero cumulants. In this representation, the joint-normal distri-

butions are the horizontal dashed lines with magnitude 1, but

note that successive cases are shifted up by a decade for vis-

ibility. Despite clear changes to the shape and tail behavior

of the measured probability distributions, all three cases show

remarkably similar behavior relative to their equivalent joint-

normal distributions. This further illustrates the degree of ‘in-

variance’ of the cumulants discussed above. It is also clear that

this invariance is not due to lack of influence of these cumu-

lants on the distribution, as the curves computed from equa-

tion (2) peel away from the joint-normal dashed lines (and

track the measured distributions) for positive events exceed-

ing about 5 times the mean RSS magnitude. Inclusion of the

fourth order cumulants produces a faithful description of the

PDF for events ranging in magnitude from about −25 to 15

times the mean RSS magnitude, whereas the assumption of

joint normality is particularly poor for positive events greater

than about 5 times the mean RSS magnitude. One issue with

(1), however, concerns the behavior of extremely high magni-

tude negative events. Closer inspection of equation 12 in Anto-

nia & Atkinson (1973) reveals that this expression will predict

negative probabilities when (D13+D31)> (D40+D04+D22),
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Figure 1. Left: Profiles of RSS correlation coefficient and scaled fourth order joint cumulants D jk ≡ k jk/ j!k! of the streamwise and

wall-normal velocities for several datasets. Datasets are grouped by study and flow type, and are assigned a color along with a vertical

shift for visibility. Darker colors indicate higher Reynolds number. MW17 FPF ( ), MW17 MWT ( ), Z19 FPF ( ), Z19 MWT

( ), Z19 pipe ( ), YT18 channel DNS ( ), and HJ06 channel DNS ( ). Right: values of the profiles on the left taken at y/δ ≈ 0.1

(except ASL, see text) versus friction Reynolds number. Symbols as on the left, but with the addition of ASL data from P04 ( , July

17, 2001 recordings, , July 25, 2001 recording, , August 3, 2000 recordings.).
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Figure 2. (a): Probability densities of δ+ = 934 M06 channel DNS ( ), δ+ = 7700 Z19 pipe experiment ( ), and δ+ ≈ 890,000

P04 ASL experiment ( ). Model equation (1) for each case plotted as solid line with matching color. (b): Same three cases as (a),

each divided by the joint-normal product distribution with matching r, vertically shifted for visibility.
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Figure 3. Sixth order joint cumulants of the streamwise and wall-normal velocity at y/δ ≈ 0.1 (except ASL, see text) versus friction

Reynolds number.

as is the case for the preponderance of the data in figure 1.

This can be seen, for example, in the sharp downward turn of

the purple model curve in figure 2(a). Expansion to higher or-

ders will presumably resolve this issue along with the failure

to describe the density of extremely high magnitude positive

events.

Rather than addressing higher order expansions at this

time, we instead address the issue of potential invariance in

the higher order cumulants in an effort to understand the gen-

erality of the result obtained from figure 1. Values of all seven

sixth order joint cumulants taken at y/δ ≈ 0.1 (or within the

overlap layer in the ASL) are plotted in figure 3. Note that

these cumulants are not shown in scaled form as were those

in figure 1 so that all seven can be plotted on axes with equal
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ranges. That being said, these cumulants would also be scaled

by j!k! in the higher order expansion, and so note for example

that k60 would have about 5% as much influence on the distri-

bution as k33 of equal magnitude. With this in mind, evidently

only k42, k24 and k33 will substantially affect the higher order

model distribution equation. Two former quantities appear to

saturate in much the same way as the fourth order cumulants,

with most of the variation coming at low Reynolds number as

the overlap layer emerges. The values of k33 on the other hand

appear to be slowly approaching zero, but this observation is

unfortunately heavily reliant upon the ASL data in which there

is considerable uncertainty. Without them, one could argue

that there is just as much of a case for k33 = const. as there is

for k42 or k24, and thus further analysis or measurements are

needed before any stronger assertions are possible.

CONCLUSIONS
We have shown that several fourth and sixth order joint

cumulants of the streamwise and wall-normal velocity ap-

proach non-zero and (in most cases) constant values at the

outer edge of the overlap layer of TBL, pipe, and channel

flows as Reynolds number increases. Profiles of both fourth

and sixth order cumulants (though only the former are shown

herein) show that there is very little variation in the magnitudes

of these cumulants throughout the entire overlap layer, which

allows us to also compare cumulant values from the ASL at

smaller y/δ values that are still within the overlap layer. The

non-zero asymptotic values are to be expected, as this indicates

that the corresponding higher order moments cannot be repre-

sented in terms of lower order ones (i.e. it indicates that there

is a closure problem in turbulence). The constancy of these

cumulants is more interesting, however, as it points to a man-

ifestation of self-similarity/invariance in the overlap layer of

several canonical wall-bounded flows. Several cumulants also

do appear to be effectively zero relative to others of the same

order, indicating that there are no genuine interactions between

(for example) u and v5 or v and u5, but rather only those that

can be explained purely in terms of lower-order interactions.

Although there is clear Reynolds number dependence in

the normalized RSS PDF, nearly all of this dependence is at-

tributable to changes in the correlation coefficient r between

the streamwise and wall-normal velocities. This fact is not

due simply to the lack of influence of higher order terms ei-

ther, as the addition of cumulants up to fourth order captures

PDF curvature at low magnitudes and positive tail properties

that are not captured by a joint-normal model with matching r.
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