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ABSTRACT

The stability of unsteady flows can vary drastically from
that of steady flows; however, the mechanisms leading to the
changes in stability often remain unclear. Here, we probe these
mechanisms by isolating the effects of acceleration and decel-
eration. We do this by studying the stability of exponentially
decaying accelerating and decelerating wall motion in a planar
domain. For studying the stability of unsteady laminar flow
profiles, we find the exact solutions and perform nonmodal
stability analysis about them. Notably, standard linear stabil-
ity methods do not properly account for the transient nature
of the unsteady base flows considered here. First, to find the
laminar profiles, we derive an analytical solution for laminar
planar flows with arbitrary wall motion. Then, we study the
stability of this analytical solution by computing the transient,
nonmodal growth of perturbations in the linearized equations.

In this study, we find that perturbations in the acceler-
ating flow never grow larger than perturbations to a constant
flow, while perturbations in the decelerating flow exhibit mas-
sive amplification. For example, at a Reynolds number of
Re = 800, perturbations in the decelerating flow can grow
O(106) times larger than perturbations to a constant flow. As
we vary the Reynolds number and deceleration rate, the max-
imum amplification grows and, at a high deceleration rate,
scales exponentially with the Reynolds number. This increased
amplification is caused by a transition from spanwise perturba-
tions leading to the maximum growth to streamwise perturba-
tions leading to the maximum growth. Furthermore, we show
the evolution of the optimal perturbations. At sufficiently high
rates of deceleration, the optimal perturbation grows through
the Orr mechanism (also known as a down-gradient Reynolds
stress mechanism). Notably, the decelerating case can sus-
tain growth via the Orr mechanism for long periods of time,
whereas constant and accelerating flows only grow via this
mechanism for short periods of time, which results in a mas-
sive difference in amplification between the cases. We then
simulate the evolution of the perturbation in a direct numeri-

cal simulation – showing the relevance of this mechanism even
when nonlinearity is present. Finally, we end by showing that
there is an optimal timing to the perturbation that occurs near
when the real part of the leading eigenvalue of the instanta-
neous linear operator becomes positive.

Laminar solutions for planar flow
To investigate the growth of perturbations about the lam-

inar base profile, we first need the laminar velocity pro-
file. Laminar solutions exist for the motion in one direction
with impulsively starting wall motion, periodic wall motion
(Schlichting & Gersten, 2017), and arbitrary periodic wall mo-
tion (Daidzic, 2022), but not for arbitrary wall motion. To find
solutions for arbitrary motion in a channel with two infinite
directions, we seek laminar solutions U(y, t) that only depend
on the wall-normal coordinate and time. Upon substitution of
U(y, t) into the nondimensionalized Navier-Stokes equations,
we obtain

∂U
∂ t

=
1

Re
∂ 2U
∂y2 (1)

with boundary conditions U(y = ±1, t) = ±gc(t) and initial
condition U(y, t = 0) = hc(y). Equation (1) represents the one-
dimensional heat equation, a linear equation that, together with
boundary and initial conditions, can be solved using Fourier
analysis and the superposition principle.

In particular, we seek odd functions U(y, t) =−U(−y, t),
motivating the use of a sin basis. These basis functions vanish
at the walls for y ∈ [−1,1], which prompts us to pose the flow
solution in the form

U(y, t) = fc(y, t)+
Re
6

dgc

dt
(y3 − y)+gc(t)y (2)

to accommodate the stated boundary conditions. Inserting this
expression into Eq. (1) yields an equation for fc according to

∂ fc
∂ t

+
Re
6

d2gc

dt2 (y3 − y) =
1

Re
∂ 2 fc
∂y2 , (3)
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Figure 1: Laminar profiles for (a) accelerating and (b) decelerating flows at various Re and κ (noted in the figure).

with boundary conditions fc(y = ±1, t) = 0 and initial condi-
tion fc(y,0) = hc − (Re/6)(dgc/dt)|0(y3 − y)−gc(0)y.

We next express fc in a Fourier-sine expansion follow-
ing fc(y, t) =∑

∞
n=1 f̂c,n(t)sin(nπy). Substitution of the Fourier

expansion into Eq. (3) and taking the inner product with
sin(mπy), we obtain an ordinary differential equation for the
time-dependent Fourier coefficients f̂c,m given by

d f̂c,m
dt

=−2Re(−1)m

(πn)3
d2gc

dt2 −am f̂c,m, (4)

where am = (πm)2/Re. Solving Eq. (4) results in

f̂c,m = e−ant
(
−2Re(−1)n

(πn)3

∫ t

0
eant ′ d2gc(t ′)

dt2 dt ′+C1

)
(5)

with C1 following from imposing the initial condition. Fi-
nally, by combining f̂c,n with Eq. (2) and evaluating C1 for
simple shear initial conditions (hc = gc(0)y), we find the time-
dependent laminar profile

U(y, t) =
Re
6

dgc

dt
(y3 − y)+gc(t)y

+
∞

∑
n=1

bne−ant
(∫ t

0
eant ′ d2gc

dt2

∣∣∣∣
t ′

dt ′+
dgc

dt

∣∣∣∣
0

)
sin(nπy), (6)

where bn = −2Re(−1)n/(πn)3. A more detailed description
of this derivation can be found in Linot et al. (2023a).

Equipped with this solution, we proceed with our specific
flows of interest – an exponentially decaying, accelerated or
decelerated flow. The time-varying boundary condition for
the accelerated case is gc(t) = 1− e−κt , and for the deceler-
ated case is gc(t) = e−κt . These flows are interesting because
they isolate the effects of acceleration and deceleration, un-
like a pulsatile flow, which would experience both regimes.
Furthermore, this type of boundary condition can be seen in
both internal flows, like the start-up and stopping of pipe flow
(Greenblatt & Moss, 2004), and external flows, including ac-
celerating/decelerating vehicles. Furthermore, the stability of
this flow has been investigated using the energy method (Con-
rad & Criminale, 1965).

This flow is parameterized by both the Reynolds number
Re and the nondimensional acceleration/deceleration scale κ .
This parameter is inversely proportional to the timescale as-
sociated with the wall motion. Consequently, solutions to our
unsteady analysis are characterized by two timescales: (1) the
Reynolds number Re gives the timescale over which fluid in
the channel reacts to wall motion, and (2) the parameter κ de-
termines the timescale over which the wall motion occurs. In

Figure 2: The maximum growth (in time and wavenum-
bers) Gmax relative to a constant laminar profile for ac-
celerating and decelerating flows at various Re and κ

with t0 = 0. Acceleration and deceleration are denoted
in the figure.

Fig. 1, we show the time evolution of the laminar profiles for
multiple values of Re and κ, both for acceleration and deceler-
ation. At low Re and κ , acceleration, as well as deceleration,
exhibit nearly linear, simple shear flow since the timescale of
wall motion is slower than the timescale over which the flow
reacts to this motion. At higher Re and κ , both the accelerating
and decelerating velocity profiles exhibit high curvatures near
the wall at early times, before approaching the long-time sim-
ple shear or zero flow profiles. Notably, the sign of the curva-
ture differs between acceleration and deceleration, which will
lead to much different behavior of the perturbations superim-
posed on these velocity profiles.

Nonmodal growth
Given the expression for the laminar profiles, we investi-

gate next the stability of these flows. In particular, we are in-
terested in the growth of small perturbations governed by the
linearized equations of motion

∂q
∂ t

=−iL q. (7)

Here, q is the state vector consisting of the wall-normal per-
turbation velocity and the wall-normal perturbation vorticity
in Fourier space (in x and z) q(y, t,α,β ) = [ûy, η̂ ], and L
represents the Navier-Stokes equations linearized about the
time-dependent laminar base profile; the reader is referred to
Schmid & Henningson (2001) for more details. Using the lin-
earized equations of motion, we can compose the fundamen-
tal solution operator A(t; t0) as a compound product of ma-
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Figure 3: Maximum amplification of perturbations maxt G(t) for decelerating WDF at different wavenumbers and de-
celeration rates (denoted in the figure) with t0 = 0. Each plot is normalized by the maximum amplification over all
wavenumbers, which is reported in the top right.

trix exponentials, i.e., A(t; t0) = ΠN
j=1e−iL ( j∆t+t0)∆t (we sup-

press the α and β dependency of A for compactness). This
operator maps the perturbation q0 = q(y, t0) forward in time
q(y, t) = A(t; t0)q0.

Based on this solution operator, we determine the maxi-
mum possible amplification of any perturbation as

G(t;α,β ,Re,κ, t0) = max
q0 ̸=0

||q(t)||2E
||q0||2E

= max
q0 ̸=0

||A(t; t0)q0||2E
||q0||2E

,

(8)
where ∥ · ∥E denotes a properly defined energy norm. This
amplification signifies the largest growth achievable by any
unit norm perturbation as it is propagated forward to time t.
We compute G(t) using the singular value decomposition of
A(t; t0) (appropriately weighted). The maximum gain G(t) is
given by the principal singular value and the associated op-
timal perturbation corresponds to the right principal singular
vector.

Figure 2 shows the maximum growth Gmax = maxt,α,β G
as we vary Re and κ in the accelerating and decelerating flows
for perturbations at t0 = 0 (G0 denotes the maximum growth
for a constant wall velocity). The maximum gain for the ac-
celerating case never exceeds that of the constant laminar flow.
In contrast, the decelerating flow exhibits orders of magnitude
larger growth at high values of Re and κ . Notably, at these
higher parameter values, the maximum gain exhibits a 10Re

scaling, which has also been observed in oscillatory flows
(Biau, 2016; Xu et al., 2021).

To investigate the cause of this growth, we next focus on
the growth of all wavenumbers near the transition Reynolds
numbers (∼ 300-500) for the decelerating flow. Figure 3 dis-
plays the maximum amplification versus the streamwise and
spanwise wavenumber, α and β , as we vary Re and the decel-

eration rate κ . At low Re and κ , the largest optimal pertur-
bation is predominantly a spanwise perturbation with [α,β ]≈
[0,1.6]. This agrees well with the wavenumbers of the optimal
perturbation for both the constant flow (Reddy & Henningson,
1993) and for the accelerating flow (not shown). However,
upon increasing Re and κ , the dominant optimal perturbation
transitions from a spanwise perturbation to a streamwise per-
turbation with [α,β ] ≈ [1.2,0]. This gradual transition from
spanwise dominant perturbations to streamwise dominant per-
turbations highlights that deceleration alone is not enough to
trigger massive growth. Instead, there is a boundary of Re and
κ passed which large growth may be triggered. Additionally,
there must be a fundamental mechanistic change in the evolu-
tion of perturbations at these higher values that allows stream-
wise perturbations to grow larger than the spanwise perturba-
tions.

We investigate this shift in preferred perturbation by con-
sidering the time evolution of the optimal perturbation required
to achieve the peak maximum amplification at wavenumbers
[α,β ]≈ [1.2,0], deceleration rate κ = 0.1, and Reynolds num-
ber Re = 500. The initial condition that results in this peak
can be computed by finding the principle left singular vector
v1 of A(tmax;0), where tmax = argmaxtG(t). Then we evolve
this perturbation forward in time through the linearized equa-
tions of motion v(t) = A(t;0)v1. Figure 4 shows the energy
growth for the optimal perturbations in a decelerating and a
constant flow, along with the shape of the perturbations as they
evolve in time. Both decelerating and constant flow have very
similar initial perturbations that exhibit initial growth in en-
ergy, followed by asymptotic decay. However, at longer times,
the shape of the perturbation in a decelerating flow begins to
differ from that of the constant flow, which induces drastic
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Figure 4: (a) time evolution of the maximum amplification G for decelerating flow, the energy of the optimal perturbation
for decelerating flow Gp, the maximum amplification for constant flow Gc, and the energy of the optimal perturbation for
constant flow Gc,p. All results are at Re = 500, κ = 0.1, α = 1.2, β = 0, and t0 = 0. The stream function of the optimal
perturbations at the times indicated by the dots in (a) are shown in (b).
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Figure 5: (a) time evolution of the energy of the optimal perturbation for decelerating flow Gp and of the optimal pertur-
bation in a DNS GDNS at Re = 500, κ = 0.1, α = 1.2, β = 0, and t0 = 0. The stream function of the optimal perturbations
(in blue) and the DNS (in red) at the times indicated by the dots in (a) are shown in (b).

energy amplification. The streamfunction of the perturbation
maintains alignment against the shear in the decelerating case,
which provokes a strong increase in energy via the Orr mech-
anism (Orr, 1907), which Butler & Farrell (1992) refer to as a
down-gradient Reynolds stress mechanism.

Direct numerical simulation of perturbations
Next, we show the relevance of the evolution of this per-

turbation in a direct numerical simulation (DNS) of the full
Navier-Stokes equations, again at Re = 500 and κ = 0.1.
To perform the DNS, we use a Fourier–Chebyshev pseudo-
spectral code implemented in Python (Linot et al., 2023b,c),
that is based on the Channelflow code developed by Gib-
son (2012); Gibson et al. (2021). To satisfy the decelerating
boundary condition at every timestep we integrate forward in
time using the Spalart-Moser Runge-Kutta (SMRK2) scheme
(Spalart et al., 1991). This scheme treats the linear term im-
plicitly and the nonlinear term explicitly, and is a multistage

scheme, so it does not require the use of flowfields on previous
timesteps. This would be an issue, as the boundary condition
changes every step. We simulate the flow using a grid of size
[Nx,Ny,Nz] = [32,81,2] with a timestep of ∆t = 0.01. The ini-
tial condition for the DNS is u = U+u′, where we reduce the
magnitude of the optimal perturbation such that the initial en-
ergy ratio is ||u′||2E/||U||2E ≈ 10−7.

Figure 5 compares the energy and shape of the optimal
perturbation in the DNS to the linearized equations. The two
energy curves match well until around t ≈ 125, where the DNS
begins to decrease in energy more rapidly. This slight varia-
tion occurs when the ratio of energy is ||u′||2E/||U||2E ≈ 0.09 –
caused by both the growth in the perturbation and the decay in
the energy of the laminar profile. At this point, the perturba-
tion is large enough that nonlinear effects can play a role in the
dynamics. Figure 5b shows the evolution of the perturbation.
As expected, the DNS results match the optimal perturbation
until t ≈ 75, while at t ≈ 125 we see that perturbation begins
to become distorted due to nonlinear effects.
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Figure 6: The maximum amplification G, the perturbation time t0, and the wavenumbers [α,β ] at which the maximum
perturbation is achieved for decelerating flow at various Re and κ .

a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a) b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)

Figure 7: (a) energy of the optimal perturbation Gp and energy of the eigenvectors GvT of the instantaneous linear operator
at various times T as these perturbations are evolved forward through the linearized equations. Note, that the eigenvector
corresponds to the profile at time T , but the time at which it is applied to the flow is where the line begins. Additionally,
(a) shows the largest real eigenvalue λ for decelerating flow at Re = 500, κ = 0.1, α = 1.2, β = 0, and t0 = 20. (b) gives
the stream function of the optimal perturbation (in blue) and the eigenvectors (in red) at times indicated by the dots in (a).

Optimal perturbation timing
Thus far, we have only considered perturbations applied

to accelerating and decelerating flows at the initial change in
the wall motion, however, the maximum amplification can
vary if we delay when the perturbation is applied. In this sec-
tion, we investigate the effect of allowing this time to vary for
decelerating flows. We perform this analysis by now sweep-
ing over α , β , and t0 at fixed κ and Re values to compute
Gmax = maxt,α,β ,t0 G. Figure 6 shows this maximum growth,
along with the parameters at which it is achieved.

Similar to perturbing at t0 = 0, we see that there is a large
increase in growth that coincides with a transition from span-
wise dominant to streamwise dominant structures. However,
by allowing t0 to vary the area over which this growth becomes
prominent increases. At low κ , the growth is larger when the
perturbation is delayed, as this gives the profile more time to
develop the curvature exhibited in Fig. 1b. As κ increases, the
laminar profile develops faster resulting in a faster perturbation
timing.

To better understand this timing, in Fig. 7 we show the

optimal perturbation applied at the optimal timing along with
the eigenvalues and eigenvectors of the instantaneous linear
operator for Re = 500 and κ = 0.1. Notice, that the optimal
perturbation timing happens around the same time as when the
eigenvalue of the instantaneous linear operator becomes pos-
itive. However, the shape of the optimal perturbation at this
time is much more anti-aligned with the flow and much smaller
in the spanwise direction than the largest eigenvector at this
time. As the optimal perturbation evolves it rotates, aligning
with the shear, and matches the eigenvector associated with
the peak in the eigenvalue curve. Then, the optimal perturba-
tion continues to grow with this shape until the eigenvalue falls
below zero, which coincides with the peak in the energy.

This highlights that both modal and nonmodal effects in-
fluence the evolution of the optimal perturbation. The optimal
perturbation takes on a shape that grows into the eigenvector
with the largest eigenvalue and then maintains that shape for
continued growth until the eigenvalue falls below zero. In Fig-
ure 7, we highlight the importance of the optimal perturbation
by also showing the energy growth of the eigenvector at times
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t = 20,45, and 135. Perturbing these eigenvectors at those
times always results in much lower growth than the optimal
perturbation. Furthermore, perturbing the flow with the eigen-
vector with the largest eigenvalue at the initial time also results
in two orders of magnitude less growth than the optimal pertur-
bation. Thus, the initial growth that the optimal perturbation
exhibits before matching the leading eigenvector results in a
large increase in growth that would not be seen if we only con-
sidered the leading eigenvector from standard linear stability
analysis.

Conclusion
In this study, we demonstrated that perturbations in de-

celerating laminar flows experience a severe energy amplifica-
tion, which does not appear in accelerating flows. At a low
deceleration rate and Reynolds number, the decelerating flow
behaves like the accelerating and constant flows. Upon in-
creasing these values, we have demonstrated that there is an
important transition in the mechanism of growth that causes
streamwise perturbations to grow larger than spanwise pertur-
bations. These streamwise perturbations grow in all cases at
early times through the Orr mechanism, but only the decel-
erating flow exhibits larger growth through this mechanism
because the streamfunction remains aligned against the shear
for long periods of time. Notably, the perturbation also grows
in such a way that it matches the eigenvector of the instanta-
neous linear operator with the largest eigenvalue, and the op-
timal perturbation time can be predicted when the eigenvalue
first becomes positive. These results indicate it is important to
damp anti-aligned streamwise structures to avoid transition in
decelerating flows. We aim to further expand these results to a
wider array of unsteady wall motion in the future, which is fa-
cilitated by our derivation of analytical solutions for arbitrary
streamwise motion.
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Culpo, M. & Schneider, T. M. 2021 Channelflow 2.0.

Greenblatt, David & Moss, Edward A. 2004 Rapid temporal
acceleration of a turbulent pipe flow. Journal of Fluid Me-
chanics 514, 65–75.

Linot, Alec J., Schmid, Peter J. & Taira, Kunihiko 2023a On
the laminar solutions and stability of accelerating and de-
celerating channel flows. arXiv preprint arXiv:2312.12701
.

Linot, Alec J., Zeng, Kevin & Graham, Michael D. 2023b
PyChannel. https://github.com/alinot5/
PyChannel.

Linot, Alec J., Zeng, Kevin & Graham, Michael D. 2023c Tur-
bulence control in plane couette flow using low-dimensional
neural ode-based models and deep reinforcement learning.
International Journal of Heat and Fluid Flow 101, 109139.

Orr, William M’F. 1907 The stability or instability of the
steady motions of a perfect liquid and of a viscous liq-
uid. part i: A perfect liquid. Proceedings of the Royal Irish
Academy. Section A: Mathematical and Physical Sciences
27, 9–68.

Reddy, Satish C. & Henningson, Dan S. 1993 Energy growth
in viscous channel flows. Journal of Fluid Mechanics 252,
209–238.

Schlichting, Hermann. & Gersten, Klaus. 2017 Boundary-
Layer Theory / by Hermann Schlichting (Deceased), Klaus
Gersten., 9th edn. Berlin, Heidelberg: Springer Berlin Hei-
delberg.

Schmid, Peter J. & Henningson, Dan S. 2001 Stability and
Transition in Shear Flows, Applied Mathematical Sciences,
vol. 142. New York, NY: Springer New York.

Spalart, Philippe R, Moser, Robert D & Rogers, Michael M
1991 Spectral methods for the Navier-Stokes equations with
one infinite and two periodic directions. Journal of Compu-
tational Physics 96 (2), 297–324.

Xu, Duo, Song, Baofang & Avila, Marc 2021 Non-modal tran-
sient growth of disturbances in pulsatile and oscillatory pipe
flows. Journal of Fluid Mechanics 907, R5.

6


