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ABSTRACT
Presently, we derive and validate scaling laws for

arbitrary turbulent one-point velocity moments in wall-
bounded flows, focusing on moments from spanwise
and wall-normal velocity components. The scaling laws
are derived using a symmetry analysis of the underly-
ing set of Navier-Stokes equations from which the infi-
nite moment hierarchy is derived and are therefore first
principle-based. They are subsequently validated using
new DNS data, revealing a hidden Reynolds number de-
pendency and the fact that scaling is determined by the
lowest order moment. Consistency with DNS data con-
firms the validity of the scaling laws even for sensitive
fluctuating moments.

DERIVATION OF SCALING LAWS
The subsequent analysis is based on the Navier-

Stokes equations,

∂Ui

∂t
+Uk

∂Ui

∂xk
+
∂P

∂xi
−ν

∂2Ui

∂xk∂xk
= 0 , ∂Uk

∂xk
= 0, (1)

where t ∈R+, xxx ∈R3, UUU =UUU(xxx,t), P =P (xxx,t), and ν rep-
resent time, position vector, instantaneous velocity vec-
tor, pressure, and kinematic viscosity, respectively. In
contrast to Reynolds’ decomposition, i.e. Uk = Ūk +uk,
where (⋅) and uk are respectively mean and fluctuation
quantities, we consider statistical moments based on the
instantaneous flow quantities. Consequently, the generic
multipoint velocity moments in multi index notation are
defined by

Hi{n}
=Hi(1)...i(n) =Ui(1)(xxx(1), t) ⋅ . . . ⋅Ui(n)(xxx(n), t) . (2)

With that definition and analogous to Oberlack et al.
(2022), the multipoint moment equation (MPME) for

the velocity yields
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= 0. (3)

The moment Ii{n−1}[l]
refers to the pressure-velocity cor-

relation and correlates the pressure at l-th. point with
n−1 velocities (see Oberlack & Rosteck, 2010; Oberlack
et al., 2015).

In the following, we carry out a symmetry analysis,
based on the Navier-Stokes equation (1) and the infinite
dimensional system (3). Details on the symmetry theory
for generic multipoint moments are presented in depth
in the planned publication by Görtz & Oberlack (2024).
In the current work we aim to compare the theory with
new DNS data, why we restrict the consideration to
on one-point statistics, i.e. xxx = xxx(1) = xxx(2) = . . . = xxx(n).
The corresponding one-point moments are accordingly
denoted by H

(0)
i{n}

. As the theory was successfully pre-
sented in Oberlack et al. (2022) and validated in Hoyas
et al. (2022) for mean velocity moments composed of
U1, we focus in the current work on the nth moments of
U2 and U3, i.e. U[i], where the square bracket indicates
that no summation is applied.

Very briefly, let us introduce the idea of a
form-invariant Lie symmetry transformation xxx∗ =
ϕϕϕ(xxx,yyy;a), yyy∗ = ψψψ(xxx,yyy;a), leaving a differential equation
FFF = 0 unchanged. Globally, this means that

FFF (xxx,yyy,yyy(1),yyy(2), . . . ,yyy(p)) = 0

⇔ FFF (xxx∗,yyy∗,yyy∗(1),yyy∗(2), . . . ,yyy∗(p)) = 0, (4)

with the pth derivatives of yyy is defined as yyy(p).
The symmetry transformations of the system (3)

known so far are divided into (i) those inherited from
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the Navier-Stokes equations (1) to (3) and (ii) those
based on the statistical treatment which are found only
in (3) and are therefore called statistical symmetries.

Of the nine symmetries of the inviscid Navier-Stokes
equations (1), i.e. the Euler equations, the combined
space-time scaling symmetry, including scaling of pres-
sure and velocity, transforms for in the moment frame
to

T̄Sx/St ∶ t
∗
= eaStt, xxx∗(i) = eaSxxxx(i),

ŪUU
∗
= eaSx−aSt ŪUU

∗
,H∗{n} = en(aSx−aSt)H{n}.

(5)

The translation symmetry of space is simply preserved
in the moment frame,

T̄xi ∶ t
∗
= t, xxx∗(i) = xxx(i)+aaaxxx, ŪUU

∗
= ŪUU

∗
,H∗{n} =H{n}. (6)

The proof of form invariance is easily obtained by sub-
stituting (5) and (6) into (3).

As mentioned before, different scalings in space and
time require vanishing of the viscous term. Therefore,
caution is required at this point, because in principle,
the Navier-Stokes equation (1) admits only one scal-
ing symmetry. Only the Euler equations admit the two
scaling symmetries (5). A detailed explanation why
preservation of both scaling symmetries and consider-
ation of the asymptotic limit ν → 0+ is reasonable for
the construction of scaling laws is presented in Görtz
& Oberlack (2024). There, we carry out a bound-
ary layer-like singular asymptotics in distance space
rrr(i) = xxx(i) −xxx(0). The small expansion parameter is the
Kolmogorov length scale η determining the small scales
where viscosity and dissipation act. This expansion was
first derived in Oberlack & Peters (1993) for isotropic
turbulence and the two-point moment equation. Subse-
quently, the MPME decompose into two equations. The
large scales, much larger than η, are simply determined
by equation (3) with ν = 0. Therefore, scaling laws for
moments even of high order are based on this equation
why it is, together with its special scaling symmetry (5),
the basis for the subsequent analyses. The second equa-
tion stemming from the asymptotic analysis is similar to
the classical boundary layer equation. It acts on small
scales on the order of η where viscosity and dissipation
are dominant.

As mentioned above, the statistical symmetries play
a central role in the derivation of scaling laws. They
were first derived in Oberlack & Rosteck (2010) and in
Wac lawczyk et al. (2014) their physical meaning were
pointed out. The translation symmetry in the moments

T̄ ′{n} ∶ t
∗
= t , xxx∗(i) = xxx(i) ,

ŪUU
∗
= ŪUU +aaa, H∗{n} =H{n}+a

H
{n} (7)

conforms to non-gaussianity. The statistical scaling
symmetry in the moments only

T̄ ′s ∶ t
∗
= t , xxx∗(i) = xxx(i) ,

ŪUU
∗
= eaSs ŪUU , H∗{n} = eaSsH{n} , (8)

can be traced back to intermittency. It stems from the
linearity of the infinite system (3).

Finally for the consideration of plane shear flows
as it is done in this work, the MPME (3) admits addi-
tional symmetries. With x2 the wall-normal coordinate
it allows translation of moments with a linear term in
x2,

T̄ ′L ∶ t
∗
= t , xxx∗(i) = xxx(i) ,

ŪUU
∗
= ŪUU , H∗{n} =H{n}+x2a

L
{n} , (9)

This symmetry has already been discovered in Rosteck
(2014) and is further specified in Görtz & Oberlack
(2024). As we will see later, it leads to a linear correc-
tion of the scaling laws in the log region of the channel
flow. For the core region, this symmetry is broken as it
is inconsistent with the requirement of scaling symmet-
ric to the center of the channel. We see later that the
prefactor of the linear term is very small for both the
U2 and U3 moments in the logarithmic region, but by
no means negligible.

With this, invariant solutions for Un
[i]

for i = 2,3
and n ≥ 2 are derived from the discussed symmetries,
rather similar to Un

1 in Oberlack et al. (2022). Also in
this work, we restrict ourselves to one-point statistics
in comparison with the DNS data. One point moments
arise as special case of the complete set of invariant so-
lution for arbitrary multi-point moments H{n} derived
in Görtz & Oberlack (2024). There, also the symmetry
reduction of the MPME (3) is proven. We combine the
groups (5), (7), (8) and (9), which gives us the global
form of the transformation,

T̄ ∶ x∗2 = eaSxx2, U1
∗
= eaSx−aSt+aSsU1, , (10)

U2
[i]

∗
= e2(aSx−aSt)+aSsU2

[i]
+x2a

L
[i]{2}

+aH
[i]{2}

, . . . ,

Un
[i]

∗
= en(aSx−aSt)+aSsUn

[i]
+x2a

L
[i]{n}

+aH
[i]{n}

Here, aSx, aSt, and aSs are the parameters of the com-
bined three-parameter scaling group. The first moment
of i = 2,3 does not appear, since there is no mean flow
in these directions. The characteristic system, describ-
ing invariant solutions of the spanwise and wall-normal
velocity moments, reads

dx2
aSxx2+ax2

=
dU1

[aSx−aSt+aSs]U1+aH
[1]

{1}

= . . .

dU2
[i]

[2(aSx−aSt)+aSs]U
2
[i]
+aH
[i]
{2}
+x2aL

[i]
{2}

= . . .

=
dUn
[i]

[n(aSx−aSt)+aSs]U
n
[i]
+aH
[i]
{n}
+x2aL

[i]
{n}

. (11)

For details on deriving the characteristic system from
the global form of transformations, we refer to Görtz &
Oberlack (2024).

In the context of integrating (11), we need to dis-
tinguish two cases, i.e. the solutions corresponding to
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the logarithmic and the center region of the channel
flow (see Oberlack et al., 2022). Depending on where
scaling laws are considered, different parameters turn
out to be symmetry breaking, i.e. restricting the group
parameters. The pivotal parameter governing the loga-
rithmic wall-near region is the wall shear stress velocity
uτ =

√
τw/ρ, where τw is the wall shear stress, and ρ

represents density. uτ subsequently forms the exclusive
near-wall velocity scale. Consequently, for a prescribed
specific value, adherence to the scaling of the mean
velocity as dictated by Eq.(10), the wall shear stress
velocity leads to the symmetry-breaking and, hence,
aSx − aSt + aSs = 0. Consequently, the integration of
Eq.(11) under this restriction leads to a reduced param-
eter dependence for the scaling laws in the logarithmic
region due to integration of the first two terms in (11),
and the higher moments follow from the first and further
terms.

Un
[i]
= C̃[i]{n}

(x2+
ax2

aSx
)

ω(n−1)
+

aL
[i]{n}

aSx(1+ω(1−n))
x2

+
aH
[i]{n}

(1+ω(1−n))−aL
[i]{n}

ax2
aSx

aSxω(1−n)(1+ω(1−n))
. (12)

Here, ω = 1−aSt/aSx is a universal constant, and C̃n,[i]

emerges as constant of integration. Similar to the results
in Oberlack et al. (2022) for the U1 moments, we find
three key results: (i) moments n ≥ 2 have a power law
behavior, where (ii) all nth-order moments are linked
with each other by the exponent ω, (iii) the power law
behavior is the same for all three Ui components, which
will later clearly be proven by the DNS data,

For the scaling laws in the channel core region, as
mentioned above, the symmetry of the flow with respect
to the channel center is symmetry breaking, i.e. aL

{n} =

0. Subsequently, in eq. (11), the factors (aSx − aSt +

aSs), . . . ,n(aSx−aSt)+aSs are all non-zero. This again
gives us power-laws for all moments n, including the
mean flow component of U1, i.e. the first moment. We
further find that we can summarize aSx, aSt, and aSs

as two free parameters, since they only occur as ratios.
From the exponents for the first two moments, σ1 and
σ2, the scaling laws for the channel core region follow as

Un
[i]
=C̃′[i]{n}

(x2+
ax2

aSx
)

n(σ2−σ1)+2σ1−σ2

−
aH
[i]{n}

n(aSx−aSt)+aSs
, (13)

Again, all C̃′ are constants of integration, and the
group parameters are summarized as σ1 = 1−aSt/aSx+

aSs/aSx and σ2 = 2(1−aSt/aSx)+aSs/aSx. As can be
seen from the scaling laws, the latter exponents of the
first two moments determine the exponent of all power
laws for the higher order moments.

COMPARISON WITH DNS DATA
The scaling laws (12) and (13) are in the following

validated using new DNS data of a plane turbulent chan-
nel flow, with a Reynolds number of Reτ = 104 using the

code LISO with a grid of about 80 billion points. For
further details on this simulation, the reader is referred
to Hoyas et al. (2022), where, however, for the current
comparison, the length of the DNS was doubled again
compared to the aforementioned work. In addition to
the validation presented in Oberlack et al. (2022), we
will in the following validate the scaling laws for mo-
ments from velocity components i = 2,3. These are of
special interest since no mean flow in this direction ex-
ists. Therefore, in this case instantaneous moments are
identical with the fluctuating moments. In other words,
the scaling laws derived in the previous section hold for
fluctuating as well as for instantaneous moments.

Validation in the logarithmic region
In the following, the wall normal coordinate in the

logarithmic region is denoted by y+, i.e. y+ = 0 defines
the wall. Accordingly, the scaling laws to be validated
in the logarithmic region are given by

Un
[i]

+
=C[i]{n}

(y++A)
ω(n−1)

+B[i]{n}
+L[i]{n}

y+,

for n ≥ 2, (14)

where we have summarized the various constant group
parameters appearing in eq. (12). For a similar val-
idation of the logarithmic law for the averaged mean
velocity, see Hoyas et al. (2022) where the von Kármán
constant a value was obtained to κ = 0.394. It is subject
of ongoing research whether the data below shows that
Cn and Bn result in a simple exponential function in n
as already shown for the U1-moments in Oberlack et al.
(2022).

Fig. 1a and Fig. 1b show the higher U2 and U3-
moments for n = 2,4,6 in the logarithmic layer. Therein,
we find a comparison between the DNS data and the fit-
ted theoretical result (12). The power law scaling behav-
ior is clearly visible by the double logarithmic plotting.
The universal scaling factor is chosen to ω = 0.1, match-
ing the DNS data and obtaining the best fit for both
figures. This again reveals that both moments obey the
same scaling behavior.

The two key results of these fits are (i) an extremely
good match of the power law with the DNS data for
all moments. Their power law scaling is solely deter-
mined by the single parameter ω and (ii) the validity
of the scaling laws in the log law’s range of validity of
y+ ≃ 400 . . .2500. This range of validity is obtained by
considering a power law indicator function analogous to
the consideration in Oberlack et al. (2022).

Validation in the centre region
In the centre region of the channel, we use the com-

mon way to formulate moments in deficit form. This is
done by using a shifted coordinate x2, with origin x2 = 0
on the channel center. First ideas on a symmetry based
power law similar to (13) in the centre of a channel flow
were formulated in Oberlack (2001). Therein, the mean
velocity was derived in deficit form, which is in the cur-
rent work used for arbitrary moments of Ui with i = 2,3.
Therefore, the power law scaling (13) is transformed to
the universal deficit form
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Figure 1: Comparison of moments between theory
(solid) and DNS data at Reτ = 10000 in the range
y+ ∈ [400,2500] for U2 (a) and U3-moments (b) of or-
der 2, 4, 6 in the logarithmic region. The mentioned
y+ range corresponds to the range of validity of the
log-law for the given Reynolds number as shown in
Oberlack et al. (2022).

Un
i

(0)
−Un

i

un
τ

=C′i,n(
x2
h
)

n(σ2−σ1)+2σ1−σ2
(15)

The exponent (0) in Un
i

(0) refers to the value of the mo-
ment in the centre of the channel at x2 = 0 and, similar
to Eq. (14), α′ and β′ subsume various constants and
are presumed to be universal in the core region.

In Fig. 2, we show the moments from the DNS at
Reτ = 104 according to the deficit form up to order n = 6.
It is obvious that for a large range, the moments show
identical gradients, independent from the order n. This
behavior is, according to the scaling law (15), reach-
able if σ1 = σ2. Consistent with this, the parameters in
eq. (15) were fitted, namely to σ1 = 1.95 and σ2 = 1.94.
Indeed, the fit of the core moments here shows a larger
relative deviation from the DNS data than for the U1-
moments in Oberlack et al. (2022), which might be due
to the extremely sensitive fluctuating moments here.
However, we argue that against this background eq. (15)

U
2

U
3 Theory

Figure 2: Comparison between theory (solid) and
DNS data at Reτ = 10000 for U2 and U3-moments
of order 2, 4, 6 (from bottom to top) in the core
region.

represents the scaling very well, which is further sup-
ported by it being an invariant solution of the moment
equations, as we show in Görtz & Oberlack (2024).

Summing up, like the U1 moments, all U2 and U3
moments in the core region scale with a single exponent
which is independent of n, i.e. these moments clearly
admit strong anomalous scaling. This is accompanied
by strongly intermittent instantaneous velocities in the
channel center, to which we will assign the initially inde-
terminate velocity scale u∗. Regarding the symmetries
in (5) shows that the constant exponent for all velocity
moments is accompanied by symmetry breaking

aSx = aSt.

Thus, the scaling of the instantaneous velocities in (5)
is broken by the velocity scale u∗ and the scaling of
moments by the intermittency symmetry (8) alone is
preserved, leading to the observed anomalous scaling.
Summing up, scaling of moments in the channel center is
fundamentally determined by the statistical symmetries.

Reynolds number dependency
In Görtz & Oberlack (2024) we show how viscosity

and Reynolds number affect the scaling laws via deriv-
ing an integral constraint for the constants and group
parameters in the scaling laws, which subsequently de-
pend on the Reynolds number. This integral constraint
includes an integration over the interface between log-
arithmic region and viscous sublayer. At this surface,
values of moments and pressure-velocity correlations are
determined by viscous dissipation in the sublayer. This
effect is carried through the logarithmic region up into
the core region, even though, according to the asymp-
totic expansion in Görtz & Oberlack (2024), the large
structures are mainly determined by inviscid equations.
Consequently, in comparison to the logarithmic region,
the Reynolds number dependency of the parameters in
the deficit law core region is significantly weaker than
in the log region, which is right next to the viscous
sublayer. For reasons of shortness, the analysis in the
current work is restricted to the Reynolds number de-
pendency of the parameters in the logarithmic region.
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Figure 3: Values for scaling prefactor C[1]{2} from
eq. (16) fitted for Reτ = 180 . . .9.4 ⋅104

However, as we aim to compare the coefficients for a
broad number of Reynolds numbers, we are restricted
to second order U1 moments, since for these moments a
large number of data sets exists. Recall that the scaling
law for these moments in the log region is given by

U2
1
+
=C[1]{2}

(y++A)
ω
+B[1]{2}

+L[1]{2}
y+, (16)

admitting the same power law form as for higher U2 and
U3 moments as given in (14). It is to point out that the
exponent ω = 0.1, determining the power law behavior,
is universal and the same for all velocities.
From the statement made above, we assume the
Reynolds number dependency to be hidden in C,A,B,L,
which are in the following compared for different
Reynolds numbers. For the fits of (16), we used DNS
data as well as experimental data. The set of ex-
perimental data contains data from Hultmark et al.
(2012) measured at the Princeton Superpipe for Reτ =

2000 . . .9.4 ⋅104 and Zimmerman et al. (2019) and Örlü
et al. (2017) measured at the CICLoPE facility of the
University of Bologna for Reτ = 5200 . . .3.5 ⋅104. Fitted
parameters referring to experimental data are marked
with a triangle . Regarding DNS data, we used data
from Hoyas & Jiménez (2006) in a Reynolds number
range between Reτ = 180 . . .2000, Lee & Moser (2015) at
Reτ = 5200, Yamamoto & Tsuji (2018) at Reτ = 8000 and
DNS from Hoyas et al. (2022) at Reτ = 104, 1.5 ⋅104. Fit-
ted parameters referring to DNS data are marked with
a square . Note that the fitting range, i.e. the range
of y+ where the constants in the scaling law are fitted,
depends on the Reynolds number. This is quite intu-
itive as the logarithmic region increases with increasing
Reynolds number. For the sake of shortness, the fitting
range is not displayed here. Figs. 3-6 show the values
for the parameters in (16) displayed in semi-logarithmic
form over different Reynolds numbers. The first cen-
tral result, universal for all parameters, is that all data
points, regardless of the source of the data, lie consis-
tently on a line, tending to a constant value for high
Reynolds numbers. This indicates that from a certainly
high Reynolds number, the scaling and therefore the
values of the coefficients is truly independent from the
Reynolds number. From fig. 4, we further find that the
linear term in (16) tends to zero for sufficiently high

Figure 4: Values for constant L[1]{2} from eq. (16),
fitted for Reτ = 180 . . .9.4 ⋅104

Figure 5: Values for constant B[1]{2} from eq. (16),
fitted for Reτ = 180 . . .9.4 ⋅104

Reynolds number and is only of notably relevance in
the case of lower Reynolds numbers. For the DNS data,
the linear term is fitted to zero from a lower Reynolds
number than it is for the experimental data. The reason
for that might lie in the quality of the measured data
but is to be further investigated in future work. It is
to note that the offset A, displayed in fig. 6, is universal
for all higher moments, independent from their direction
and order. This is since A is defined as the ratio between
the group parameters ax2/aSx and therefore universal
for the logarithmic region. In the present work, we have
set it to zero throughout due to the sufficiently high
Reynolds number.

CONCLUSION
From the above considerations and scaling laws, two

main aspects can be concluded. First, for the U2 and
U3 moments, the exponent of the second order moment
is sufficient to obtain the scaling of all higher moments.
The scaling is determined in the logarithmic region by
ω and for the deficit law by σ1 respective σ2. Sec-
ond, we have shown how the scaling laws are affected
by the Reynolds number and how this influence is re-
duced when moving towards the core region. This has
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Figure 6: Values for constant A = ax2/aSx from
eq. (16) fitted for Reτ = 180 . . .9.4 ⋅104

practical importance for turbulence models, especially
if statistical symmetries are included as for example in
Klingenberg et al. (2020).

Summarizing, in this work we have extended the
ideas from the works of Oberlack et al. (2022) and Hoyas
et al. (2022) to higher moments from U2 and U3. Com-
pared to the considerations in these two works, the in-
stantaneous moments in the current work are not af-
fected by the mean flow in x1-direction and are therefore
identical with the fluctuating moments in the respective
direction. For these moments, we have shown that scal-
ing laws derived from first principle symmetry theory
and based on the underlying set of Navier-Stokes and
statistical equations are valid and therefore hold even for
fluctuating moments with much smaller absolute values
and much more sensitive behavior than the moments in
mean flow direction.
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