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ABSTRACT
The intense noise radiated by jet aircraft exhaust nozzles

causes structural vibration, fatigue, carrier deck personnel op-
erational difficulties, and community environmental concerns.
Prior work into the physics and control of jet noise have iden-
tified several important sound sources, including wavepackets,
screech, Mach wave radiation, and broadband shock associ-
ated noise, to name a few. Reducing the loudest sources of jet
noise, without sacrificing propulsive performance, has thus-far
relied on intuition, parametric survey, or optimal control tech-
niques. With the aim of developing a more general and robust
method of jet noise reduction (JNR), we seek a physics-based
JNR approach that is built upon a linear resolvent analysis ap-
propriate for mean flows with strong shocks. The effect of flow
discontinuities on the underlying linear analysis, including the
optimal forcing and response modes that arise from resolvents,
is also investigated.

BACKGROUND
High speed jet noise from Naval tactical aircraft causes

operational difficulties limiting communication between pi-
lot and carrier deck crew, quickly damages deck crew hear-
ing, and leads to sound-induced structural vibrations and fa-
tigue. Several decades of experimental, theoretical, and com-
putational investigations into the physics and control of jet
noise have identified several important sound sources, includ-
ing wavepackets (Jordan & Colonius, 2013), screech (Ponton
& Seiner, 1992), Mach wave radiation (Williams & Maid-
anik, 1965), and broadband shock associated noise (Norum &
Seiner, 1982). Reducing the loudest sources of jet noise, with-
out sacrificing propulsive performance, has relied on intuition
(Seiner et al., 2004), parametric survey (Bridges & Brown,
2004), or optimal control techniques (Kim et al., 2014).

A promising framework to understand aerodynamic tur-
bulent jet noise is formulated by constructing a linearised
Navier-Stokes system subject to stochastic forcing such that
the statistical moments of the turbulent flow are governed by
model equations (Farrell & Ioannou, 1993, 2019). Litera-
ture that investigates such a stochastic forcing applied to lin-
earised Navier-Stokes equations predominantly focus on time-
domain formulations of covariance dynamics; however, co-
herence in jet turbulence has often been analyzed in the fre-
quency domain (Lesshafft et al., 2019). Spectral proper or-
thogonal decomposition (SPOD) has been used as a means to
extract empirical coherent structures at a given frequency from
numerical flow data (Garnaud et al., 2013; Lesshafft et al.,

2019; Gudmundsson & Colonius, 2011). Recently, linear sta-
bility analyses of jets have been carried out in a frequency-
domain framework using optimal forcing/response structures
(Garnaud et al., 2013). The forcing and response modes in
this formalism are global in nature, and they are constructed as
the singular modes of the global resolvent operator (Schmid,
2007). This analysis has been employed to model the stochas-
tic dynamics of the Navier-Stokes equations (Sipp & Marquet,
2013). The work by Beneddine et al. (2016) demonstrates
that the spatial structure of the optimal linear flow response
agree with the leading SPOD modes, obtained from numeri-
cal simulations, and has established a formal justification for a
direct comparison between optimal linear response structures
and SPOD modes.

This paper describes current research towards extending
linear-based JNR strategies to jets with strong shocks. Al-
though such jets are common in high-performance aircraft,
there is scant literature discussing forward and adjoint sensi-
tivity analyses about flows with discontinuities in general, with
even less prior work within the computational fluid dynamics
realm. The question of how to address sensitivities with shock-
laden flows follows a presentation of our large-eddy simulation
framework applied to underexpanded jets.

LARGE EDDY SIMULATION RESULTS

Using an optimized WENO-based shock capturing
scheme, with a Ducros shock sensor, the shock-laden turbu-
lent flow issuing from a biconical nozzle (figure 1) with nozzle
pressure ratio (NPR = p0/p∞ = 4) have been simulated for a
series three total temperature ratios (TTR = T0/T∞ = 1,3,7),
using a specific heat ratio of γ = 1.4, a Prandtl number of
Pr = 0.72, and a dynamic LES model (Moin et al., 1991). The
flow fields corresponding to the TTR = 1 conditions are shown,
along with their corresponding sound fields, in the following
figures (figures 2–4). Results from the higher temperature jets
are available in Murthy & Bodony (2023). For TTR = 1, the
LES predictions faithfully match the experimental data along
the jet centerline and away from it. The flow is characterized
by a strong shock cell pattern near the nozzle exit that initi-
ates with a normal shock. More detailed analysis of the jet and
near-jet fields are provided in Murthy & Bodony (2023).
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Figure 1. Biconical nozzle geometric parameters.

Figure 2. Instantaneous pressure field for
NPR = 4, TTR = 1 jet.

JET NOISE REDUCTION USING LINEARIZED
ANALYSIS OF THE MEAN FLOW

A linear analysis about the jet mean flow to support JNR
is performed. The presence of the strong shocks in the jet mean
flow, particularly the “barrel shock” that forms along the cen-
terline just downstream of the nozzle exit, implies that care
must be taken when considering the linearized dynamics, es-
pecially when the linearized operator depends on the smooth
definition of the derivative. We analyzed the impact of shocks
on linearized operator construction in Bodony & Fikl (2022).

We view JNR as modifications to the linearized, dis-
cretized flow equations,

dQQQ′

dt
= LLL(Q̄QQ) QQQ′+BBB fff , rrr =CCC QQQ′, (1)

where the vector fff contains zero-mean source terms of the
continuity, momentum and energy equations, and represents
an external forcing on the linearized-compressible-Navier-
Stokes equations. The vector rrr represents the vector holding
the quantity of interest, that is, the far-field pressure fluctua-
tions. The matrices BBB and CCC specify the inputs—to (turbulent
kinetic energy fluctuations) and outputs—from (far-field pres-
sure fluctuations) the resolvent analysis that help reveal the in-
fluence of the jet on the far-field acoustics.

Defining the norm used to measure the input and output
mode energy as shown below

||r̂rr||2 = r̂rrH DDDr r̂rr = r̂rrH NNNH
r NNNr r̂rr, (2)

|| f̂ff ||2 = f̂ff
H

DDD f f̂ff = f̂ff
H

NNNH
f NNN f f̂ff , (3)
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Figure 3. TTR = 1, NPR = 4, LES-based centerline
axial turbulence intensity ( ) comparison against
LES simulation data ( ) from Liu & Corrigan
(2018).
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Figure 4. TTR = 1, NPR = 4, LES-based SPL cal-
culation at (z/De,r/De) = (0,1.5) ( ) compared
against experimental data ( ) from Liu et al. (2013).

an expression for the gain between input and output energy is

σ
2 =

||r̂rr||2
|| f̂ff ||2

=
f̂ff

H
HHHH(ω) NNNH

r NNNr HHH(ω) f̂ff

f̂ff
H

NNNH
f NNN f f̂ff

. (4)

The expression for gain in Eq. (4) can be viewed as
a Rayleigh quotient, involving the Hermitian operator
NNN−H

f HHHH(ω) NNNH
r NNNr HHH(ω) NNN−1

f . In other words, σ is equal

to the largest singluar value of the operator NNNr HHH(ω) NNN−1
f =

UUUΣΣΣVVV H and the forcing and response structures that feature the
largest gains are given by f̂ff iii === NNN−1

fff v̂vviii (v̂vviii are columns of VVV )

and r̂rriii = σiNNN−1
rrr ûuuiii (ûuuiii are columns of UUU and σi are the corre-

sponding singular values), respectively.
By the hypothesis that JNR is accompanied by a reduction

in the gain as defined above, a discrete structural sensitivity
analysis gives an estimate of the change in gain (dσ ), due to
the linear feedback control of fff = αCCCQQQ′′′, for values of α that
would allow the matrix αCCC to be viewed as a perturbation dLLL
to the operator LLL(((Q̄QQ))) in the linear limit as

dσ ≈ Re
(

ûuuH(NNNrCCC (RRR dddLLL RRR) BBBNNN−1
f ) v̂vv/(ûuuH ûuu)

)
. (5)

The JNR objective is to optimize the movement of the chosen
target singular value. The optimization seeks, for the case of
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Figure 5. TTR = 1, NPR = 4, SPL contour plot correspond-
ing to the un-controlled (top left), controlled (top right) and
difference between the un-controlled and controlled (bottom)
over the region defined by r/R = 20 and z/R ∈ [−8,58].

gain (σ ) minimization, the solution CCC∗ ≡ Re
(
α−1dσ

)
, with

respect to the parameters
{

C̃CC,x0,y0,z0, ℓx, ℓy, ℓz
}

and over the
field of CCC of unit norm.

Upon performing the optimization for a target frequency
St = 0.3 and implementing the subsequent parameters into the
original LES calculation, the change in the SPL on a cylindri-
cal surface is shown in figure 5. The figure clearly shows an
overall reduction for frequencies near St = 0.3, but also some
residual increases elsewhere.

CONVERGENT RESOLVENT MODE CALCULA-
TIONS IN SHOCK-LADEN FLOWS

The resolvent analysis of the previous section is now re-
examined with focus placed on the shock and its impact on the
forward and adjoint sensitivities, and the resolvent. We start
with the zero-frequency resolvent analysis of inviscid shock-
laden quasi-1d flows presented in Murthy & Bodony (2023)
with the goal to understand why resolvent modes correspond-
ing to inviscid shock-laden flows may not agree with numerical
solutions that feature shock capturing (Bodony & Fikl, 2022).
Our approach will be to extend the analysis of Giles & Pierce
(2001) to include viscosity and examine the operators in the
limit of vanishing viscosity.

Viscous flow equations: We consider the viscous quasi-1d
equations,

R⃗(U⃗ ,h) =
d
dx

(hF⃗)+
d
dx

(
h

d
dx

(F⃗v,1)

)
+

dh
dx

d
dx

(F⃗v,2)−
dh
dx

P⃗

= 0⃗, (6)

where U⃗ =

 ρ

ρq
ρE

, F⃗ =

 ρq
ρq2 + p

ρqH

, F⃗v,1 =

 0
− 4µq

3
− 2µq2

3 − cpµT
Pr

,

F⃗v,2 =

 0
4µq

3
0

, P⃗ =

0
p
0

 and H = E + p
ρ
= γ

γ−1
p
ρ
+ 1

2 q2.

Viscous linear forward operator and basis solutions: Start-
ing with these viscous quasi-1d non-linear equations, the cor-
responding viscous linear forward operator LLLviscous can be

computed as

LLLviscous⃗u =
d
dx

(
h

∂ F⃗
∂U⃗

u⃗

)
+

d
dx

(
h

d
dx

(
∂ F⃗v,1

∂U⃗
u⃗

))

+
dh
dx

d
dx

(
∂ F⃗v,2

∂U⃗
u⃗

)
− dh

dx
∂ P⃗
∂U⃗

u⃗. (7)

Using this viscous forward linear operator, and similar to Giles
& Pierce (2001), homogeneous forward solutions u⃗(x,ξ ) are
found that satisfy

∫
D

LLLviscous⃗u j(x,ξ )dξ =
∫

D
δ (x−ξ ) f⃗ j(ξ )dξ , (8)

by considering solutions of the following form

u⃗(x,ξ ) = a H(x−ξ )

(
1

h(x)
∂U⃗
∂m

∣∣∣∣
H,q

+ cm(x,ξ )
∂U⃗
∂q

∣∣∣∣
m,H

)

+ b H(x−ξ )

(
∂U⃗
∂H

∣∣∣∣
m,q

+ cH(x,ξ )
∂U⃗
∂q

∣∣∣∣
m,H

)

+ c H(−(x−ξ ))

(
1

h(x)
∂U⃗
∂m

∣∣∣∣
H,q

+ cq(x,ξ )
∂U⃗
∂q

∣∣∣∣
m,H

)
,

(9)

where a and b represent uniform perturbations since the non-
linear quasi-1d equations ensure that mass flux and stagnation
enthalpy (when Pr = 3/4) remain constant along the CD noz-
zle. The variable c is a uniform amplitude term and the func-
tions cm,H,q(x,ξ ),cH(x,ξ ) represent the non-uniform velocity
field perturbations that ensure that LLLviscous⃗u(x,ξ ) = 0⃗, by sat-
isfying the following homogeneity equations

LLLviscous

{
a H(x−ξ )

(
1

h(x)
∂U⃗
∂m

∣∣∣∣
H,q

+ cm(x,ξ )
∂U⃗
∂q

∣∣∣∣
m,H

)}
= LLLviscous⃗u1(x,ξ ) = 0⃗, (10)

and similarly that LLLviscous⃗u2(x,ξ ) = 0⃗ and LLLviscous⃗u3(x,ξ ) = 0⃗.

Viscous linear adjoint equations and operator: The adjoint
equations and operator can be derived by considering the aug-
mented nonlinear objective function (J), where the adjoint so-
lution ν⃗ enforces the differential flow constraints,

J =
∫

D
p dx−

∫
D

ν⃗
T · R⃗ dx. (11)

Linearizing this with respect to perturbations in the flow solu-
tion u⃗ gives dJ = I as

I =
∫

D

{⃗
ν

T · f⃗ −
(⃗

ν
T · (LLLviscous u⃗)−

(
∂ p
∂U⃗

)T
· u⃗
)}

dx.

(12)
Integration by parts is used to transfer the differential operator
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LLLviscous from u⃗ to the variable ν⃗ as shown below

I =
∫

D
ν⃗

T · f⃗ dx−
[⃗

ν
T · (hAAA u⃗)− ν⃗

T ·
(

h
d
dx

(CCC1 u⃗)
)

+
dν⃗T

dx
· (h CCC1 u⃗)−

(
dh
dx

ν⃗

)T
· (CCC2 u⃗)

]x=xoutlet

x=xinlet

−
∫

D
u⃗T ·

(
− hAAAT dν⃗

dx
+ CCCT

1
d
dx

(
h

dν⃗

dx

)
− CCCT

2
d
dx

(
dh
dx

ν⃗

)
− dh

dx
BBBT

ν⃗ − ∂ p
∂U⃗

)
dx. (13)

Therefore the viscous adjoint equation (and adjoint operator
LLL†

viscous) is (with g⃗ = ∂ p/∂U⃗),

LLL†
viscous⃗ν − g⃗ =− hAAAT dν⃗

dx
+CCCT

1
d
dx

(
h

dν⃗

dx

)
−CCCT

2
d
dx

(
dh
dx

ν⃗

)
− dh

dx
BBBT

ν⃗ − ∂ p
∂U⃗

. (14)

Viscous adjoint solutions ν⃗(x) corresponding to the gradi-
ent g⃗(x): The adjoint basis solutions can be computed by start-
ing with equation (12), which represents the linearized objec-
tive function, the impulse forcing ( f⃗ (ξ )) such that

LLLviscous u⃗(x,ξ ) = f⃗ (ξ )δ (x−ξ ), (15)

and

I(ξ ) =
∫

D
g⃗T · u⃗(x,ξ ) dx

−
∫

D
ν⃗

T ·
(

LLLviscous u⃗(x,ξ )− f⃗ (ξ )δ (x−ξ )
)

dx. (16)

Next, equation (16) can be transformed to a form similar to
(13) as shown below, using an integration by parts procedure,
preserving the terms u⃗(x,ξ ) or f⃗ (ξ )δ (x− ξ ) throughout as-
suming LLL†⃗

ν − g⃗ = 0⃗ and that these solutions satisfy the adjoint
boundary conditions, then together with equation (15) we have

I(ξ ) =
∫

D
ν⃗

T (x) · {LLLviscous u⃗(x,ξ )} dx, (17)

=

{⃗
ν

T (x) · (h(x) AAA û1(x))

+ ν⃗
T (x) ·

(
h(x)

d
dx

(CCC1 û1(x))
)

+ ν⃗
T (x) ·

(
dh(x)

dx
CCC2 û1(x)

)
−dν⃗T (x)

dx
· (h(x) CCC1 û1(x))

}∣∣∣∣∣
x=ξ

, (18)

where the solution u⃗(x,ξ ) is assumed to have the form H(x−
ξ )û1(x) + û2(x) and both ûi=1,2 are homogeneous solutions
that satisfy LLLviscousûi = 0⃗. Furthermore, assuming that the

boundary conditions are satisfied for all ξ (on account of the
properly constructed solutions u⃗(x,ξ )), we have the equation

I(ξ ) = ν⃗
T (ξ ) ·

(
h(ξ ) AAA û1(ξ ) + h(ξ )

d
dξ

(
CCC1 û1(ξ )

)
,

+
dh(ξ )

dξ
CCC2 û1(ξ )

)
− dν⃗T (ξ )

dξ
·
(

h(ξ ) CCC1 û1(ξ )

)
(19)

which can be solved to obtain the viscous adjoint solutions
ν⃗(ξ ) corresponding to a gradient g⃗(ξ ).

Viscous adjoint Green’s function operator GGG†
viscous(x,η):

Starting with equation (19) from the previous section we can
now show that

g⃗T
i (η) · u⃗(η ,x) = ν⃗

T
i (x,η) ·

(
h(x) AAA û(x)

+ h(x)
d
dx

(
CCC1 û(x)

)
+

dh(x)
dx

CCC2 û(x)
)

− ∂ ν⃗T
i (x,η)

∂x
· (h(x) CCC1 û(x)) . (20)

Upon solving the above partial differential equation for
ν⃗i(x,η) for a given gradient g⃗i(η), the viscous adjoint Green’s
function operator GGG†(x,η) can be computed as follows, simi-
lar to equation (24) in Murthy & Bodony (2023)

GGG†(x,η) = (⃗v1(x,η) | v⃗2(x,η) | v⃗3(x,η))

· (⃗g1(η) | g⃗2(η) | g⃗3(η))−1 . (21)

Viscous forward Green’s function operator GGGviscous(x,ξ ):
Starting with the equation (17) and whilst considering a for-
ward solutions ũi(x,ξ ) such that LLLviscousũi(x,ξ ) = f⃗i(ξ )δ (x−
ξ ), we have

∫
D

δ (x−η )⃗gT (η) · ũi(x,ξ )dx =∫
D

ν⃗
T
j (x,η) · (LLLviscous · ũi(x,ξ ))dx, (22)

⇒ ũi(x,ξ ) = (⃗g1(x), g⃗2(x), g⃗3(x))−T

· (⃗ν1(x,ξ ), ν⃗2(x,ξ ), ν⃗3(x,ξ ))T · f⃗i(ξ ). (23)

Next, three linearly independent vectors f⃗i(ξ ) must be com-
puted. This can be accomplished by considering the basis vec-
tors u⃗i(x,ξ ) and evaluating the following equations to compute
the corresponding f⃗i(ξ ) as shown below

f⃗i(x) = h(x)
∂ F⃗
∂U⃗

u⃗i(x) + h(x)
d
dx

(
∂ F⃗v,1

∂U⃗
u⃗i(x)

)

+
d
dx

[
h(x)

(
∂ F⃗v,1

∂U⃗
u⃗i(x)

)]
+

dh
dx

(
∂ F⃗v,2

∂U⃗
u⃗i(x)

)
.

The viscous forward Green’s function operator can now
be constructed as follows

GGGviscous(x,ξ ) = (ũ1(x,ξ ), ũ2(x,ξ ), ũ3(x,ξ ))

· ( f⃗1(ξ ), f⃗2(ξ ), f⃗3(ξ ))−1. (24)
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Figure 6. Numerical resolvent forcing mode solution ( )
and solution as per the viscous extension of Giles & Pierce
(2001) ( ), corresponding to the transonic shock-laden flow
through a quasi 1d model of flow through a CD nozzle.

Resolvent modes corresponding to viscous shock-laden
base-flows: Similar to the inviscid case, the zero-frequency
resolvent (RRR(ω = 0)) modes corresponding to the shock-laden
flows are computed by solving the eigenvalue problem that
originates when computing the SVD of the resolvent operator,
given by

RRRH(ω = 0) RRR(ω = 0) f⃗ = GGG†
viscous ∗GGGviscous ∗ f⃗ = σ

2 f⃗ , (25)

here ∗ represents the convolution operation, and the modes
computed using RRRH(ω = 0) RRR(ω = 0) f⃗ = σ2 f⃗ and GGG†

viscous ∗
GGGviscous ∗ f⃗ = σ2 f⃗ are in agreement, as shown in Figs. 6 & 7.

RESOLVENT ANALYSIS OF SHOCK-LADEN
JETS FROM A BICONICAL NOZZLE

The resolvent modes corresponding to the shock-laden
jets from the underexpanded biconical nozzle discussed earlier
are now computed with the insight gained from the previous
quasi-1d analysis. The base flow, about which the resolvent
analysis is performed, is an azimuthally and temporally aver-
aged flow solution of the TTR=1 and NPR = 4 jet described in
the LARGE EDDY SIMULATION RESULTS section above.
The resolvent modes are computed by a differential version of
our WENO-SYMBO* scheme from above produce resolvent
modes as shown in figures 8 and 9. The results suggest a pos-
sible avenue for JNR: by actuating near the inner surface of the
nozzle as highlighted in figure 8.
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Figure 7. Numerical resolvent response mode solution ( )
and solution as per the viscous extension of Giles & Pierce
(2001) ( ), corresponding to the transonic shock-laden flow
through a quasi 1d model of flow through a CD nozzle.

CONCLUSION
The reduction of jet noise is a long sought-after goal

and significant progress for subsonic jet JNR has been made
through a wavepacket–resolvent approach. When applied to
supersonic jets, the presence of shocks at under- or overex-
panded conditions introduces discontinuities in the flow and
numerical method requirements that may corrupt a linearized
analysis. In this paper, motivated by the analysis presented in
Bodony & Fikl (2022), we utilized the inviscid Burgers’ and
Euler equations as shock-laden jet surrogates to determine (a)
suitable numerical methods whose linearization yields mean-
ingful forward and adjoint sensitivities (and, consequently,
meaningful resolvents) and (b) develop semi-analytical re-
sults suitable to verify such methods. Using the quasi-one-
dimensional Euler equations, we developed a semi-analytical
theory to verify these claims and preliminary results were pre-
sented. Future work will focus on producing converging re-
solvent modes for the Navy relevant shock-laden jet flows and
investigate the nature of the singular values of viscous and in-
viscid shock-laden quasi-1d flows.
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Figure 8. Real forcing mode (color) superimposed on the mean
flow (grayscale).

Figure 9. Real response mode, visualized within the box, with the
background indicating the mean flow.

CTS20006 & TG-CTS090004 and performed on the TACC
Frontera & Stampede2 computers, respectively.
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