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ABSTRACT
A self-similarity of turbulence statistics for 3 velocity

components in high Reynolds number pipe flow is discussed
based on detailed experimental results from Reτ = 11200 to
20750 using LDV at Hi-Reff. Two logarithmic slopes in the
turbulence intensity profiles are observed in the logarithmic
region of the mean velocity profile. Self-similarity is observed
at Reτ = 20750 in the higher order moments and KLD pro-
files at the near-wall side in the logarithmic region of the mean
velocity profile. However, in the outer logarithmic region, self-
similarity is not observed. It is suggested that the characteris-
tics of the turbulence statistics in the inner side in the logarith-
mic region are more consistent with the attached eddy hypoth-
esis than in the outer side.

INTRODUCTION
One of the important research subjects for wall-bounded

flows is the establishment of scaling laws for mean velocity
and turbulence intensity profiles. Among the scaling laws fo-
cused on in the previous studies, the logarithmic behaviour
would be the most fundamental but important one in the wall-
bounded flow. The well-known logarithmic behaviour is ob-
served in not only in the mean velocity profile but also in the
turbulence intensity profile. The turbulence intensity around
y/R=0.1 is given by the following:

⟨(u′+)2⟩= B1,u −A1,uln(y/R) (1)

where R is the outer length scale (radius of the pipe) and u′

is the streamwise velocity fluctuation. A1,u and B1,u are con-
stants. In this paper, the bracket ⟨⟩ denotes the mean value.
Marusic et al. (2013) mentioned that both logarithmic regions
in the mean velocity and Eq. (1) are almost consistent. If this is
true, the cross-plot between the mean velocity and turbulence
intensity profiles would show a linear relationship. However,
as shown in Fig. 1 based on our previous result (Ono et al.,
2022), the linear relation does not cover all logarithmic re-
gion in mean velocity profile, rather two linear relations are

Figure 1. Cross plot between mean velocity and turbulence
intensity profiles at Reτ = 20750 in pipe flow.

observed in this result. To clarify the reason for this inconsis-
tency is the main subject of the present paper.

The existence of the logarithmic layer in the turbu-
lence intensity was suggested by the attached eddy hypothe-
sis (Townsend 1976, hereinafter AEH) and was modelled by
Perry and Chong (1982) that the population density of eddies
attached to the wall varies inversely with the distance from the
wall. In the last decade, studies at high Reynolds numbers
(e.g. Hultmark et al. 2013) have provided clear evidence for
the existence of a logarithmic region in the turbulence intensity
profiles and strongly support the AEH from the perspective of
turbulence statistics. The AEH gives the following relation-
ships for the wall-normal and spanwise velocity components:

⟨(v′+)2⟩= B1,v (2)

⟨(w′+)2⟩= B1,w −A1,wln(y/R) (3)

where v′ and w′ are the wall-normal and spanwise velocity
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Figure 2. Schematic of experimental pipe layout. The glass
pipe is installed in the window chamber.

Figure 3. The measurement line for 3 velocity components
and beam alignment of LDV system.

fluctuations, respectively. The AEH includes the critical as-
sumptions that characteristic attached eddies are self-similar,
i.e. their energy density is constant and their overall geometry
scales only with distance from the wall. With these and other
assumptions, Townsend (1976) derived the turbulent intensity
distributions with the distance from the wall, which are Eqs.
(1)-(3). For this strict assumption, Baars et al. (2017) defined
structures that are attached to the wall and showed that these
structures are self-similar with a constant streamwise/wall-
normal aspect ratio by two-point measurements in the wall-
normal direction and spectral coherence analysis. However,
the self-similarity in perspective of the turbulence statistics is
difficult to find in the logarithmic region of the turbulence in-
tensity profile and the discussion is still ongoing. For exam-
ple, Perry et al. (1986) predicted that the self-similar structure
according to the AEH leads the spectral slope of k−1. How-
ever, experimental and numerical studies have so far shown no
clear evidence for the k−1 spectrum thus far, although the log-
arithmic region of Eq. (1) has been observed (e.g. Vallikivi
et al. 2015). Baars et al., (2020) proposed the superimposed
turbulence intensity profile and mentioned that the Reynolds
number in the existing experimental result is too low to ob-
serve the k−1 spectrum. Furthermore, the Hwang et al., (2022)
mentioned that the k−1 spectrum is not necessary condition to
establish the logarithmic behaviour in the turbulence intensity
profile.

In this paper, we discuss the self-similarity in perspec-
tive of the probability density function (PDF) for three veloc-
ity components in high Reynolds number pipe flow. If the at-
tached eddies have a self-similar distribution in space, the ve-
locity fluctuations caused by them are expected to be invariant
independently of the wall-normal position in the logarithmic
region. We discuss the similarities by higher order moment
and Kullback-Leibuler divergence (KLD) analysis in this pa-
per to consider about the strict establish region of Eqs. (1)-(3)
according to AEH based on reliable experimental data for the
three components measured in this study.

EXPERIMENTS
Experiments were conducted in high Reynolds number

actual facility (Hi-Reff). The working fluid in this facility is
water. Hi-Reff equips the overflow head tank suppling stable
flow to the test section, the large capacity underground stor-
age tank to achieve high stability of water temperature and
the static gravimetric weighing tank to measure high accurate
flowrate. The schematic of the testing line is shown in Fig. 2.
The straight pipe with D = 100 mm has length of 110D and
the 90D within it is carefully polished with mean roughness
Ra is 0.1µm. At the downstream of the polished pipe, the win-
dow chamber with a glass pipe was installed. The glass pipe
is also well polished to achieve a high roundness of the inner
diameter and a small tolerance of the glass wall thickness.

The velocity measurement was conducted by laser
Doppler velocimetry (LDV). By changing the beam orienta-
tion and the measurement line as shown in Fig. 3, 3 velocity
components were measured. The control lengths that affect
to the measurement result are L+

v = 29 for v component and
L+

w = 190 for w at Reτ = 20750. L+
u for u component depends

on the wall-normal position and is e.g. L+
u = 18 at y+ = 15

and L+
u = 59 at y+ = 400. The correction for the spatial reso-

lution was conducted according to the analysis by Durst et al.,
(1995). In addition, the correction for the passing frequency
of particles and the fringe distortion were also conducted. The
details of the correction procedure are shown in our previous
paper (Ono et al., 2022).

The range of Reynolds numbers examined in this experi-
ment was from Reτ = 990 to 20750. The detailed experimental
results for the 3 component turbulence intensity profiles have
been reported in Ono et al., (2023). In this paper, we mainly fo-
cus on the experimental result at Reτ = 11200 and 20750. The
bulk velocity is calculated from the flowrate, which is mea-
sured using gravimetric weighing tank. The wall shear stress
for the friction velocity is calculated from the friction coeffi-
cient given by Furuichi et al., (2015).

RESULTS AND DISCUSSION
Mean velocity and turbulence intensity profiles
for 3-components

The mean velocity profile and the 3-component turbu-
lence intensity profiles at Reτ = 11200 and 20750 are shown
in Fig. 4. The details of the symbols and lines are described in
the caption of this figure. Based on the difference of the linear
relation shown in Fig. 1, the logarithmic region for near-wall
side is referred to as the“ inner-log region”and outer side
is as the“ outer-log region”. The logarithmic region of the
streamwise component in previous high Reynolds number re-
search would correspond to the outer-log region (e.g. Marusic
et al., 2013). In fact, the logarithmic slope can be observed in
the streamwise and spanwise component in the outer-log re-
gion and those slopes are almost consistent with the previous
works (see Ono et al., 2023). Here, we focus on the region
where Eqs. (1)-(3) according to the assumption of AEH sat-
isfy. Eqs. (1)-(3) should be established in the same region.
As mentioned above, the logarithmic region in the streamwise
and the spanwise turbulence intensity profiles are investigated
in the same region, which is the outer-log region. For the wall-
normal component, according to Eq. (3), the constant region
should be observed in the same region. However, the turbu-
lence intensity profile of the wall-normal component does not
show the constant value in the outer-log region.

Next, we investigate the inner-log region. As shown by
the lines in Fig. 4, the logarithmic slopes are also observed in
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Figure 4. Mean velocity and turbulence intensity profiles at
(a) Reτ = 11200 and (b) Reτ = 20750. Solid black and orange
lines are obtained by the fitting to experimental result to Eqs.
(1)-(3). Light blue and orange symbols are the experimental
result used to the fitting. The blue long and short alternative
dashed lines are the start and end points of the logarithmic
region of mean velocity profiles. The logarithmic region of the
mean velocity profile is divided two regions with yellow and
gray shaded based on the lines according to Eq. (1)-(3). The
yellow shaded region is referred as the inner-log region and
gray is the outer-log region.

the streamwise and spanwise components. Furthermore, the
constant region in the wall-normal component is clearly ob-
served in the inner-log region. From the turbulence intensity
profiles obtained in this experiment, it is suggested that only
the inner-log region satisfies all of Eqs. (1)-(3). Since this re-
gion is inconsistent with the previous studies (e.g. Marusic et
al., 2013), the difference of the turbulence statistics between
the two logarithmic regions is discussed in the next section.

The coefficients of each fitting line in both log region ac-
cording to Eqs. (1)-(3) have Reynolds number dependence,
although they have a large uncertainty due to fewer data points
to calculate them. In the previous papers, the coefficients are
expected to be universal. However, the recent study by Hwang
et al. (2022) mentioned that they have a Reynolds number de-
pendence. Even the logarithmic slope in the mean velocity
profile is still under discussion and this indicates the difficulty
in obtaining the logarithmic slope precisely. Further works are
necessary to determine the logarithmic slope of the turbulence
intensity profile.

Several relations between the logarithmic region in mean
velocity and turbulence intensity profiles are mentioned in this
paper. It is clearly found that the logarithmic region in the
mean velocity profile is covered by the inner-log and outer-log
region of the turbulence intensity profile. The starting points
according to Eqs. (1)-(3) and the logarithmic region of the
mean velocity profile are well consistent each component. The

Figure 5. Skewness (S) and kurtosis (K) for three velocity
components at (a)(b)(c) Reτ = 11200, (d)(e)(f) Reτ = 20750.
White circles are skewness and red are kurtosis. The blue long
and short alternative dashed lines are the start and end points
of the logarithmic region of mean velocity profiles. The black
dashed line is the bound between the inner-log and outer-log
regions.

end point of the inner-log region (or the start point of the outer-
log region) are similar for the streamwise and spanwise com-
ponent. Only the wall-normal component, the region accord-
ing to Eq. (2) is larger than other components. On the other
hand, the end point of the outer-log region is not consistent
each component including the mean velocity profile.

Higher order moment
As mentioned, the assuming in the AEH means a self-

similar structure in the logarithmic region. As the logarithmic
law in the mean velocity distribution implies the existence of a
constant stress layer, the emergence of logarithmic behaviour
in the turbulence intensity profile also implies self-similarity in
the turbulence statistics. In this paper, the self-similarity of the
turbulence statistics according to the AEH is considered from
the probability density function (PDF). To investigate the PDF
form, the profiles of the skewness and kurtosis are shown in
Fig. 5 as firstly. If the PDF form normalized by the standard
deviation has self-similarity, both skewness and kurtosis pro-
files are expected to be constant. Therefore, they are constant
at the regions where Eqs. (1)-(3) are established according to
the AEH. However, no region satisfies it completely in Fig.
5 although only the spanwise component has almost similar
normalized PDF in the logarithmic region.

On the other hand, the kurtosis profiles show important
feature regarding the inner-log and outer-log region. The kur-
tosis in the streamwise and wall-normal components shows
clear difference between the inner-log and outer-log regions
and seems to be nearly constant in the inner-log region. Here,
we make attention to the even order moment in the following.
Several studies have reported that the logarithmic behaviour
in the turbulence intensity distribution is also observed in the
profile of even order higher moments (e.g. Meneveau and
Marusic, 2013). The profiles of even order higher moment
at Reτ = 20750 for each compoenent are shown in Fig. 6. Al-
though the scattering of the data is investigated in the higher

3



13th International Symposium on Turbulence and Shear Flow Phenomena (TSFP13)
Montreal, Canada, June 25–28, 2024

Figure 6. Higher order moments for three velocity compo-
nents at Reτ = 20750. The blue long and short alternative
dashed lines are the start and end points of the logarithmic
region of mean velocity profiles.

order moment, the profiles for the streamwise and spanwise
component have logarithmic relations up to p = 5 in both log
regions. The most significant point of this result is suggesting
the existence of the self-similarity in the wall-normal compo-
nent. The higher order moment in the wall-normal component
indicates constant value in the inner-log region but not in the
outer-log region. The skewness is also constant in the loga-
rithmic region. Therefore, it is concluded that the normalized
PDF for the wall-normal component is invariant in the inner-
log region. Thus, the difference between the inner and outer
log-region in the wall-normal component is more clearly ob-
served in the higher order moment.

We conduct further consideration for the streamwise com-
ponent. The equation of the logarithmic region in higher order
moment for streamwise component is given by the following,

⟨u′+2p⟩1/p = Bp,u −Ap,uln(y/R). (4)

Figure 7. x-intercept of Eq. (6) for streamwise component at
Reτ = 20750. Orange lines are the fitting line for the inner-log
region and blue are for outer-log region.

Here, the higher-order moments normalized by the 2nd-order
moment are defined as follows:

⟨u′+2p⟩/⟨u′+2⟩p = M2p. (5)

Substituting Eqs. (1) and (4) into Eq. (5), then,

B1.u −A1,uln(y/R) = M1/p
2p {Bp,u −Ap,uln(y/R)}. (6)

When the logarithmic relation in the right and left-hand side
term is established in the same y/R location, the normalized
even moments M1/p

2p must take the constant value at any y lo-
cation in the logarithmic region. Therefore, the logarithmic
region in even order higher moment indicates the existence
of the invariant region of the moment. Using the y/R posi-
tion where ⟨u′+2p⟩1/p = 0 in Eq. (4), namely x-intercept, the
evidence for invariant of the moment is shown in this report.
When Eq. (6) is established, therefore M1/p

2p is constant, the
x-intercept must be same for each order of the moment. The
expansion of the fitting curves for streamwise component is
shown in Fig. 7. The fitting curve for the inner-log region has
clearly same x-intercept for each order of the moment. This re-
sult indicates that the inner-log region satisfies the invariance
of the even moment. On the other hand, the fitting curve for
the outer-log region does not have same x-intercept although
they are crossed at one point. Therefore, the outer-log region
does not satisfy the invariance of the even moment. Since the
skewness has the dependence of the wall-normal position in
both log regions, the self-similar of the turbulence statistics
for 3 velocity component is not observed. However, it is pos-
sible to say that the characteristics of the turbulence statistics
in the inner-log region is more consistent with the assuming of
AEH than the outer-log region.

Divergence
To evaluate the invariant region of a PDF in further, the

Kullback-Leibuler divergence (KLD) as following is useful
(Tsuji et al., 2005),

D(P||Q)≡ ∑
si

p(si)log
p(si)

q(si)
. (7)

where p(si) and q(si) are the discrete PDFs. This formula
gives a quantitative value regarding the similarity between
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Figure 8. Profiles of KLD at (a) Reτ = 11200, (b) Reτ =

20750. Red circles are the streamwise component, Blue are
the wall-normal, Black are the spanwise.

two PDFs. The KLD profiles for each velocity component
are shown in Fig. 8, where p(si) adopts a Gaussian pro-
file. The PDF invariant region for all components is not ob-
served at Reτ = 11200, but it emerges in the inner-log region
at Reτ = 20750. As Barrs et al,(2022) mentioned, the experi-
ments in sufficient high Reynolds number is necessary to ob-
serve the self-similarity according to AEH. Although it is still
unclear that Reτ = 20750 is sufficient to observe it, the result
of KLD profile shown in Fig. 8 is one of the evidence which
the PDF have self-similarity in the inner-log region. On the
other hand, the KLD in the outer-log region does not show
the invariant behaviour. KLD of the streamwise component
increases toward the outside of the outer logarithmic region,
while the wall-normal and spanwise components show nearly
invariant profiles. From those results, it is suggested that the
PDFs in the inner-log region show self-similar, but the outer-
log region do not. This is not direct evidence to satisfy the
assumptions of AEH. However, this result also indicates that
the characteristics of the turbulence statistics in the inner-log
region is more consistent with the assumption of AEH than the
outer-log region.

CONCLUSION
The self-similarity of the turbulence statistics for 3 veloc-

ity components in high Reynolds number pipe flow was dis-
cussed based on the detail experimental results using LDV at
Hi-Reff. The self-similarity was observed at Reτ = 20750 in

the higher order moments and KLD profiles at the near-wall
side of the logarithmic region in the mean velocity profile,
namely the inner-log region. However, at the far-wall side,
namely the outer-log region, it was not observed. The char-
acteristics of the turbulence statistics in the inner-log region is
suggested to be more consistent with the assuming of the AEH
than the outer-log region.
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