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ABSTRACT

Large (and very-large) scale motions produce much of
the turbulent kinetic energy and Reynolds shear stress in
wall-bounded flows. Their streamwise extent can exceed the
thickness of the wall layer, while their spanwise and wall-
normal extents are typically comparable to it. As such, even
when instantaneous velocity fields are integrated in the wall-
normal direction across the entire wall layer, the resulting
two-dimensional representation still contains significant tur-
bulent structure. The wall-normal integration of the Reynolds-
averaged equation has long been used for low-cost models for
turbulent boundary layers, i.e., integral methods. By com-
parison, instantaneous wall-normal integrals are largely unex-
plored, despite their potential to efficiently encapsulate large-
scale dynamics. In this work, dynamical equations for instan-
taneous wall-normal integrals are derived directly from the
Navier-Stokes equation. Data from direct numerical simula-
tions of canonical wall-bounded flows are used to analyze the
dynamics of instantaneous integrals. The results show that in-
stantaneous wall-normal integrals can capture a significant ma-
jority of the turbulent shear stresses from large-scale motions,
providing a potential avenue for constructing predictive mod-
els.

INTRODUCTION

The development and use of integral-based tools to an-
alyze and model boundary layers stretches back more than a
century, beginning with laminar boundary layers (von Kdrmén,
1921; Pohlhausen, 1921; Thwaites, 1949) and then extending
to turbulent flows using wall-normal integrals of the Reynolds-
averaged Navier-Stokes (RANS) equation (Kline ef al., 1968).
The rise of digital computers enabled the solution of fully
three-dimensional partial differential equations; first using the
RANS equations, then later using scale-resolving approaches
such as Direct Numerical Simulations (DNS) and Large-Eddy
Simulations (LES), including both hybrid RANS/LES and
wall-modeling approaches. DNS, of course, remains too costly
for the high Reynolds numbers typically involved in most ap-
plications of interest. Meanwhile, cheaper approaches such as
wall-modeled LES still carry a very high cost at application-

relevant Reynolds numbers (Yang & Griffin, 2021; Goc et al.,
2020), even with a coarse resolution of five to ten grid points
across the boundary layer.

The strong influence of turbulent motions with stream-
wise extent comparable to (and exceeding) the boundary layer
thickness, channel half-height, or pipe radius raises intriguing
modeling challenges and opportunities (Jimenez, 1998; Kim
& Adrian, 1999; Guala et al., 2006; Balakumar & Adrian,
2007; Hutchins & Marusic, 2007; Monty et al., 2009). These
large scale motions (LSMs), superstructures, and very-large
scale motions (VLSMs) have substantial wall-normal extent
(see, e.g., Fig. 13 of Lee et al. (2017)), are responsible for a
significant portion of the turbulent kinetic energy (TKE) and
Reynolds stress throughout most of the boundary layer, and
are keenly sensitive to pressure gradients (Harun et al., 2013).
The main challenge for developing models for wall-bounded
turbulence based on (V)LSMs is how to develop an efficient
framework that is directly based on first principles, that is, the
Navier-Stokes equation.

In this work, the use of instantaneous wall-normal inte-
grals (i.e., an ‘LES’ version of classical RANS-based integral
methods) is proposed and investigated as one possible way to
address this challenge. The feasibility of such an approach
is illustrated in Figure 1 using turbulent channel flow data.
Even after integrating the instantaneous velocity field across
the channel half-height, the dominant features of the turbulent
fluctuations remain. The goal of this work is to derive the dy-
namical equations for instantaneous integrals from the Navier-
Stokes equation and to study unclosed terms which arise, pro-
viding quantitative analysis of the observations in Figure 1.

THEORY

To begin the investigation, the dynamical equations for
instantaneous wall-normal integrals are derived for a half-
channel flow with a no-slip, no-penetration boundary condi-
tion at the bottom wall and a no-penetration, no-vorticity con-
dition at the top wall. While integral formulations are com-
monly deployed for spatially-developing boundary layers, the
half-channel allows for two directions of homogeneity, mak-
ing it a useful surrogate flow to begin studying the dynamics
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Figure 1. Comparison of the instantaneous streamwise velocity on a wall-parallel plane at y = 0.2 (left) with the wall-normal inte-

grated velocity at the same instant in time (right). Data from the Re; = 1000 channel flow JHTDB dataset.

of wall-normal integrals. The following formulation for half-
channel flows can be extended to external boundary layer flows
using the velocity defect compared to an inviscid or potential
flow solution.

In this work, the equations of motion are non-
dimensionalized using the friction velocity (u#¢) and the half-
channel height (k). The wall-normal y coordinate is treated
separately from the streamwise and spanwise coordinates, so
the index range is i = 1,2 and implied summation is only
over these two indices. Thus, the wall-parallel coordinates are
x1 = x and xp = z for the streamwise and spanwise directions,
respectively. Likewise the streamwise and spanwise velocity
components are 1) = u and uy = w, respectively, and the wall-
normal velocity is v. The conservation of mass for incompress-
ible flows is

du; ov
e I G ) 1
gy + Iy M
and wall-parallel momentum conservation is
dui | I(uiuj)  I(uv)
dt 0x; dy
dp 1 0%u; 02%u;
=——+— 1. (2
dx; + Rez <8x]~8xj * dy? ) +or @)
Finally, the conservation of wall-normal momentum is
v N d(vuj)  d(v?)
ot ox; dy
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Here, the p is the pressure (divided by density).
Wall-normal integrals are defined for the zeroth and first
moments of any variable ¢ as,

1 1
(9)0 = /O 9dy, (9), = /0 2yody. (4

The zeroth and first moments of the mass conservation equa-
tion yield,
9 (ui)o
3x,»

That is, the zeroth wall-normal moment of the instantaneous
wall-parallel velocity is divergence free (in two dimensions)
and the divergence of the first moment is proportional to the
zeroth moment of the wall-normal velocity. The zeroth mo-
ment of the conservation equation for streamwise and span-
wise momentum are
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where 7; is the instantaneous wall shear stress vector. The cor-
responding equation for the first moment is
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where U; = u;|,_, is the instantaneous wall-parallel velocity
at the top boundary. The wall shear stress (7;) and top veloc-
ity (U;) are unclosed, as are the quadratic moments: (u;u;),
(uiuj)1, and (u;v)o. The two pressure moments may be found
by solving elliptic equations formed from the divergence of
equations (6) and (7), together with equation (5). The zeroth
moment of pressure is
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This pressure moment enforces the two-dimensional diver-
gence free condition in Equation (5). Finally, the first moment
of pressure is
2
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The statistics and dynamics of instantaneous wall-normal inte-
grals are explored in this work using these equations with DN'S
data, with particular attention to unclosed terms that would
need to be approximated in terms of the solution fields {u;)o
and (u;) to form a closed model.

SIMULATION DATASETS

Direct numerical simulations (DNS) of half-channel flow
are performed at Re; = 180 and Re; = 395 (based on the
height of the half-channel) to provide data for the present
investigation. The incompressible Navier-Stokes equation is
solved on a staggered Cartesian grid using 2nd-order central
differencing and an explicit 3rd-order Runge-Kutta scheme for
time advancement (Lozano-Duréan et al., 2018). To facilitate
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statistical comparisons between half-channel and full-channel
flows, two full-channel simulations are also performed using
no-slip conditions at both top and bottom walls with Re; = 180
and 395 (based on the half-height of the full channel). Finally,
data from the Re; = 1000 channel flow simulation from the
Johns Hopkins Turbulence Databases (JHTDB) are also used
(Graham et al., 2016). The list of flow cases is summarized in
Table 1 along with the plot style for each case in the figures.

Table 1. List of DNS databases analyzed in this paper.

Case  Configuration Re;  Legend

180hc  half-channel 180  ------
395hc  half-channel 395  ------
180fc full-channel 180

395fc full-channel 395
1000fc  full-channel 1000

For all cases, the streamwise and spanwise lengths are
Ly = 87 and L; = 3, respectively. To maintain appropri-
ate accuracy for the second-order staggered finite-difference
DNS cases, the constraint for the grid spacing based on inner
units for the streamwise and spanwise directions are Ax* < 7.0
and AzT < 6.0, respectively. Additionally, the constraints
for the wall-normal grid spacing at the wall and at the cen-
ter are Ay, < 0.5 and Ay, < 6.0, respectively. The suf-
ficiency of this mesh resolution was validated by accurately
matching the one point statistics between the simulation data
and Moser et al. (1999). Specifically, the mean velocity and
Reynolds stress component profiles were sufficiently matched
(not shown).

RESOLUTION ANALYSIS

Qualitatively, Figure 1 demonstrates how salient turbu-
lence structures are resolved even after applying a wall-normal
integral across the entire wall layer. In this section, the ability
of the two-dimensional integral field, (¢)¢ 1, to resolve turbu-
lent dynamics is analyzed quantitatively. The wall shear stress
vector, T;, provides a local sink for the zeroth moment of mo-
mentum equation, Eq. (6). This wall shear stress is completely
unresolved and requires closure modeling, as is typical for in-
tegral approaches. However, the local sink of the first moment
of momentum equation, Eq. (7), is primarily due to (u;v)q at
high Reynolds numbers, which is partially resolved. In terms
of the average flow, (u;v)o = jol ulv'dy represents the turbulent
enhancement of the skin-friction coefficient relative to a base-
line laminar flow (Elnahhas & Johnson, 2022). Similarly, the
fluxes (u;u;)o,1 in Eqs. (6) and (7) are partially resolved.

To understand how much of the Reynolds stresses may be
directly resolved in the two-dimensional instantaneous wall-
normal integral field, a triple decomposition for the velocity
field is defined for and field, ¢, as

P=0+0" =0+ (¢"),+9¢" (10)

where ¢ is the Reynolds average The turbulent fluctuations re-
solved by the two-dimensional integral field is (¢’)¢ and the
unresolved remained is ¢”. Thus, any covariance maybe de-
composed into resolved and unresolved parts,

(0" )g = (@)o (W)o+ ("Y"), . )

The fraction of any covariance which is resolved in the two-
dimensional representation is defined as,
!/ !
Ty = (20 W, (12)
AN

The results of the resolved percentages of the Reynolds
stress components by the wall-normal integration for each flow
case are arranged in the ‘All Scales’ section of Table 2. When
compared at the same Re¢, the half-channel and full-channel
flows produce very similar results. For the Reynolds numbers
shown, roughly 40% — 50% of the Reynolds shear stress in-
tegral (the main sink term in Eq. (7)) is resolved by the 2D
velocity integral field. The percent resolution, 7, decreases
slowly with increasing Reynolds number.

The resolution of the diagonal (kinetic energy) compo-
nents of the Reynolds stress tensor is significantly lower than
the shear stress, especially for the spanwise fluctuations, T,,,.
This indicates that the resolved velocity integral field is more
efficient at capturing more active motions of turbulence (i.e.,
those which contribute more to the momentum transport across
the layer). The percent resolution of spanwise and wall-normal
kinetic energy decreases with increasing Reynolds number, but
the streamwise kinetic energy remains at a nearly constant at
~ 33% resolution across the Reynolds numbers investigated.

The ‘Large Scales’ section of Table 2 recalculates the res-
olution fractions using only the largest scales, here defined by
kxh < 1 (see, e.g., Kim & Adrian (1999), Monty et al. (2009)).
The large-scale contributions to the Reynolds shear stress in-
tegral is = 60% resolved, showing that the 2D velocity inte-
gral field is more efficient at resolving larger-scale motions.
Furthermore, the fractional resolution grows with increasing
Reynolds number, a reversal of the trend observed when all
scale of motion are included. The fractional resolution of
streamwise and wall-normal kinetic energy is likewise higher
when only the large scales are included, though the spanwise
kinetic energy resolution is not higher. The streamwise kinetic
energy resolution for large scales also grows with increasing
Reynolds number, while the other two components remain rel-
atively constant. There are no significant differences between
half-channel and full-channel turbulent flows. Based on aver-
aging over 20 flow-through times, the statistical uncertainties
of these results are estimated to be on the order of ~ 0.1% for
the Re; = 180 and 395 cases. The uncertainty is larger (up to
2%) for the JHTDB Re; = 1000 case because only one flow
through time is available.

To further investigate the scale-wise resolution of wall-
normal integrals, the resolution fraction may be defined on a
scale-by-scale basis as

P
Ty (k) = LW, (13)
(9*w)o

where the (/\) denotes a Fourier transform in the streamwise
direction and (-)* denotes the complex conjugate. This may
be thought of as a transfer function for the wall-normal inte-
gral operator. The transfer functions for the TKE (left) and
Reynolds shear stress (right) are plotted for all flow cases
in Figure 2. As reflected in Table 2, larger scales (smaller
wavenumbers) are more resolved than smaller scales, as may
be expected. If anything, f"m,ﬂwrww and f"w decrease rela-
tively slowly with increasing wavenumber compared to expec-
tations, e.g., ~ k; ! based on a naive interpretation of wall-
normal integration as an anti-derivative in the streamwise di-
rection. At larger scales, the percent resolution increases with
increasing Reynolds number, but this trend reverses for small
scales. This reversal explains the opposite trends seen in Table
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Table 2. Percentage of the Reynolds stress component integrals resolved by instantaneous wall-normal integrals. The last column in
each region of the table reports the resolved turbulent kinetic energy (TKE).

All Scales Large Scales
Case | Tw T Tow T Twtwiww | T T Tow T Tuutoviww
180hc | 34% 39% 16% 52% 31% 48% 48% 12% 61% 45%
395he | 34% 31% 13% 45% 28% 58% 46% 13% 64% 54%
180fc | 33% 40% 16% 51% 30% 44% 46% 13% 58% 42%
395fc | 31% 32% 13% 45% 27% 52% 46% 13% 62% 48%
1000fc | 33% 26% 11% 42% 26% 9% 47% 14% 66% 55%
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Figure 2. As a function of streamwise wavenumber, the percent resolution of Reynolds stresses: TKE (left), shear stress (right).

2. The transfer functions in Figure 2 are very similar for full-
channel and half-channel flows when compared at the same
Reynolds number. Note that JA"W diverges for Re; = 180 cases
at ky 2 20 because the smaller scale motions becomes close to
locally isotropic, causing the denominator in Eq. (13) to ap-
proach zero. This effect is also seen for the higher Reynolds
number cases at higher wavenumbers.

CONDITIONAL AVERAGES

While the previous section quantifies the extent to which a
two-dimensional velocity integral field resolves turbulent fluc-
tuations, there inevitably remains unresolved flow physics re-
quiring approximate models to close Egs. (6) and (7). To lay
the groundwork for developing closure approximations, this
section explores the statistics of unclosed terms as well as the
resolved 2D velocity integral fields, (u;)o and (u;);. Note that
the first moment of the mass conservation equation yields an
equation for (v)g in terms of the divergence of (u;);.

Figure 3 illustrates the standardized probability density
function (PDF) of the zeroth and first streamwise velocity mo-
ments for the half-channel flow DNS results. The mean, stan-
dard deviation, skewness, and kurtosis values are shown in Ta-
ble 3. The mean zeroth moment is the flow rate (normalized
using friction velocity and half-channel height). The mean first
moment is larger than the zero moment because the first mo-
ment puts more weight to the higher velocity regions further
from the no-slip wall. The mean value of both moments grow
as Reynolds number increases because of the normalization
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Figure 3. Standardized PDF of the velocity moments. The

color code and line types of these plots correspond to Table
1. The plots with no marker correspond to the zeroth moment
and the plots with triangle markers signify the first moment.

with respect to the friction velocity. The zeroth and first mo-
ment integrals fluctuate significantly, as visually shown in Fig-
ure 1. Interestingly, the standard deviation for the first moment
is slightly smaller than the zeroth moment, the opposite trend
as the mean. The skewness and kurtosis values indicate that
the fluctuations are fairly close to Gaussian, see also Figure 3.

Next, to develop understanding of how unclosed terms
can be approximated in terms of known variables, condi-
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Table 3. Single-point statistics for the zeroth and first mo-
ments of streamwise velocity, Eq.(4).

Re; 180 395

<M>0,1 () (1), (U)o (),

Mean 15.75 1731 | 17.61 19.03
Std. Dev. | 090 0.80 | 0.87 0.81
Skewness | -0.22 -0.20 | -0.17 -0.26
Kurtosis | 290 296 | 2.86 293

tional averages of these terms are calculated conditioned on
the zeroth and/or first velocity moments. Figure 4 illustrates
the conditionally-averaged wall shear stress in the stream-
wise direction (left) and the zeroth moment of the unresolved
Reynolds shear stress (right), see Eq. (6) and (7), respectively.
In this figure, the averages are conditioned on either the zeroth
or first moment of the velocity profile.

Of course, the wall-shear stress will increase with respect
to both of the velocity moments due to higher velocity gradi-
ent effects. All four curves are strikingly linear. The slope
for the zeroth moment is higher than the first moment because
the first moment places a higher weight on the velocity further
from the wall, which is less influential in setting the velocity
gradient at the wall. It is also noted that a positive shift occurs
as Rer increases, which is simply due to the increasing average
velocities when normalized on the friction velocity, Table 3.

The conditional average of the unresolved turbulent mix-
ing is more interesting. For both Reynolds numbers, it does
not have a strong negative or positive trend with the zeroth mo-
ment. It does, however, strongly increase with increasing first
moment. This trend may be explained by the fact that the first
moment is more influential in setting the distribution of the lo-
cal shear and the potential presence of local inflection points
that may accelerate the production of unresolved turbulence.

Figure 5 plots the conditionally-averaged wall shear stress
(left) and the zeroth moment of the unresolved Reynolds shear
stress (right) conditioned simultaneously on both velocity mo-
ments. These conditional averages are based on the Re; = 180
half-channel (180hc) case. The behavior of these conditional
averages generally coincide with the results in Figure 4 in the
sense that the wall shear stress increases with the velocity mo-
ments. A richer view emerges, however. For example, the
conditionally-averaged wall stress decreases with increasing
first moment if the zeroth moment is held fixed. The explana-
tion for this trend is as follows. For a fixed flow rate, increasing
the first moment increases the velocity further from the wall
while slowing down the fluid near the wall. The result is a re-
shaping of the local velocity profile so as to decrease its slope
at the wall and hence its wall shear stress. Interestingly, as
in Figure 4, the strong positive correlation between the zeroth
and first moment fluctuations recovers a positive slope when
the stress is only conditioned on the first moment.

The opposite trend may be observed in the right panel of
Figure 5. For a fixed zeroth moment, an increase in the first
moment increases the conditional average of the unresolved
Reynolds shear stress integral. To explain this, consider that
the increase of the first moment at fixed flow rate moves the
local shear away from the wall. Given that turbulent produc-
tion is proportional to the shear, the local production of un-
resolved turbulence is more likely further from the wall. The
wall damping effect (wall-blocking) is thus reduced allowing
for more vigorous unresolved turbulent mixing of momentum.

CONCLUSIONS

In this work, the dynamical equations for instantaneous
wall-normal integrals of the velocity field are established for
a half-channel configuration. The integral equations are de-
veloped from the Navier-Stokes equation for the zeroth and
first wall-normal moment. Direct numerical simulations are
employed to study key sink terms in the moment equations,
namely, the wall shear stress and the integral of the Reynolds
shear stress across the half-channel. The results show that
nearly 50% of the Reynolds shear stress is resolved by the
two-dimensional instantaneous integral representation. This
fraction decreases with increasing Reynolds number, however,
because the introduction of a wider range of small-scale mo-
tions increases the proportion of turbulent fluctuations that are
filtered out by the wall-normal integration procedure. On the
other hand, the fraction of resolved Reynolds shear stress inte-
gral increases to > 60% when considering only contributions
from kyh < 1. More importantly, the resolution fraction for
these large-scale motions increases with increasing Reynolds
number. DNS of half-channel and full-channel configurations
lead to very similar results, but the extension and application
of the framework to turbulent boundary layers is an important
future topic. Finally, conditional averages of the unresolved
part of the sink terms show a strong dependence on the local
value of the resolved terms, providing a path forward to con-
structing predictive models.
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