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Introduction
Accurately predicting drag and heat transfer for com-

pressible high-speed flows is of utmost importance for a range
of engineering applications. A common approach is to use
compressible velocity scaling laws (transformation), that in-
verse transform the velocity profile of an incompressible flow,
together with a temperature-velocity relation. Current meth-
ods (Huang et al., 1993; Kumar & Larsson, 2022) typically
assume a single velocity scaling law, neglecting the different
scaling characteristics of the inner and outer layers. Here, we
use distinct velocity transformations for these two regions. In
the inner layer, we utilize a recently proposed scaling law that
appropriately incorporates variable property and intrinsic com-
pressibility effects (Hasan et al., 2023), while the outer layer
profile is inverse-transformed with the well-known Van Driest
transformation (Van Driest, 1951). The result is an analyti-
cal expression for the mean shear valid in the entire boundary
layer, which combined with the temperature-velocity relation-
ship in Zhang et al. (2014), provides predictions of mean ve-
locity and temperature profiles at high accuracy. Using these
profiles, drag and heat transfer is evaluated with an accuracy of
+/-4% and +/-8%, respectively, for a wide range of compress-
ible turbulent boundary layers up to Mach numbers of 14.

Proposed Method
An incompressible velocity profile is composed of two

parts: (1) the law of the wall in the inner layer, and (2) the ve-
locity defect law in the outer layer. We can model the law of
the wall either by composite velocity profiles (Musker, 1979;
Chauhan et al., 2007; Nagib & Chauhan, 2008), or by inte-
grating the mean momentum equation using a suitable eddy
viscosity model (Van Driest, 1956a; Johnson & King, 1985).
Here, we follow the latter approach and utilize the Johnson-
King (Johnson & King, 1985) eddy viscosity model. Likewise,
there are several formulations available to represent the defect
law (Coles, 1956; Zagarola & Smits, 1998; Fernholz & Finley,
1996), of which we use Coles’ law of the wake (Coles, 1956).

Once the reference incompressible velocity profile is ob-

tained, we inverse transform it using our recently proposed ve-
locity transformation (Hasan et al., 2023) for the inner layer,
and the Van Driest (VD) transformation (Van Driest, 1951) for
the outer layer. They are combined as follows:

dū+ = f−1
3 f−1

2 f−1
1 dŪ+

inner + f−1
1 dŪ+

wake (1)

where the factors f1, f2, and f3 constitute the transformation
kernel proposed in Hasan et al. (2023) that accounts for both
variable property and intrinsic compressibility effects, given as
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1− exp

( −y∗

A++ f (Mτ )

)]2
(3)

The value of A+ differs based on the choice of the von Kármán
constant κ , such that the log-law intercept is reproduced for
that κ (Nagib & Chauhan, 2008). With κ = 0.41, the value
of A+ = 17 gives a log-law intercept of 5.2 (Iyer & Malik,
2019), whereas, with κ = 0.384, A+ = 15.22 gives a log-law
intercept of 4.17. The additive term f (Mτ ) accounts for in-
trinsic compressibility effects. Hasan et al. (2023) proposed
f (Mτ ) = 19.3Mτ , that is independent of the chosen value of κ .

In the equations above, ū and Ū represent mean veloc-
ity for compressible and incompressible flows, respectively.
y∗ = y/δ ∗

v is the semi-local wall-normal coordinate where
δ ∗

v = µ̄/(ρ̄u∗τ ) is the semi-local viscous length scale, u∗τ =√
τw/ρ̄ is the semi-local friction velocity scale, and ρ̄ and

µ̄ represent mean density and dynamic viscosity, respectively.
Mτ = uτ/aw is the friction Mach number, where uτ and aw
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are friction velocity and sound speed defined at the wall, re-
spectively. Superscript ‘+’ implies wall-scaling, subscript ‘w’
implies value at the wall, and (.) denotes Reynolds averaging.

In Eq. (1), dŪ+
inner is modeled using the Johnson-King

eddy viscosity model as dy∗/[1+κy∗D(y∗,0)], and dŪ+
wake =

Π/κ sin(πy/δ )π d(y/δ ) is the derivative of the Coles’ wake
function. Here, Π represents the wake parameter and δ (= δ99)
is the boundary layer thickness. Inserting the expressions for
dŪ+

inner, dŪ+
wake in Eq. (1), using dy∗/dy= f2/δ ∗

v , u∗τ = uτ f−1
1 ,

and upon rearrangement, we get the dimensional form of the
mean velocity gradient as

dū
dy

=
u∗τ
δ ∗

v

1
1+κy∗D(y∗,Mτ )

+
u∗τ
δ

Π

κ
π sin

(
π

y
δ

)
(4)

Eq. (4) provides several useful insights. Analogous to an in-
compressible flow, the mean velocity in a compressible flow is
controlled by two distinct length scales, δ ∗

v and δ , characteris-
tic of the inner and outer layers, respectively. The two layers
are connected by a common velocity scale u∗τ (the semi-local
friction velocity), leading to a logarithmic law in the overlap
region. Moreover, in the logarithmic layer and beyond, the first
term on the right hand side reduces to

√
τw/ρ̄/(κy), which is

consistent with Van Driest’s original arguments (Van Driest,
1951). It is crucial to satisfy this condition; otherwise, the log-
arithmic profile extending to the outer layer would not obey
Van Driest’s scaling, while the wake component to which it
is added would. The compressibility transformation used in
this paper (Hasan et al., 2023) naturally satisfies this condi-
tion, however, other transformations like the ones in Volpiani
et al. (2020) and Griffin et al. (2021) don’t. To address this is-
sue Van Driest’s scaling is enforced in the outer layer for these
transformations as discussed in Appendix A.

For convenience, Eq. (4) can also be expressed in terms
of the dimensional variables τw, µ̄ and ρ̄ as,

dū
dy

=
τw

µ̄ +
√

τwρ̄κyD(y∗,Mτ )︸ ︷︷ ︸
µt

+

√
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δ

Π

κ
π sin
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y
δ

)
(5)

where µt is the Johnson-King eddy viscosity model corrected
for intrinsic compressibility effects, as after the transforma-
tion of Hasan et al. (2023). It can be readily used in turbulence
modeling, for instance, as a wall-model in large eddy simula-
tions.

The second term on the right-hand-side of Eq. (5) is
the wake term accounting for mean density variations, where
Coles’ wake parameter Π depends on the Reynolds number1,
as discussed in the subsection below.

Characterizing low-Reynolds-number effects
on the wake parameter

For incompressible boundary layers, Coles’ wake param-
eter is known to strongly depend on Reθ (free-stream Reynolds
number defined as ρ∞u∞θ/µ∞, where θ is the momentum
thickeness and subscript ‘∞’ represents free-stream condi-
tions) at low Reynolds numbers (Coles, 1962; Fernholz & Fin-
ley, 1996; Cebeci & Smith, 1974). For compressible boundary

1The wake parameter also depends on pressure gradient (Coles,
1956), however, the focus here is limited to zero pressure gradient
turbulent boundary layers

layers, the ambiguity of the optimal Reynolds number defi-
nition poses a challenge to characterize the wake parameter.
Fernholz & Finley (1980), mainly using experimental data at
that time, observed that the momentum-thickness Reynolds
number with viscosity at the wall (Reδ2

= ρ∞u∞θ/µw) is the
suitable definition to scale Π. On the other hand, Wenzel
et al. (2018) observed that the wake parameter scales with
Reθ for their direct numerical simulations (DNS) at moder-
ate free-stream Mach numbers (M∞ ≤ 2.5), consistent with the
expectation that Π (being defined at the boundary layer edge)
should scale with Reynolds number based on the free-stream
properties (Smits & Dussauge, 2006; Cebeci & Smith, 1974).
Yet, there is no clear consensus on which definition is relevant
in scaling Π, especially for high-Mach-number flows where
Reδ2

and Reθ are quite different from each other. Given the
recent availability of hypersonic DNS database, we revisit the
question of which Reynolds number best describes the wake
parameter.

First, we evaluate Π for several incompressible and com-
pressible DNS cases from the literature and then report it as
a function of different definitions of the Reynolds number,
searching for the definition yielding the least spread of the
data points. For incompressible flows, the wake strength can
be determined as Π = 0.5κ

(
Ū+(y = δ )−1/κ ln(δ+)−C

)
,

where C is the log-law intercept for the chosen κ . For com-
pressible flows, the wake strength is based on the VD trans-
formed velocity (Fernholz & Finley, 1980; Smits & Dussauge,
2006) as Π = 0.5κ

(
Ū+

vd(y = δ )− (Ū+
vd)

log(y = δ )
)
, where

Ū+
vd is obtained from the DNS data. The reference log law

(Ū+
vd)

log, unlike for incompressible flows, cannot be computed
as 1/κ ln(y+)+Cvd , because Cvd is found to be non-universal
for diabatic compressible boundary layers (Bradshaw, 1977;
Trettel & Larsson, 2016). Hence, (Ū+

vd)
log can be obtained

either by fitting a logarithmic curve to Ū+
vd (Fernholz & Fin-

ley, 1980), or by inverse transforming the incompressible law
of the wall. Here, we follow the latter approach by using the
compressibility transformation of Hasan et al. (2023).

The value of the von Kármán constant κ plays a crucial
role in estimating Π. Spalart (1988) noted that a strong con-
sensus on κ is needed to accurately estimate Π. However, such
a consensus is yet missing (Monkewitz & Nagib, 2023). Nagib
& Chauhan (2008) showed that κ = 0.384 is a suitable choice
for incompressible boundary layers, verified to be true also
for channels (Lee & Moser, 2015) and pipes (Pirozzoli et al.,
2021). However, due to historical reasons and wide acceptance
of κ = 0.41, we will proceed with this value. The same proce-
dure can straightforwardly be repeated with a different value
of κ .

Figure 1 shows the wake parameter for twenty-six
compressible and nineteen incompressible boundary layer
flows, as a function of Reδ2

, Reθ (defined above), Reδ ∗ =
ρ∞u∞δ ∗/µ∞ (where δ ∗ is the displacement thickness) and
Re∗τ∞

= ρ∞u∗τ ∞
δ/µ∞ (the semi-local Reynolds number defined

using free-stream properties). The spread in the data points
is found to be quite large for all the definitions, as Π is the
difference of two relatively large quantities, namely Ū+

vd and
(Ū+

vd)
log at the boundary layer edge, as outlined above. Note

that even incompressible boundary layers are not devoid of
this scatter (Spalart, 1988; Fernholz & Finley, 1996). Figure
1(a) shows the presence of two distinct branches, hence Reδ2

does not seem to be suitable to characterize Π, unlike reported
in previous literature (Fernholz & Finley, 1980; Huang et al.,
1993). Among the four definitions of Reynolds number, Reθ

seems to show the least spread, further confirming the conclu-
sion in Wenzel et al. (2018). Figure 1(b) also reports several
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Figure 1. The wake parameter Π computed using the DNS data and plotted as a function of (a) Reδ2
(b) Reθ (c) Reδ ∗ and (d) Re∗τ∞

for
19 incompressible (Schlatter et al., 2009; Schlatter & Örlü, 2010; Jiménez et al., 2010; Sillero et al., 2013) and 26 compressible (Zhang
et al., 2018; Bernardini & Pirozzoli, 2011; Cogo et al., 2022; Ceci et al., 2022, A. Ceci, private communication) turbulent boundary
layers. M∞ is the free-stream Mach number and Tw/Tr is the ratio of wall and recovery temperatures.

functional forms of Π= f (Reθ ). Use of the modified Kármán-
Schoenherr friction formula (Nagib et al., 2007) for indirect
evaluation of Π does not show saturation at high Reynolds
numbers2. The Cebeci-Smith (hereby CS) relation (Cebeci
& Smith, 1974) underpredicts Π, but reproduces saturation at
high Reynolds numbers. Wenzel et al. (2018) modified the CS
relation with a higher saturation value of Π (0.66) and made it
to fit the DNS data of Schlatter et al. (2009) and Schlatter &
Örlü (2010). Here, we propose a relation similar to that pro-
posed by (Cebeci & Smith, 1974), to achieve a better fit with
data from more recent incompressible DNS of Jiménez et al.
(2010) and Sillero et al. (2013). The relation is

Π = 0.69
[
1− exp(−0.243

√
z−0.15z)

]
(6)

where z = Reθ/425− 1. The proposed curve collapses with
the CS relation at low Reynolds numbers and differs from it
mainly in the high-Reynolds-number saturated region.

Implementation
Eq. (5) covers the entire boundary layer, and it can be

integrated in conjunction with a suitable temperature model
such as the one proposed by Zhang et al. (2014), which is given
as

T̄
Tw

=1+
Tr −Tw

Tw

[
(1− sPr)

(
ū

u∞

)2
+ sPr

(
ū

u∞

)]

+
T∞ −Tr

Tw

(
ū

u∞

)2
(7)

where sPr = 0.8, Tr/T∞ = 1 + 0.5r(γ − 1)M2
∞, r = Pr1/3,

with Tw, T∞ and Tr being the wall, free-stream and recov-

2Saturation at high Reynolds numbers was observed in Coles
(1962) for incompressible boundary layers.

ery temperatures, respectively, and Pr being the Prandtl num-
ber. Moreover, a suitable viscosity law (e.g., power or Suther-
land’s law), and the ideal gas equation of state ρ̄/ρw = Tw/T̄
have to be used to compute mean viscosity and density pro-
files, respectively. The inputs that need to be provided are the
Reynolds number (Reθ ), free-stream Mach number (M∞), wall
cooling/heating parameter (Tw/Tr) and (optionally) the dimen-
sional wall or free-stream temperature for Sutherland’s law. It
is important to note that Eq. (7), and all solver inputs are based
on the quantities in the free-stream, and not at the boundary
layer edge (y = δ99). For more insights, refer to the source
code available on GitHub (Pecnik & Hasan, 2023).

Results
Figure 2 shows the predicted velocity and temperature

profiles for a selection of high Mach number cases. As can
be seen, the DNS and the predicted profiles are in good agree-
ment, thus corroborating our methodology. The insets in
Figure 2 show the error in the predicted skin-friction (c f =

2τw/[ρ∞u2
∞]) and heat-transfer (ch = qw/[cpρ∞u∞ (Tw −Tr)])

coefficients for thirty compressible cases from the literature.
For most cases, the friction coefficient is predicted with +/−
4% accuracy, with a maximum error of -5.3%. The predic-
tion of the heat-transfer coefficient shows a slightly larger er-
ror compared to c f , potentially due to additional inaccuracies
arising from the temperature-velocity relation. In most cases,
ch is predicted with +/−8% accuracy, with a maximum error
of 10.3%.

In order to check the sensitivity of the predictions to the
relation used for the wake parameter, we recomputed the re-
sults using our method but instead of using Eq. (6) to esti-
mate Π, we employed the relation proposed in Wenzel et al.
(2018). The maximum error in the c f prediction changed from
-5.3% to -6.08%, with most of the cases within error bounds
of +/− 5%. For ch prediction, there was an increase in the
maximum error from 10.3% to 11.4%, with most of the cases
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Figure 2. Predicted velocity (top) and temperature (bottom) profiles (dashed lines) compared to DNS (black solid lines) for the
cases with the highest reported Mach numbers in the respective publications: (left to right) M∞ = 13.64, Tw/Tr = 0.18 (Zhang et al.,
2018); M∞ = 4, Tw/Tr = 1 (Bernardini & Pirozzoli, 2011); M∞ = 7.87, Tw/Tr = 0.48 (A. Ceci, private communication); M∞ = 5.84,
Tw/Tr = 0.25 (Ceci et al., 2022); M∞ = 5.86, Tw/Tr = 0.76 (Cogo et al., 2022). (Insets): Percent error in skin-friction (top) and heat-
transfer (bottom) prediction for 30 compressible turbulent boundary layers from the literature (Bernardini & Pirozzoli, 2011; Zhang
et al., 2018; Ceci et al., 2022; Cogo et al., 2022; Huang et al., 2020, A. Ceci, private communication). The error is computed as
εc f = (c f − cDNS

f )/cDNS
f ×100 and likewise for εch . Symbols are as in Figure 1.

within error bounds of +/−8%.
The proposed method is modular in that it can also be

applied using other inner-layer transformations (Griffin et al.,
2021; Volpiani et al., 2020; Trettel & Larsson, 2016; Patel
et al., 2016) with minor modifications as discussed in Ap-
pendix A. This is shown in Figure 3, which compares the pro-
posed approach with another modular approach of Kumar &
Larsson (2022), both with different inner layer transforma-
tions. Additionally, the figure includes results obtained with
the method of Huang et al. (1993) using the VD transforma-
tion, and the widely recognized Van Driest II skin-friction for-
mula (Van Driest, 1956b). Figure 3 also shows the root-mean-
square error, determined as RMS =

√
1/N ∑ε2

c f
, where N is

the total number of DNS cases considered. The Van Driest II
formula and the method of Huang et al. have similar RMS
error of about 6% 3, which is not surprising as both of them
are built on Van Driest’s mixing-length arguments. The er-
rors are selectively positive for majority of the cases, and it
increases with higher Mach number and stronger wall cool-
ing. The source of this error mainly resides in the inaccuracy
of the VD velocity transformation in the near-wall region for
diabatic flows. To eliminate this shortcoming, Kumar & Lars-
son (2022) developed a modular methodology, which is quite
accurate when the transformation of Volpiani et al. (2020) is
used, but it is less accurate if other velocity transformations
are implemented. This inaccuracy is because the outer layer
velocity profile is also inverse-transformed according to the
inner-layer transformation. In the current approach, the ve-
locity profile is instead inverse-transformed using two distinct
transformations, which take into account the different scaling

3Huang et al.’s method with the more accurate temperature veloc-
ity relation in Zhang et al. (2014) leads to an RMS error of 12%.

properties of the inner and outer layers, thus reducing the RMS
error with respect to Kumar and Larsson’s modular method for
all the transformations tested herein. The error using the pro-
posed approach with the TL transformation is preferentially
positive for all the cases. This is due to the log-law shift ob-
served in the TL scaling, which is effectively removed in the
Hasan et al. transformation, thereby yielding an RMS error of
2.66%, which is the lowest among all approaches.

Conclusion
We have derived an expression for the mean velocity gra-

dient in high-speed boundary layers [Eq. (5)] that combines the
inner-layer transformation recently proposed by Hasan et al.
(2023) and the Van Driest (1951) outer-layer transformation,
thus covering the entire boundary layer. The Coles’ wake pa-
rameter in this expression is determined using an adjusted Ce-
beci and Smith relation [Eq. (6)] with the definition of Reθ

as the most suitable parameter to characterize low-Reynolds-
number effects on Π. This method allows remarkably accu-
rate predictions of the mean velocity and temperature profiles,
leading to estimation of the friction and heat-transfer coeffi-
cients which are within +/− 4% and +/− 8% error bounds
with respect to DNS data, respectively. When compared with
other skin-friction prediction methods in literature, our ap-
proach yields the lowest RMS error of 2.66%.

The methodology developed in this paper promises
straightforward application to other classes of wall-bounded
flows like channels and pipes, upon change of the temperature-
velocity relation (e.g. Song et al., 2022), and using different
values of the wake parameter Π (Nagib & Chauhan, 2008).
Also, the method is modular in the sense that it can be used
with other temperature models and equations of state, and can
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Figure 3. Error in skin-friction prediction using the proposed approach compared to different state-of-the-art approaches. The letters
on the X-axis denote the velocity transformation used for that approach. HLPP, GFM, VIPL, TL, and VD stand for the transformations
proposed in Hasan et al. (2023), Griffin et al. (2021), Volpiani et al. (2020), Trettel & Larsson (2016), and Van Driest (1951), respec-
tively. The numbers are RMS values computed as outlined in the text. Symbols are as in Figure 1. The shaded region shows an error
bar of +/-5%. Note that inputs for all the methods are based on properties in the free-stream instead of at the edge of the boundary layer.

also be extended to non-equilibrium boundary layers with ap-
propriate modifications.

Appendix A: Implementation of the method us-
ing velocity transformations in Ref. (Griffin et al.,
2021; Volpiani et al., 2020)

As outlined earlier, in the logarithmic region and beyond,
the first term on the right-hand side of Eq. (5) reduces to√

τw/ρ̄/(κy), which is the same as Van Driest’s original argu-
ments (Van Driest, 1951). It is crucial to satisfy this condition,
otherwise the logarithmic profile extending to the outer layer
would not obey Van Driest’s scaling. The transformations of
Griffin et al. (2021); Volpiani et al. (2020) fail to satisfy this
property. To address this issue, we enforce Van Driest’s scal-
ing in the outer layer by modifying Eq. (1) as follows

y+T ≤ 50 : dū+ = T −1
innerdŪ+

inner + f−1
1 dŪ+

wake,

y+T > 50 : dū+ = f−1
1 dŪ+

inner + f−1
1 dŪ+

wake,
(8)

where Tinner denotes the inner-layer transformation kernel and
y+T is the transformed coordinate. The value of 50 is taken
arbitrarily as a start of the logarithmic region.
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