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ABSTRACT
The impacts of wall temperature on the laminar-turbulent

transition of Mach number M = 0.8 boundary layer over a
flat plate are numerically investigated using direct numerical
simulations. Three different isothermal conditions, pseudo-
adiabatic and 10% cooled and heated walls, are considered.
We introduce tiny disturbances at the specified frequencies
aiming to induce the H-type transition. The wall tempera-
ture is found to affect the modal growth of the velocity distur-
bances, thereby influencing the flow structures that appear in
the transitional regime and the meanflow characteristics. Wall
cooling impedes the growths of the Tollmien–Schlichting (TS)
wave, the subharmonic three-dimensional oblique wave, and
the steady streaks. In particular, as the TS wave is suppressed
well with wall cooling, the streak mode instead becomes dom-
inant like the oblique transition. The three-dimensional flow
structures become elongated in the streamwise direction, nar-
rower in the spanwise direction, and flattened in the wall-
normal direction with wall cooling. Conversely, wall heating
promotes the modal growth of the disturbances and also causes
the three-dimensional flow structures to shrink in the stream-
wise direction and to stretch in the spanwise and wall-normal
directions. These three-dimensional structures deviate the skin
friction profiles and shape factor from their laminar values.
Moreover, it is observed that wall cooling leads to a two-stage
evolution of skin friction and shape factor profiles, correlating
with the lag in the onset of inflection points near displacement
thickness and the boundary between the free stream flow and
the viscosity affecting flow.

INTRODUCTION
This study is firstly motivated by the study of Reshotko

(1979) who proposed the Hydrogen-Fueled Aircraft equipped
with the drag reduction function achieved by cooling the sur-
face with fuel to suppress boundary layer transition. Based on
some linear stability analyses, Reshotko estimated that 20%
drag reduction would be possible in a cruise condition at Mach
number 0.85. This estimation is attractive for the industrial
application, however, the wall temperature effects on the late

stage of the transition where the disturbances grow enough to
interact with each other nonlinearly were not considered.

According to Morkovin (1969), the routes to turbulence
bifurcates depending on the initial disturbance level. In a
low-level disturbance such as a flight condition, the tran-
sition type can be classified into either K-type (Klebanoff
et al., 1962; Rist & Fasel, 1995), H-type (e.g. Kachanov &
Levchenko, 1984; Fasel et al., 1990), O-type (Schmid & Hen-
ningson, 1992; Berlin et al., 1994), or their mixed type. Both
the K-type and H-type transitions originate from the planer
Tollmien-Schlichting (TS) wave and the three-dimensional
oblique waves with a single frequency and wavenumber, but
the frequency of the oblique wave differs; the frequency of
the oblique wave is the same as the TS wave in the K-type
whereas it is half in the H-type. On the other hand, the O-type
transition, also referred to as oblique transition, does not need
the TS wave but only the oblique wave to occur. The nonlin-
ear triad interaction of a pair of oblique waves with the oppo-
site sign of spanwise wavenumber yields a streamwise vortex.
The streamwise vortex yields the streaks via the lift-up effect,
which grow downstream rapidly in a manner of a non-modal
growth due to the non-normality of the shear flow (Trefethen
et al., 1993; Hanifi et al., 1996) to trigger the breakdown to
turbulence. In particular, for compressible flows, since the
most unstable wave is inclined to the flow direction (Mack,
1984) unlike incompressible flows, this three-dimensional un-
stable wave has the potential to cause a dominant streak struc-
ture and result in the O-type transition. Moreover, owing to
a large amplification mechanism of non-modal growth of the
streak, the amplitude of the initial oblique wave can be much
smaller than in other scenarios for the eventual breakdown to
occur (Chang & Malik, 1994). Therefore, it is crucial to take
account into the O-type mechanism when considering a com-
pressible boundary transition. Though as such the transition
scenario has a variety, Berlin et al. (1999) discussed that the
amplification mechanism in the late stage of the transition is
similar regardless of the scenario; the Λ-shaped vortices and
streaks grow through the lift-up effect. The differences come
from the energy balance contained in the TS wave, the oblique
wave, and the steady streak. In the present study, we choose to
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compute the H-type transition as it is more likely to occur than
the K-type due to the higher growth rate (Herbert, 1988) and
the H-type transition includes the lift-up mechanism crucial in
the O-type transition as well.

Here, we briefly review the wall temperature effects on
the stability of a transonic boundary layer. One of the earliest
works concerning the wall temperature effects on the stability
of the compressible boundary layer was made by Lees & Lin
(1946). They found that the generalized inflection point cor-
responds to the inflection point in incompressible flows, and
theoretically showed that wall cooling stabilizes the bound-
ary layer to the inviscid disturbances. Concerning the vis-
cous instability, Mack (1984) performed the linear stability
analyses and revealed that the low-frequency first mode, the
counterpart of the TS wave in incompressible flows, is stabi-
lized with wall cooling in the compressible flows. In the H-
type transition, the secondary instability of the subharmonic
oblique wave on the TS wave plays an important role (Herbert,
1988). Masad et al. (1992) performed the Floquet analyses
and showed that the secondary unstable subharmonic oblique
wave at a low spanwise wave number is stabilized with wall
cooling, but the subharmonic wave at a high spanwise wave
number is destabilized. The effect of wall temperature on
oblique transitions has not been mentioned much and has not
been fully elucidated, so there is still room for further clar-
ification. Recently, improvements in computer performance
have made it possible to perform direct numerical simulations
(DNS) to study the effects of wall temperature on boundary
layer transitions in more detail. However, the majority of
research efforts regarding the effects of wall temperature on
compressible boundary layer transition have been focused on
hypersonic boundary layers, aimed at understanding the wall
temperature impacts on Mack’s second mode (e.g. Unnikrish-
nan & Gaitonde, 2021). For a supersonic flow, Shadloo &
Hadjadj (2017) conducted the DNSs of the transition over a
strongly heated-/cooled wall and showed that wall heating sta-
bilizes the flow contradicting the prior studies. Interestingly,
the following research by Sharma et al. (2018) has concluded
that the wall temperature effect switches depending on the
amplitudes of initial disturbances; the wall heating stabilizes
the disturbances with amplitudes above 1%, but the detailed
mechanism remains unclear. Moreover, Masad et al. (1992)
reported that wall heating/cooling is more effective in desta-
bilizing/stabilizing the flow at the transonic Mach number, the
subject of this study, than the high Mach number, therefore it
is worth investigating the wall temperature effects on the tran-
sonic boundary layer using DNS.

In this study, we conduct the DNS study of the bound-
ary layer transition of transonic over a heated/cooled flat plate
to elucidate the wall temperature effects and the mechanism
relevant to the promotion or delay of turbulence onset. In the
subsequent sections, after describing the numerical methodol-
ogy and case setup, we visualize and mention the differences in
the streamwise development of flow structure and mean flow
resulting from wall heating/cooling. The causes of observed
differences are explained by correlating to those of the modal
growth of velocity disturbances and thereby emerging inflec-
tional instability, triggered by the wall heating/cooling.

METHODOLOGY AND FLOW PARAMETERS
This study directly solves the three-dimensional com-

pressible Navier–Stokes equations:

∂ρ

∂ t
+

∂ (ρu j)

∂x j
= σρ , (1)

∂ρui

∂ t
+

∂ (ρuiu j)

∂x j
+

∂P
∂xi

+
∂τi j

∂x j
= σρui , (2)

∂E
∂ t

+
∂ ((E +P)u j)

∂x j
+

∂uiτi j

∂x j
+

∂q j

∂x j
= σE , (3)

where (x1,x2,x3) = (x,y,z) are the streamwise, wall-normal,
and spanwise directions, and (ρ,ui,P) are the density, veloc-
ity, and pressure. E = P/(γ −1)+ρuiui/2 is the total energy
where γ (= 1.4) is the specific heat ratio of the air. σ are
the external forcings for the numerical sponge (Mani, 2012).
The details of the sponge are provided later. The equations
are made non-dimensional by the distance from the leading
edge of the flat plate L = 105, the free density ρ∞, the speed
of sound a∞, and the viscosity µ∞ = 8 × 10−6 where sub-
script ∞ denotes the free stream value. To close the equa-
tions, the ideal gas law P = ρRT , where R is gas constant,
and Sutherland law µ = (T/T∞)

3/2(T∞ +T1)/(T +T1) where
T∞ = 255K,T1 = 110.4K, are considered. τi j and q j are the
viscous stress tensor and heat flux vector, respectively, evalu-
ated as

τi j = µ

(
∂ui

∂x j
+

∂u j

∂xi
− 2

3
∂uk

∂xk
δi j

)
, (4)

q j =− µ

Pr(γ −1)
∂a2

∂x j
, (5)

where Pr(= 0.72) is the Prandtl number, a is the speed of
sound, and δi j is the Kronecker delta.

The sixth-order compact scheme is used for spatial dis-
cretization with the eighth-order compact low-pass filter (Lele,
1992; Gaitonde & Visbal, 1999). The four-stage fourth-order
Runge–Kutta method is adopted for the time integration with
the nondimensional time step ∆tu∞/L = 4.5×10−5.

Figure 1 shows the schematic of the computational do-
main. The boundary layer develops spatially over a nominally
zero-pressure-gradient flat plate. The free stream Mach num-
ber M∞ is 0.8. We concern the three distinct wall temperature
conditions: pseudo-adiabatic (AD) (Twall = Tr), 10%-heated
(HE) (Twall = 1.1Tr), and 10%-cooled (CO) (Twall = 0.9Tr)
where Tr is the recovery temperature of laminar boundary
layer:

Tr = 1+
√

Pr
γ −1

2
(M2

∞ −1). (6)

As the inflow boundary condition, the isothermal wall
compressible Blasius solution corresponding to each wall tem-
perature condition is used. To induce the H-type transition,
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Figure 1. Schematic of computational domain.
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we provide tiny wall-normal velocity disturbances v at the
wall. The provided disturbance consists of a planer Tollmien–
Schlichting (TS) wave and a sub-harmonic three-dimensional
oblique wave, written in blowing and suction form as

v(x,z) = A1 f (x)sin(ω1t)+A2 f (x)g(z)sin(0.5ω1t), (7)

where f (x) = 15.1875ξ 5 − 35.437ξ 4 + 20.25ξ 3, and g(z) =
cos(2πz/λz) (Huai et al., 1997). ξ is the local coordinate in
the streamwise direction within the disturbance strip where
x1 ≤ x ≤ x2, ranging from 0 to 1. The amplitudes of the funda-
mental TS wave A1 and the subharmonic oblique wave A2 are
set as 0.0015U∞ and the half of A1, respectively. These values
are consistent with the previous DNS of the H-type transition
by Sayadi et al., (2013). The frequency ω1, the strip width
x1,x2, the strip station xdist := 0.5(x1 + x2) and the spanwise
wavelength λz are designed based on the neutral curves as in
White & Majdalani (2006). The strip location xdist is deter-
mined such that xdist is fixed at Reδ ∗ = 1157 for all the case
where δ ∗ is the displacement thickness, being computed as

δ
∗ =

∫
∞

0

(
1− ρ(y)

ρ∞

u(y)
u∞

)
dy, (8)

using the isothermal Blasius solution. The angular frequency
ω/(u∞/L) is 4.96 and the spanwise wavelength of the sub-
harmonic wave λz/L is 0.33. The width of the strip of the
streamwise direction is determined to keep 2πδ ∗

xdist/(x2 −
x1) = 0.18 for all the cases where δ ∗

xdist is the displacement
thickness at the strip station, which results in the different
widths in terms of x depending on the wall temperature (see
Table 1). The computational domain ranges 0 ≤ y ≤ 2.0L for
the wall-normal and 0 ≤ z ≤ 0.99L for the spanwise directions,
which contains three subharmonic waves. The inlet and outlet
boundaries (xs,xe) are (1.42L,20L) (He), (2.0L,20L) (AD),
and (2.79L,23L) (CO). The domain sizes for the streamwise
direction are large enough for the boundary layer to fully de-
velop into the turbulent flow. The grid spacings in viscous
units are ∆x+ ≲ 5.2, 6.9, 5.0, ∆y+w ≲ 0.3,0.35,0.3, and ∆z+ ≲
4.8,4.8,5.3, for the heated, adiabatic, and cooled cases, re-
spectively (see Table 1).

As shown in Figure 2, the numerical sponge is imposed
for the inlet, outlet, and top free-stream boundaries by adding
the source terms to the governing equations in Equations (1)-
(3) to prevent the unphysical pressure wave’s reflection at the
computational boundaries. Based on the criteria proposed by
Mani (2012), the lengths of the sponge are determined as 0.8L
for the inlet boundary, 1.3L for the outlet boundary, and 1.0L
for the free stream boundary with the source terms σ that can
achieve 50dB damping of the acoustic waves for each direc-
tion.

Table 1. Parameters depending on the wall temperature.

Case Tw/Tr xdist (xs, xe) ∆x+max ∆y+w,max ∆z+max

HE 1.1 2.82 (1.42,20) 5.2 0.30 4.8

AD 1.0 3.40 (2.0,20) 6.9 0.35 4.8

CO 0.9 4.19 (2.79,23) 5.0 0.30 5.3

RESULTS OF DNS AND DISCUSSION
Streamwise Evolution of Flow Structure and
Meanflow

Figure 2 visualizes the isosurfaces of the second invari-
ants of the velocity gradient tensor obtained in the present
DNSs. For all the cases, the staggered Λ-shaped vortices typ-
ical in the H-type transition are observed. As growing down-
stream, they form the hairpin packets and break down to the
turbulence. It is observed that these flow structures are affected
by the wall temperature. The wall heating stretches the vor-
tices in the wall-normal and the spanwise direction; the legs of
the Λ-shaped and hairpin vortices are widely spread and lifted,
compared to the other cases. In contrast, the wall-cooling elon-
gates, flattens, and shrinks the vortex structures in streamwise,
wall-normal, and spanwise directions.

Figure 3 shows the skin friction coefficient C f as a func-
tion of the streamwise location x. The obtained C f profiles
first follow that of the Blasius solutions and then begin to de-
part from them around x/L ≈ 5.8,6.6, and 8.4 for the heated,
adiabatic, and cooled cases, respectively. These locations coin-
cide with the appearance of three-dimensional structures (see
also Figure 2). Once the C f profiles depart from their lami-
nar values, they increase rapidly and show striking overshoots.
They reach their peak values at x/L≈ 8.0 (HE), 8.9 (AD), and
11.5 (CO). This overshoot of the skin friction profiles has been
observed in the prior study of the controlled transition (Sayadi
et al., 2013). In particular, Sayadi et al. (2013) discussed
that the C f profile is a good indicator to classify the transition
stage into laminar, transitional, and turbulent regimes, which
are divided by the start and end location of the increase in skin
friction. In Figure 4, we also take a look at the shape factor
H (the ratio of the displacement thickness to the momentum
thickness), which is also often used to detect the change of
boundary layer state because of the transition or the separa-
tion. This study computes the shape factor by the method of
(Spalart & Watmuff, 1993; Coleman et al., 2018) that evalu-
ates H = δ ∗

inc/θinc where

δ
∗
inc(x) =

−1
Ũe(x)

∫
∞

0
yωz(x,y)dy, (9)

θ
∗
inc(x) =

2
[Ũe(x)]2

∫
∞

0
yŨ(x,y)ωz(x,y)dy−δ

∗
inc(x), (10)

with the generalized streamwise velocity (Lighthill, 1963)

Ũ(x,y) =−
∫ y

0
ωz(x,y′)dy′, ωz =

∂v
∂x

− ∂u
∂y

, (11)

which can incorporate the effect of pressure gradient. Though
this study considers the nominally zero-pressure-gradient flat
plate, the pressure gradient is induced by the occurrence of Λ-
shaped and hairpin structures in the transition regime. Note
that this formulation assumes the incompressible boundary
layer and therefore the effect of the density variation is not
considered. The dependence of viscosity on the temperature
is not considered either, although these thermodynamic prop-
erty variations are not significant for the cases investigated in
this study. Nevertheless, the shape factor of each case is kept
constant at about the theoretical value 2.59 (derived from in-
compressible Blasius solution) in the laminar regime, then be-
gins to decrease in the transitional region, and finally shows
an asymptotic approach to the theoretical value of the incom-
pressible turbulent boundary layer near the laminar-turbulent
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Figure 2. Instantaneous isosurfaces of the second invariant of the velocity gradient tensor near peak location of the skin friction
coefficient, colored by the height from the wall. Cooled, adiabatic, and heated cases are shown from left to right.

Figure 3. Streamwise distributions of skin friction coeffi-
cient as a function of x. The flat plate formula C f ,lam ≈
0.664

√
C∗/

√
Rex where C∗ = (0.5+0.039M2

∞ +0.5Twall/T∞)

(White, 2006; Eckert, 1955) for each temperature condition is
also plotted by the filled diamond.

Figure 4. Shape factor as a function of x. The upper dashed
line is the theoretical value of the Blasius solution, 2.59, while
the lower one is for the turbulent boundary layer 1.4 (Schlicht-
ing & Gersten, 2016).

transition 1.4 (Schlichting & Gersten, 2016). This suggests
that the shape factor is also a good indicator to classify the
boundary layer state.

The effect of the wall heating/cooling on these stream-
wise distributions of the skin friction coefficient and the shape

Figure 5. Scatter plots of generalized inflection point. The
solid and dash lines indicate the boundary at the freestream
δinc +δ ∗

inc and displacement thickness δ ∗
inc, respectively.

factor is distinct, especially for the wall-cooling case. Inter-
estingly, the skin friction coefficient and the shape factor seem
to change in two stages. As for the skin friction coefficient,
the slope of the increase is moderate at first compared to the
heated and adiabatic cases, then the slope becomes steep near
x/L ≈ 10.5. We find that such a two-stage variation of the skin
friction profile (and shape factor) is related to the presence of
the generalized inflection point (GIP). We search for the GIP
in a way that the wall-normal height yGIP satisfies

d
dy

(
ρ

∂ ū
∂y

)∣∣∣∣
yGIP

= 0. (12)

The obtained GIPs are plotted in Figure 5 with the streamwise
evolution of the displacement thickness and the sum of dis-
placement thickness and boundary layer height. As shown in
Figure 5, almost all the GIPs are found in a transitional re-
gion. In addition, the GIPs are concentrated near the line of
displacement thickness δ ∗ or the line of δ +δ ∗ (the boundary
between the freestream flow and the viscosity affecting flow).
For the heated and adiabatic cases, the GIPs around δ ∗ and
those around δ +δ ∗ appear almost simultaneously x≈ 6.8,7.5,
respectively. On the other hand, for the cooled case, there
are some lags from the appearance of the GIPs around δ ∗
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(x/L ≈ 8.5) to that around δ + δ ∗-scale (x/L ≈ 10.0). This
lag of the emergence of the two different height scale GIPs,
or the lag of the onset of the inflectional instability, causes
the two-stage variation of the skin friction profile. Indeed,
the emergence of the GIPs around δ ∗ almost coincides with
the start location of the rise in skin friction (x/L ≈ 8.5), and
that around δ +δ ∗ does with where the slope becomes steeper
(x/L ≈ 10.5, immediately downstream of the presence of the
GIPs around δ + δ ∗). Based on the observations of the flow
structures shown in Figure 2, the GIPs around δ + δ ∗ are re-
lated to the hairpin structures. The relation between GIPs near
δ ∗ and the flow structure is discussed in the next section. Note
that there are always GIPs very near the wall for the heated
case, while most of them are canceled by wall cooling.

Modal Growth and Relations to Flow Structure
and Mean Flow

We conduct the Fourier analyses to understand how the
provided disturbances grow in the boundary layer. The stream-
wise velocity component is Fourier transformed as

u′(x,y,z, t) =
K

∑
k=−K

H

∑
h=0

ûh,kz(x,y)e
i(ω1ht+βkz), (13)

where (h,k) are the harmonics wavenumbers of the fundamen-
tal frequency ω1 and spanwise wavenumber β = 2π/λz. For
instance, the provided TS component corresponds to (h,k) =
(1,0) mode and the subharmonic oblique wave corresponds
to (1/2,1) mode. Figure 6 compares the y−maxima of the
Fourier amplitudes of (1,0),(1/2,1) and (0,2) modes in lam-
inar and transitional regimes of each wall temperature condi-
tions. Here, mode (0,2) is known as the vortex-streak mode,
which is generated by a triadic interaction of the subharmonic
oblique mode, i.e., (1/2,1)− (1/2,−1) = (0,2). Physically,
the vortex-streak mode (0,2) corresponds to the pair of the
counter-rotating streamwise vortices, which yields the streak
(Berlin et al., 1999).

First, as shown in Figure 6 (a,b), the TS mode (1,0) shows
the monotonically exponential growth in the laminar region
and then it saturates at 4− 10%, for the adiabatic and heated
cases. For the cooled case in Figure 6 (c), on the other hand, al-
though the TS mode grows exponentially (but slightly) at first,
it finally begins to decay from x/L ≈ 7.5. The amplification
ratio of the TS wave α1,0 is approximated as 0.18,0.20, and
0.03 for the adiabatic, heated, and cooled cases (see Figure 6);
the TS wave is suppressed with wall cooling in this study. This
result is qualitatively consistent with the neutral curve used to
design the disturbance wavelength.

Next, the subharmonic oblique mode (1/2,1) decays ini-
tially, but turns to grow as the TS mode grows. That is, the sub-
harmonic secondary instability occurs. For all the cases, the
secondary instability occurs where the TS mode’s amplitudes
reach about 1.0−1.1%. This is slightly higher than the thresh-
old amplitude of the TS wave 0.5% for the onset of the sub-
harmonic secondary instability in a (relatively low Mach num-
ber) supersonic boundary layer (Chang and Malik, 1993). The
growth rates of subharmonic oblique mode α1/2,1 are about
1.0,1.4, and 0.7 for the adiabatic, heated, and cooled cases,
respectively. Thus the subharmonic oblique mode (1/2,1),
with the low spanwise wavenumber, is confirmed to be in-
creased/decreased with wall heating/cooling consistently with
Masad and Nayfeh (1991).

Finally, the amplitude of the vortex-streak mode (0,2)
generated by the oblique wave mode is on order 10−3 ini-

α0,2 ≈ 1.8

α0,2 ≈ 0.18

α1/2,2 ≈ 1.0

(a) adiabatic (3.4 ≤ x/L ≤ 9.0)

α0,2 ≈ 2.5

α1,0 ≈ 0.20
α1/2,2 ≈ 1.4

(b) heated (2.8 ≤ x/L ≤ 7.7)

α0,2 ≈ 1.3

α1,0 ≈ 0.03

α1/2,1 ≈ 0.70

(c) cooled (4.2 ≤ x/L ≤ 11)

Figure 6. Streamwise growth of the maximum value Fourier
amplitude of TS mode (1,0), subharmonic oblique mode
(1/2,1), and vortex-streak mode (0,2) for (1) adiabatic,
(2) heated, and (3) cooled cases. The growth rates, α =

(log10(b)− log10(a))/(b− a), are computed based on the or-
ange triangles.

tially, and then it rapidly grows at a constantly steep slope in
all the cases. The computed growth ratios α0,2 are 2.0, 2.4,
and 1.3 for the adiabatic, heated, and cooled cases, respec-
tively. In other words, wall heating promotes the growth of
vortex-streak mode while wall cooling impedes it. Interest-
ingly, however, this vortex-streak mode (0,2) finally exceeds
the other modes only when the wall is cooled despite the low
growth rate. This infers that the growth mechanism of distur-
bances for O-type transition becomes comparable to or dom-
inates that of the H-type transition mechanisms as a conse-
quence of the well-suppressed TS (1,0) and the subharmonic
oblique (1/2,1) modes by cooling the wall.

In summary, let us revisit the wall temperature impacts on
the vortex structure shown in Figure 2. The reason why wall
cooling flattens the Λ-shaped and hairpin vortices compared to
other wall temperature cases is that it weakens the growth of
the vortex streak mode (0,2) responsible for the lift-up mech-
anism. Conversely, wall heating promotes the growth of (0,2)
mode, lifting the structures. In this perspective, a pertinent
question arises: Can the deformed three-dimensional struc-
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ture resulting from wall heat transfer be appropriately scaled?
Also, as a consequence of the growth of steady vortex-streak
mode (0,2), the mean velocity profile is bent and the strong
shear ∂u/∂y occurs. This strong shear causes the inflection
point near-wall infection points near δ ∗ discussed in Figure
5. Although not shown here, we observed that the vortex-
streak mode grows fastest along the displacement thickness
distributions for all the cases. This indicates that the pres-
ence of GIPs near δ ∗ is the consequence of the emergence
of the streak structure due to the growth of the vortex-streak
mode (0,2). In this viewpoint, additional pertinent questions
emerge: How does heat transfer influence the inflectional in-
stability triggered by streak growth? What causes the delay in
the onset of inflectional instability between the boundary layer
scale and the displacement thickness scale?

Summary
Direct numerical simulations (DNS) are performed to

investigate the wall temperature impacts on the laminar-to-
turbulent transition in a transonic boundary layer over a
nominally zero-pressure-gradient flat plate. The freestream
Mach number is 0.8, and the pseudo-adiabatic and the 10%-
cooled/heated wall conditions are considered. The tiny wall-
normal velocity disturbances consisting of a two-dimensional
Tollmien–Schlichting (TS) wave and a subharmonic oblique
wave are provided to induce the H-type transition. Currently,
the following insights on wall temperature effects are obtained:

• Wall cooling attenuates the growth of TS mode subhar-
monic oblique wave, and vortex-streak mode, while wall
heating promotes them.

• The three-dimensional structures become elongated, nar-
rower, and flatter in the streamwise, spanwise, and wall-
normal directions by wall cooling, whereas they shrunk,
stretched, and lifted by wall heating.

• The wall temperature effects on the skin friction and
shape factor profiles are distinct when the wall is cooled.
The skin friction and the shape factor profiles present the
two-stage evolution in the transitional regime. This is due
to the lag in the onset of (generalized) inflection points of
displacement thickness and boundary layer height scales.
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