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ABSTRACT
This contribution explores the use of machine learning

to forecast spatio-temporal information in street canyons with
varying canyon geometry and upstream roughness. We uti-
lize an experimental particle image velocimetry dataset and
adopt an approach that incorporates a convolutional encoder-
decoder transformer model alongside autoregressive training.
The learning strategy is assessed based on its ability to predict
various aspects of the flow, including mean turbulent statistics,
two-point correlations, quadrant events, and the dominant flow
structures.

INTRODUCTION
Air quality in urban environments is a pressing contempo-

rary issue, with significant socio-economic implications. The
geometric complexity of built areas and the interaction of nu-
merous thermodynamic processes challenge our comprehen-
sion of the urban climate. Turbulence plays a fundamental role
in the instantaneous dynamics of airflow. Specifically, the at-
mospheric flow, combined with the complex geometry of the
urban canopy, exhibits pronounced multi-scale characteristics,
both in space and time. The canyon geometry and upstream
roughness are significant parameters, wherein non-linear am-
plitude modulations manifest between the large scales in the
boundary layer and the separated low-frequency flapping shear
layer at roof level. Hence, the critical aspect lies in the com-
prehension of the spatio-temporal structure of such flows, par-
ticularly in the examination of transient phenomena like acci-
dental pollutant releases or in the prediction of flow states with
a limited number of sensors.

Recently, machine learning has been applied to study ur-
ban flow dynamics. This includes computing pollution con-
centrations from mobile field data (Alas et al., 2022), examin-
ing inter-scale turbulent interactions over obstacle arrays (Liu
et al., 2023), determining drag coefficients on buildings using
large eddy simulations (LES) (Lu et al., 2023), and even de-
veloping reduced-order models of flow dynamics (Xiao et al.,
2019). However, there are few works leverage machine learn-
ing (ML) algorithms systematically to predict spatial-temporal
turbulent physics, especially when using simplified idealized
experimental data for training to predict results in more com-

plex conditions.
Several studies have focused on spatial and temporal

reconstruction, as well as spatial supersampling (Schmidt
et al., 2021). Hybrid deep neural network architectures
have been designed to capture the spatial-temporal features
of unsteady flows (Han et al., 2019), and machine learn-
ing—based reduced-order models have been proposed for
three-dimensional flows (Nakamura et al., 2021). For in-
stance, a deep learning framework that combines long short-
term memory networks and convolutional neural networks has
been employed to predict the temporal evolution of turbulent
flames (Ren et al., 2021).

New deep learning architectures, such as transformers,
are emerging for temporal problems in structured and unstruc-
tured data. Inspired by convolutional neural networks, trans-
formers build input features using self-attention to assess the
relevance of other data points in the dataset, without relying on
recurrence. They excel in natural language processing tasks
and are replacing traditional recurrent neural networks like
long short—term memory networks. Transformers have also
been applied in spatio-temporal contexts, such as video analy-
sis. However, they have not been used for spatio-temporal pre-
diction in experimental flow fields involving turbulent flows in
urban street canopies.

In this work, we use a convolutional encoder-decoder
transformer model along with autoregressive training to make
spatio-temporal predictions using an experimental particle im-
age velocimetry (PIV) dataset of a street canyon flow. The
model is used to predict mean turbulent and two-point statis-
tics, quadrant events, and the modal decomposition of the flow
data, highlighting the potential of data-driven techniques for
addressing complex problems related to urban flows.

EXPERIMENTAL DATA
The experimental data, as referenced in Jaroslawski et al.

(2019, 2020), was acquired from wind tunnel experiments at
École Centrale de Nantes, France. These experiments utilized
a low-speed boundary-layer wind tunnel with dimensions of 2
meters in width, 2 meters in height, and 24 meters in length,
featuring a 5:1 inlet contraction ratio. Figure 1 shows the ex-
perimental setup. A simulated suburban atmospheric boundary
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Figure 1. (Experimental setup (top) and configurations (bot-
tom).

layer at a 1:200 scale was created at the model location using a
combination of three vertical, tapered spires at the inlet, a solid
fence 300 mm in height located 1.5 meters downstream of the
inlet, and an 18.5-meter fetch of either 2D or 3D roughness
elements. The study investigated street canyons with width-
to-height aspect ratios of 1 and 3. Stereoscopic particle image
velocimetry (PIV) measurements were conducted horizontally
(x− z plane) at a height of 0.9h ± 0.05h. The PIV setup, posi-
tioned beneath the wind tunnel floor, utilized a Litron double
cavity laser and DANTEC Dynamic Studio software to pro-
duce vector fields with a spatial resolution of 1.6 mm and a
sampling frequency of 7 Hz. Velocity vector fields were com-
puted using an iterative cross-correlation analysis with a win-
dow size of 64 × 64 pixels and an interrogation window of 32 ×
32 pixels, overlapped by 50%, and a pulse interval of 500 µs.
Measurement uncertainties for mean velocity, standard devia-
tion, and turbulent shear stress were estimated at 0.9%, 1.4%,
and 3.9%, respectively, based on 2551 independent samples
from 10,000 velocity field recordings. The freestream velocity
of Ue = 5.9 ms−1, measured using a pitot-static tube, remained
constant across experiments, yielding a Reynolds number of
1.9×104 based on this speed and canyon height, h.

MACHINE LEARNING FRAMEWORK
Transformers, when combined with convolutional

encoder-decoder models, offer optimal performance for
spatio-temporal data analysis. This fusion is particularly
effective for tasks like video frame prediction in computer
vision. The self-attention mechanism embedded within
convolutional layers enhances spatial representation by
prioritizing essential features while suppressing less relevant
ones. In Figure 2, we illustrate this integrated framework,
which we utilize in our current study.

In our spatio-temporal learning task, we are
given a time-series comprising N sequential snapshots[
xt ,xt+∆t , ....,xt+(N−1)∆t

]
, with the objective of predicting the

same quantity of interest M steps ahead in time. The input X
of our deep learning model consists of a sequence Tin of snap-

shots
[
xt ,xt+∆t , ....,xt+(N−1)∆t

]
, while the output Y comprises

a sequence Tout of snapshots
[
xt+N∆t , ...,xt+N+(M−1)∆t

]
.

Each snapshot xt can either be a scalar field or a vector field
containing multiple features.

The encoder processes input snapshots with H ×W res-
olutions, extracting pertinent information and mapping it to
a high-dimensional representation. Meanwhile, the decoder
converts this representation into target output tensors through
up-sampling and convolutions. Together, the weight matri-
ces of the encoder and decoder facilitate the mapping of input
to output, thereby enabling small-scale feature learning. At
xt+∆t , the decoder transforms the latent space back to the orig-
inal spatial dimensions. When a transformer block follows a
convolutional layer, the model learns to emphasize significant
features across channels and spatial dimensions.

Initially, input sequences are concatenated channel-wise
to the input layer, followed by convolutional operations in the
encoder. Within the convolutional layers, intermediate fea-
ture maps F ∈ RC×H×W with C intermediate channels from
a specific layer pass through the self-attention convolutional
transformer layer. This layer considers the spatial represen-
tation and positional embeddings of input sequence channels,
employing a 3×3 kernel and incorporating convolutional fea-
tures. The combination of convolutional neural networks with
self-attention enhances the learning of spatio-temporal struc-
tures.

In addition to the convolutional transformer layer, the
model undergoes training in an autoregressive manner. Au-
toregressive models, in formal terms, predict future sequences
by leveraging previously predicted sequences in a cyclical
manner. In this context, “auto” signifies the regression of
the variable sequence against itself. For a trained model M
as shown in Figure 2, multi-step training is performed for
quantity Xt in an auto-regressive manner, Xt+∆t is predicted
from previously predicted Xt , where t is some non-dimensional
time. In other words, an initial condition Xt is inputted to the
model to learn X̂t+∆t , after this predicted X̂t+∆t is then fed back
to the model again to learn X̂t+2∆t and so on:





X̂t+∆t = M(Xt),

X̂t+2∆t = M(X̂t+∆t),

...

X̂t+(n−1)∆t = M(X̂t+(n−2)∆t),

(1)

where t is the time step and X ∈ RC×H×W is the input ten-
sor snapshot at instant t. In the following, the autoregressive
training sequence length is set equal to two in order to limit
the computational cost. We train the model by employing the
Adam optimizer (Kingma & Ba, 2014) to iteratively minimize
the total equi-weighted mean squared error (MSE) loss defined
by:

L =
1
ns

[ ns

∑
i=1

(
(Xt+∆t)

i −
(

X̂t+∆t

)i
)2

+ · · ·

+
ns

∑
i=1

(
(Xt+2∆t)

i −
(

X̂t+2∆t

)i
)2

+ · · ·

+
ns

∑
i=1

((
Xt+(n−1)∆t

)i
−
(

X̂t+(n−1)∆t

)i
)2]

.

(2)
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Figure 2. Convolutional encoder-decoder transformer deep learning architecture : Model architecture of the convolutional encoder-
decoder transformer to process low and high level features. The canonical four-stage design is utilized in addition to the convolutional
transformer blocks or layers. H,W are the input resolutions for each snapshot in Tin sequence and Tout sequence, k is the kernel size,
and m, the number of filters.
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Figure 2. Convolutional encoder-decoder transformer deep learning architecture : Model archi-
tecture of the convolutional encoder-decoder transformer to process low and high level features.
The canonical four-stage design is utilized in addition to the convolutional transformer blocks
or layers. H, W are the input resolutions for each snapshot in Tin sequence and Tout sequence,
k is the kernel size, and m, the number of filters.
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Figure 3. Time- and spatially- averaged turbulent statistics: (a) streamwise velocity component
and (b) vertical velocity component observed in both the training data and the predicted data.
ML represents the model’s prediction, while PI’ references the experimental data.

3.1. Mean flow

The ML model is trained using the C3hR3h configuration, and its predictive capabilities
are evaluated by applying it to the C1hR1h configuration, which features a smaller aspect
ratio and a di↵erent upstream roughness setup. Figure3 presents the training data and
compares the model’s predictions with the test experimental data, illustrating the evolu-
tion of spanwise-averaged streamwise roof-level U (streamwise) and W (vertical) velocity
profiles. A significant di↵erence between the training and test datasets is observed due
to distinct flow regimes. The test case exhibits a skimming flow regime, contrasting the
wake interaction flow regime seen in the training data (Oke 1988), which ensures sub-
stantial di↵erences between the training and test datasets. Particularly notable is the W
velocity component, indicating a larger and asymmetric recirculation that is skewed to-
wards the aft portion of the canyon. Upon examining the model’s predictive capabilities,
a remarkable agreement is observed between the model’s results and the experimental
findings concerning mean flow.
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tecture of the convolutional encoder-decoder transformer to process low and high level features.
The canonical four-stage design is utilized in addition to the convolutional transformer blocks
or layers. H, W are the input resolutions for each snapshot in Tin sequence and Tout sequence,
k is the kernel size, and m, the number of filters.
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3.1. Mean flow

The ML model is trained using the C3hR3h configuration, and its predictive capabilities
are evaluated by applying it to the C1hR1h configuration, which features a smaller aspect
ratio and a di↵erent upstream roughness setup. Figure3 presents the training data and
compares the model’s predictions with the test experimental data, illustrating the evolu-
tion of spanwise-averaged streamwise roof-level U (streamwise) and W (vertical) velocity
profiles. A significant di↵erence between the training and test datasets is observed due
to distinct flow regimes. The test case exhibits a skimming flow regime, contrasting the
wake interaction flow regime seen in the training data (Oke 1988), which ensures sub-
stantial di↵erences between the training and test datasets. Particularly notable is the W
velocity component, indicating a larger and asymmetric recirculation that is skewed to-
wards the aft portion of the canyon. Upon examining the model’s predictive capabilities,
a remarkable agreement is observed between the model’s results and the experimental
findings concerning mean flow.
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tecture of the convolutional encoder-decoder transformer to process low and high level features.
The canonical four-stage design is utilized in addition to the convolutional transformer blocks
or layers. H, W are the input resolutions for each snapshot in Tin sequence and Tout sequence,
k is the kernel size, and m, the number of filters.
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and (b) vertical velocity component observed in both the training data and the predicted data.
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3.1. Mean flow

The ML model is trained using the C3hR3h configuration, and its predictive capabilities
are evaluated by applying it to the C1hR1h configuration, which features a smaller aspect
ratio and a di↵erent upstream roughness setup. Figure3 presents the training data and
compares the model’s predictions with the test experimental data, illustrating the evolu-
tion of spanwise-averaged streamwise roof-level U (streamwise) and W (vertical) velocity
profiles. A significant di↵erence between the training and test datasets is observed due
to distinct flow regimes. The test case exhibits a skimming flow regime, contrasting the
wake interaction flow regime seen in the training data (Oke 1988), which ensures sub-
stantial di↵erences between the training and test datasets. Particularly notable is the W
velocity component, indicating a larger and asymmetric recirculation that is skewed to-
wards the aft portion of the canyon. Upon examining the model’s predictive capabilities,
a remarkable agreement is observed between the model’s results and the experimental
findings concerning mean flow.
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k is the kernel size, and m, the number of filters.
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Figure 3. Time- and spatially- averaged turbulent statistics: (a) streamwise velocity component
and (b) vertical velocity component observed in both the training data and the predicted data.
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3.1. Mean flow

The ML model is trained using the C3hR3h configuration, and its predictive capabilities
are evaluated by applying it to the C1hR1h configuration, which features a smaller aspect
ratio and a di↵erent upstream roughness setup. Figure3 presents the training data and
compares the model’s predictions with the test experimental data, illustrating the evolu-
tion of spanwise-averaged streamwise roof-level U (streamwise) and W (vertical) velocity
profiles. A significant di↵erence between the training and test datasets is observed due
to distinct flow regimes. The test case exhibits a skimming flow regime, contrasting the
wake interaction flow regime seen in the training data (Oke 1988), which ensures sub-
stantial di↵erences between the training and test datasets. Particularly notable is the W
velocity component, indicating a larger and asymmetric recirculation that is skewed to-
wards the aft portion of the canyon. Upon examining the model’s predictive capabilities,
a remarkable agreement is observed between the model’s results and the experimental
findings concerning mean flow.
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3.1. Mean flow

The ML model is trained using the C3hR3h configuration, and its predictive capabilities
are evaluated by applying it to the C1hR1h configuration, which features a smaller aspect
ratio and a di↵erent upstream roughness setup. Figure3 presents the training data and
compares the model’s predictions with the test experimental data, illustrating the evolu-
tion of spanwise-averaged streamwise roof-level U (streamwise) and W (vertical) velocity
profiles. A significant di↵erence between the training and test datasets is observed due
to distinct flow regimes. The test case exhibits a skimming flow regime, contrasting the
wake interaction flow regime seen in the training data (Oke 1988), which ensures sub-
stantial di↵erences between the training and test datasets. Particularly notable is the W
velocity component, indicating a larger and asymmetric recirculation that is skewed to-
wards the aft portion of the canyon. Upon examining the model’s predictive capabilities,
a remarkable agreement is observed between the model’s results and the experimental
findings concerning mean flow.

Figure 3. Time- and spatially-averaged mean velocity profiles for (a) streamwise velocity and (b) vertical velocity. The blue line
represents the training configuration (Ch3R3h), while the red and black lines denote the test case (C1hC1h).

The neural network employs the ReLU activation func-
tion, chosen for its documented efficacy in stabilizing weight
updates during training (Nair & Hinton, 2010). Training in-
volves repeated presentation of the entire dataset to the net-
work, with shuffling applied, and each complete iteration
termed as an epoch. To halt the training process, an early stop-
ping criterion is implemented, supplemented by a reduction in
the learning rate if significant learning progress was not ob-
served after every 100 epochs. Implementation of the deep
learning architecture utilizes the TensorFlow library (Abadi
et al., 2016), with training executed on an Nvidia RTX A4500
GPU.

In this study, we utilize a training dataset, as shown in
Figure 1, consisting of a canyon with a width of 3h and up-
stream roughness characterized by 2D bars spaced at inter-
vals of 3h. This configuration represents the wake-interference
flow regime (Oke, 1988), where closely spaced roughness ele-

ments enhance each other’s wakes. We train the ML model
using the complete set of 10,000 snapshots extracted from
the PIV experiments. Subsequently, we evaluate the model’s
performance in the skimming flow regime, which features a
canyon spacing of 1h, as shown in Fig. 1. In this regime, the
density of packing is such that the flow “skips” over the top
of the elements and is significantly different from the wake-
interference flow regime. The ML model generated 500 snap-
shots. This reduction in the number of snapshots resulted from
significant error propagation observed afterward.

RESULTS
This section presents the results, comparing mean and

two-point turbulent statistics, quadrant analysis, and proper
orthogonal decomposition between the PIV reference and the
ML predictions for the C1hR1h configuration.
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Figure 2. Convolutional encoder-decoder transformer deep learning architecture : Model archi-
tecture of the convolutional encoder-decoder transformer to process low and high level features.
The canonical four-stage design is utilized in addition to the convolutional transformer blocks
or layers. H, W are the input resolutions for each snapshot in Tin sequence and Tout sequence,
k is the kernel size, and m, the number of filters.
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Figure 3. Time- and spatially- averaged turbulent statistics: (a) streamwise velocity component
and (b) vertical velocity component observed in both the training data and the predicted data.
ML represents the model’s prediction, while PI’ references the experimental data.

3.1. Mean flow

The ML model is trained using the C3hR3h configuration, and its predictive capabilities
are evaluated by applying it to the C1hR1h configuration, which features a smaller aspect
ratio and a di↵erent upstream roughness setup. Figure3 presents the training data and
compares the model’s predictions with the test experimental data, illustrating the evolu-
tion of spanwise-averaged streamwise roof-level U (streamwise) and W (vertical) velocity
profiles. A significant di↵erence between the training and test datasets is observed due
to distinct flow regimes. The test case exhibits a skimming flow regime, contrasting the
wake interaction flow regime seen in the training data (Oke 1988), which ensures sub-
stantial di↵erences between the training and test datasets. Particularly notable is the W
velocity component, indicating a larger and asymmetric recirculation that is skewed to-
wards the aft portion of the canyon. Upon examining the model’s predictive capabilities,
a remarkable agreement is observed between the model’s results and the experimental
findings concerning mean flow.
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tecture of the convolutional encoder-decoder transformer to process low and high level features.
The canonical four-stage design is utilized in addition to the convolutional transformer blocks
or layers. H, W are the input resolutions for each snapshot in Tin sequence and Tout sequence,
k is the kernel size, and m, the number of filters.
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Figure 3. Time- and spatially- averaged turbulent statistics: (a) streamwise velocity component
and (b) vertical velocity component observed in both the training data and the predicted data.
ML represents the model’s prediction, while PI’ references the experimental data.

3.1. Mean flow

The ML model is trained using the C3hR3h configuration, and its predictive capabilities
are evaluated by applying it to the C1hR1h configuration, which features a smaller aspect
ratio and a di↵erent upstream roughness setup. Figure3 presents the training data and
compares the model’s predictions with the test experimental data, illustrating the evolu-
tion of spanwise-averaged streamwise roof-level U (streamwise) and W (vertical) velocity
profiles. A significant di↵erence between the training and test datasets is observed due
to distinct flow regimes. The test case exhibits a skimming flow regime, contrasting the
wake interaction flow regime seen in the training data (Oke 1988), which ensures sub-
stantial di↵erences between the training and test datasets. Particularly notable is the W
velocity component, indicating a larger and asymmetric recirculation that is skewed to-
wards the aft portion of the canyon. Upon examining the model’s predictive capabilities,
a remarkable agreement is observed between the model’s results and the experimental
findings concerning mean flow.
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or layers. H, W are the input resolutions for each snapshot in Tin sequence and Tout sequence,
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Figure 3. Time- and spatially- averaged turbulent statistics: (a) streamwise velocity component
and (b) vertical velocity component observed in both the training data and the predicted data.
ML represents the model’s prediction, while PI’ references the experimental data.

3.1. Mean flow

The ML model is trained using the C3hR3h configuration, and its predictive capabilities
are evaluated by applying it to the C1hR1h configuration, which features a smaller aspect
ratio and a di↵erent upstream roughness setup. Figure3 presents the training data and
compares the model’s predictions with the test experimental data, illustrating the evolu-
tion of spanwise-averaged streamwise roof-level U (streamwise) and W (vertical) velocity
profiles. A significant di↵erence between the training and test datasets is observed due
to distinct flow regimes. The test case exhibits a skimming flow regime, contrasting the
wake interaction flow regime seen in the training data (Oke 1988), which ensures sub-
stantial di↵erences between the training and test datasets. Particularly notable is the W
velocity component, indicating a larger and asymmetric recirculation that is skewed to-
wards the aft portion of the canyon. Upon examining the model’s predictive capabilities,
a remarkable agreement is observed between the model’s results and the experimental
findings concerning mean flow.

Figure 4. Time- and spatially-averaged standard deviation
profiles of (a) streamwise velocity and (b) vertical velocity
components for the C1hR1h test case.

Mean turbulence statistics

Figure 3 presents a comparison between the model’s pre-
dictions and the experimental data for the time- and spanwise-
averaged streamwise and vertical velocity profiles as functions
of the x-direction. The mean flow profiles in the training data,
presented in blue in Fig. 3, differ significantly from those in
the test case. This difference arises because the canyon width-
to-height ratio is reduced to 1 in the test case compared to 3
in the training data. Additionally, the test case is in a skim-
ming flow regime, which differs from the wake interaction
flow regime present in the training data (Oke, 1988). Notably,
in the training dataset, the W velocity component shown in
Fig. 3b, reveals a larger and asymmetric recirculation skewed
towards the windward portion of the canyon, unlike the test
case profile. The streamwise and vertical mean velocity pro-
files shown in Fig. 3 demonstrate a strong agreement between
the model’s predictions and the experimental data for mean
flow.

Figure 4 shows the profiles of the spanwise-averaged stan-
dard deviation at the streamwise roof level for both the stream-
wise (σu) and vertical (σw) velocity components. The error
bars indicate the spanwise variation of σu and σw calculated
from the experimental data. We can observe a general agree-
ment with the experiment in the spatial evolution of the pro-
files. The ML prediction exhibits lower values of σu and σw;
however, they mostly lie within the spanwise variation of these
statistics in the experimental data.

Two-point statistics
To further assess the model’s capacity in predicting tur-

bulence structure, we conducted two-point spatial correlation
analysis on the streamwise velocity fluctuation, represented as
Ruu. Two-point spatial fluctuating velocity correlations offer
important information regarding the structure of the flow field
that single-point measurements are unable to provide. A two-
point spatial correlation was conducted using the middle of the
street canyon as the reference point. The two-point correlation
coefficient was computed using

Ruu =
u′(xre f ,yre f )u′(x,y)√
u′(xre f ,yre f )

√
u′(x,y)

. (3)

Figure 5a shows contour fields of Ruu for both the ML
model and the PIV data. The ML model effectively captures
the general spatial structure, particularly near the reference
point xre f = 0,yre f = 0. In Figure 5b, a spanwise slice is pre-
sented at the streamwise position of x = 0. This further high-
lights the model’s capability to predict fluctuations’ decorre-
lation at smaller spatial lags, indicating its potential in fore-
casting the spanwise turbulence structure. At greater spatial
lags, the correlation decreases more rapidly than in the exper-
imental data, possibly due to energy dissipation by the model.
It is worth noting that the noise observed in the ML results
may stem from the utilization of 500 snapshots for computa-
tions, whereas the experimental dataset incorporated 10,000
snapshots.

Quadrant analysis
We employ quadrant analysis (Wallace, 2016) to assess

the model’s capability in predicting turbulent events within the
flow. This evaluation allows us to gauge the model’s perfor-
mance in capturing the behavior of coherent structures near
the roof level of the canyon. The turbulent momentum flux,
u′w′, is decomposed into four quadrants: Q1 (outward interac-
tion, u′ > 0,w′ > 0), Q2 (ejection, u′ < 0,w′ > 0), Q3 (inward
interaction, u′ < 0,w′ < 0), and Q4 (sweep, u′ > 0,w′ < 0).
A hole analysis is then applied to measure the extent of these
contributions to u′w′ in each quadrant by further limiting the
data to consider values above a certain amplitude threshold.
The threshold level, TH , is determined from a multiple (H) of
the root-mean-square (r.m.s.) stress: TH = H(u′w′).

The results of the hole analysis are shown in Figure 6a,
illustrating the contribution of each quadrant to the total shear
stress as a function of hole size, H. The ML dataset exhibits
agreement with the experimental outcomes, a conclusion fur-
ther supported by examining the probability density function
of the streamwise and vertical fluctuations, P(u′,w′), shown
in Figure 6b. Nonetheless, at lower threshold levels (H), op-
portunities for enhancement of the model emerge, highlighted
by a slightly less precise overlap of the ML and PIV data.
This divergence is, at least in part, presumably due to the trun-
cated dataset size within the ML analysis vis-à-vis the exhaus-
tive experimental dataset, indicating that future model refine-
ment should focus on enhancing the model’s ability to generate
more snapshots.

Proper orthogonal decomposition
We conduct a snapshot Proper Orthogonal Decomposi-

tion (POD) analysis (Sirovich, 1987) on the fluctuating veloc-
ity fields from both datasets. This assessment evaluates the ML
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Figure 5. (a) Two-point correlation fields, Ruu, of the ML model and PIV dataset. (b) Spanwise slice at x = 0 of the Ruu field.
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Figure 2. Convolutional encoder-decoder transformer deep learning architecture : Model archi-
tecture of the convolutional encoder-decoder transformer to process low and high level features.
The canonical four-stage design is utilized in addition to the convolutional transformer blocks
or layers. H, W are the input resolutions for each snapshot in Tin sequence and Tout sequence,
k is the kernel size, and m, the number of filters.
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Figure 3. Time- and spatially- averaged turbulent statistics: (a) streamwise velocity component
and (b) vertical velocity component observed in both the training data and the predicted data.
ML represents the model’s prediction, while PI’ references the experimental data.

3.1. Mean flow

The ML model is trained using the C3hR3h configuration, and its predictive capabilities
are evaluated by applying it to the C1hR1h configuration, which features a smaller aspect
ratio and a di↵erent upstream roughness setup. Figure3 presents the training data and
compares the model’s predictions with the test experimental data, illustrating the evolu-
tion of spanwise-averaged streamwise roof-level U (streamwise) and W (vertical) velocity
profiles. A significant di↵erence between the training and test datasets is observed due
to distinct flow regimes. The test case exhibits a skimming flow regime, contrasting the
wake interaction flow regime seen in the training data (Oke 1988), which ensures sub-
stantial di↵erences between the training and test datasets. Particularly notable is the W
velocity component, indicating a larger and asymmetric recirculation that is skewed to-
wards the aft portion of the canyon. Upon examining the model’s predictive capabilities,
a remarkable agreement is observed between the model’s results and the experimental
findings concerning mean flow.
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or layers. H, W are the input resolutions for each snapshot in Tin sequence and Tout sequence,
k is the kernel size, and m, the number of filters.
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Figure 3. Time- and spatially- averaged turbulent statistics: (a) streamwise velocity component
and (b) vertical velocity component observed in both the training data and the predicted data.
ML represents the model’s prediction, while PI’ references the experimental data.

3.1. Mean flow

The ML model is trained using the C3hR3h configuration, and its predictive capabilities
are evaluated by applying it to the C1hR1h configuration, which features a smaller aspect
ratio and a di↵erent upstream roughness setup. Figure3 presents the training data and
compares the model’s predictions with the test experimental data, illustrating the evolu-
tion of spanwise-averaged streamwise roof-level U (streamwise) and W (vertical) velocity
profiles. A significant di↵erence between the training and test datasets is observed due
to distinct flow regimes. The test case exhibits a skimming flow regime, contrasting the
wake interaction flow regime seen in the training data (Oke 1988), which ensures sub-
stantial di↵erences between the training and test datasets. Particularly notable is the W
velocity component, indicating a larger and asymmetric recirculation that is skewed to-
wards the aft portion of the canyon. Upon examining the model’s predictive capabilities,
a remarkable agreement is observed between the model’s results and the experimental
findings concerning mean flow.
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Figure 2. Convolutional encoder-decoder transformer deep learning architecture : Model archi-
tecture of the convolutional encoder-decoder transformer to process low and high level features.
The canonical four-stage design is utilized in addition to the convolutional transformer blocks
or layers. H, W are the input resolutions for each snapshot in Tin sequence and Tout sequence,
k is the kernel size, and m, the number of filters.
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Figure 3. Time- and spatially- averaged turbulent statistics: (a) streamwise velocity component
and (b) vertical velocity component observed in both the training data and the predicted data.
ML represents the model’s prediction, while PI’ references the experimental data.

3.1. Mean flow

The ML model is trained using the C3hR3h configuration, and its predictive capabilities
are evaluated by applying it to the C1hR1h configuration, which features a smaller aspect
ratio and a di↵erent upstream roughness setup. Figure3 presents the training data and
compares the model’s predictions with the test experimental data, illustrating the evolu-
tion of spanwise-averaged streamwise roof-level U (streamwise) and W (vertical) velocity
profiles. A significant di↵erence between the training and test datasets is observed due
to distinct flow regimes. The test case exhibits a skimming flow regime, contrasting the
wake interaction flow regime seen in the training data (Oke 1988), which ensures sub-
stantial di↵erences between the training and test datasets. Particularly notable is the W
velocity component, indicating a larger and asymmetric recirculation that is skewed to-
wards the aft portion of the canyon. Upon examining the model’s predictive capabilities,
a remarkable agreement is observed between the model’s results and the experimental
findings concerning mean flow.
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Figure 2. Convolutional encoder-decoder transformer deep learning architecture : Model archi-
tecture of the convolutional encoder-decoder transformer to process low and high level features.
The canonical four-stage design is utilized in addition to the convolutional transformer blocks
or layers. H, W are the input resolutions for each snapshot in Tin sequence and Tout sequence,
k is the kernel size, and m, the number of filters.
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Figure 3. Time- and spatially- averaged turbulent statistics: (a) streamwise velocity component
and (b) vertical velocity component observed in both the training data and the predicted data.
ML represents the model’s prediction, while PI’ references the experimental data.

3.1. Mean flow

The ML model is trained using the C3hR3h configuration, and its predictive capabilities
are evaluated by applying it to the C1hR1h configuration, which features a smaller aspect
ratio and a di↵erent upstream roughness setup. Figure3 presents the training data and
compares the model’s predictions with the test experimental data, illustrating the evolu-
tion of spanwise-averaged streamwise roof-level U (streamwise) and W (vertical) velocity
profiles. A significant di↵erence between the training and test datasets is observed due
to distinct flow regimes. The test case exhibits a skimming flow regime, contrasting the
wake interaction flow regime seen in the training data (Oke 1988), which ensures sub-
stantial di↵erences between the training and test datasets. Particularly notable is the W
velocity component, indicating a larger and asymmetric recirculation that is skewed to-
wards the aft portion of the canyon. Upon examining the model’s predictive capabilities,
a remarkable agreement is observed between the model’s results and the experimental
findings concerning mean flow.

Figure 6. (a) Q1-Q4 contributions to the total shear stress
versus the hole size, H (b) Joint-Probability Function, P(u′,w′)

model’s proficiency in capturing and forecasting the most ener-
getically significant flow structures, as well as the distribution
of kinetic energy across different scales of motion identified
within the data.

In Figure 7a,b, we show the spatial structures of POD
modes 1, 2, 4, and 20 for the streamwise fluctuating veloc-
ity field. In the first two modes, we observe structural agree-
ment between the experimental and ML-derived POD modes.
These modes are associated with the large-scale structure re-
lated to the low-frequency dynamics of the separated shear

layer. Conversely, the higher-order modes exhibit a reduc-
tion in spanwise wavelength and display periodicity along the
canyon’s span. Of particular interest is the performance of the
ML model in Mode 20. Despite the small-scale dynamics,
there is a qualitative resemblance in the spatial organization
of this mode, suggesting that the model can replicate the finer-
scale structures present within the shear layer at the canyon’s
roof level. However, we note a discrepancy in the periodic-
ity of Mode 4, which could be associated with variations in
the eigenvalues. Figure 7c displays the eigenvalues for the ini-
tial 30 modes. Although the trend of eigenvalues generally
matches, the eigenvalues of the ML model are smaller across
all modes.

CONCLUSION AND IMPROVEMENTS

In this study, we employed a machine learning framework
that integrates a convolutional encoder-decoder transformer
with autoregressive training to predict spatio-temporal dynam-
ics within a street canyon. The model was trained using wind
tunnel PIV measurements at the roof level of a street canyon
in the x-z plane. The training dataset configuration comprised
a canyon with a width-to-height ratio of 3 and an upstream
roughness fetch consisting of 2D transverse bars designed to
induce a wake interference flow regime. Subsequently, we
evaluated the model’s performance using a configuration with
a smaller canyon width-to-height ratio of 1, where the up-
stream roughness consisted of 2D transverse bars spaced to
generate a skimming flow regime.

The ML model predicted the mean turbulent statistics and
captured the spanwise structure of roof-level turbulence in the
street canyon, as evidenced by comparisons with two-point
statistics. The frequency of turbulent events was also ana-
lyzed using quadrant analysis. Additionally, results from a
POD analysis indicated that the model’s predictions were con-
sistent with the experimental observations, particularly in the
structure and organization of the most energetic modes.

Future refinements will focus on training the model us-
ing fluctuations snapshots rather than velocity snapshots, aug-
menting the number of convolution layers, and broadening
training to include additional configurations. Additionally, we
will explore the integration of diffusion model strategies to
generate more flow field snapshots.
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Figure 4. (a) Two-point correlation fields, Ruu, of the ML model and PIV dataset. (b)
Spanwise slice at x = 0 of the Ruu field.

3.2. Two-point correlations

To further evaluate the model’s capabilities in predicting turbulence structure, we com-
pared its results to a two-point spatial correlation analysis of the streamwise velocity
fluctuation, denoted as Ruu. Two-point spatial fluctuating velocity correlations o↵er im-
portant information regarding the structure of the flow field that single-point measure-
ments are unable to provide. A two-point spatial correlation was conducted using the
middle of the street canyon as the reference point. The two-point correlation coe�cient
was computed using

Ruu =
u0(xref , yref )u0(x, y)q
u0(xref , yref )

q
u0(x, y)

. (3.1)

Figure 4(a) shows contour fields of Ruu for both the ML model and the PIV data.
The ML model e↵ectively captures the general spatial structure, particularly near the
reference point xref = 0, yref = 0. In Figure 4(b), a spanwise slice is presented at
the streamwise position of x = 0. This further shows the model’s capability to predict
fluctuations’ decorrelation at smaller spatial lags, indicating its potential in forecasting
the spanwise turbulence structure. We note that the noise observed in the ML results can
be attributed to the use of 400 snapshots for computations, whereas the experimental
data utilized 10000 snapshots.

3.3. Future model improvements

The presented ML model exhibits potential for improvement. Figure 5 displays the
spanwise-averaged streamwise roof-level standard deviation profiles for the streamwise
and vertical velocity components, denoted as �u and �w, respectively. These profiles il-
lustrate the comparison between the ML model trained with one configuration (solid
red line) and two configurations (dashed red line). Referring to Figure 5, there is an
underprediction and incorrect spatial evolution in both �u and �w. However, after in-
corporating an additional configuration (C3hR1h) into the model’s training, there’s an
improvement in agreement with the experiment. Specifically, the spatial evolution of the
standard deviation is closer to the experimental data, albeit accompanied by a slight
overestimation.

This observation motivates further refinement of the ML model. Our proposed ap-
proach involves leveraging findings from a quadrant analysis and the computation of
amplitude modulation coe�cients derived from experimental data. We aim to utilize
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the spanwise turbulence structure. We note that the noise observed in the ML results can
be attributed to the use of 400 snapshots for computations, whereas the experimental
data utilized 10000 snapshots.
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The presented ML model exhibits potential for improvement. Figure 5 displays the
spanwise-averaged streamwise roof-level standard deviation profiles for the streamwise
and vertical velocity components, denoted as �u and �w, respectively. These profiles il-
lustrate the comparison between the ML model trained with one configuration (solid
red line) and two configurations (dashed red line). Referring to Figure 5, there is an
underprediction and incorrect spatial evolution in both �u and �w. However, after in-
corporating an additional configuration (C3hR1h) into the model’s training, there’s an
improvement in agreement with the experiment. Specifically, the spatial evolution of the
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Figure 2. Convolutional encoder-decoder transformer deep learning architecture : Model archi-
tecture of the convolutional encoder-decoder transformer to process low and high level features.
The canonical four-stage design is utilized in addition to the convolutional transformer blocks
or layers. H, W are the input resolutions for each snapshot in Tin sequence and Tout sequence,
k is the kernel size, and m, the number of filters.
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Figure 3. Time- and spatially- averaged turbulent statistics: (a) streamwise velocity component
and (b) vertical velocity component observed in both the training data and the predicted data.
ML represents the model’s prediction, while PI’ references the experimental data.

3.1. Mean flow

The ML model is trained using the C3hR3h configuration, and its predictive capabilities
are evaluated by applying it to the C1hR1h configuration, which features a smaller aspect
ratio and a di↵erent upstream roughness setup. Figure3 presents the training data and
compares the model’s predictions with the test experimental data, illustrating the evolu-
tion of spanwise-averaged streamwise roof-level U (streamwise) and W (vertical) velocity
profiles. A significant di↵erence between the training and test datasets is observed due
to distinct flow regimes. The test case exhibits a skimming flow regime, contrasting the
wake interaction flow regime seen in the training data (Oke 1988), which ensures sub-
stantial di↵erences between the training and test datasets. Particularly notable is the W
velocity component, indicating a larger and asymmetric recirculation that is skewed to-
wards the aft portion of the canyon. Upon examining the model’s predictive capabilities,
a remarkable agreement is observed between the model’s results and the experimental
findings concerning mean flow.
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Figure 2. Convolutional encoder-decoder transformer deep learning architecture : Model archi-
tecture of the convolutional encoder-decoder transformer to process low and high level features.
The canonical four-stage design is utilized in addition to the convolutional transformer blocks
or layers. H, W are the input resolutions for each snapshot in Tin sequence and Tout sequence,
k is the kernel size, and m, the number of filters.
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Figure 3. Time- and spatially- averaged turbulent statistics: (a) streamwise velocity component
and (b) vertical velocity component observed in both the training data and the predicted data.
ML represents the model’s prediction, while PI’ references the experimental data.

3.1. Mean flow

The ML model is trained using the C3hR3h configuration, and its predictive capabilities
are evaluated by applying it to the C1hR1h configuration, which features a smaller aspect
ratio and a di↵erent upstream roughness setup. Figure3 presents the training data and
compares the model’s predictions with the test experimental data, illustrating the evolu-
tion of spanwise-averaged streamwise roof-level U (streamwise) and W (vertical) velocity
profiles. A significant di↵erence between the training and test datasets is observed due
to distinct flow regimes. The test case exhibits a skimming flow regime, contrasting the
wake interaction flow regime seen in the training data (Oke 1988), which ensures sub-
stantial di↵erences between the training and test datasets. Particularly notable is the W
velocity component, indicating a larger and asymmetric recirculation that is skewed to-
wards the aft portion of the canyon. Upon examining the model’s predictive capabilities,
a remarkable agreement is observed between the model’s results and the experimental
findings concerning mean flow.
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Figure 4. (a) Two-point correlation fields, Ruu, of the ML model and PIV dataset. (b)
Spanwise slice at x = 0 of the Ruu field.

3.2. Two-point correlations

To further evaluate the model’s capabilities in predicting turbulence structure, we com-
pared its results to a two-point spatial correlation analysis of the streamwise velocity
fluctuation, denoted as Ruu. Two-point spatial fluctuating velocity correlations o↵er im-
portant information regarding the structure of the flow field that single-point measure-
ments are unable to provide. A two-point spatial correlation was conducted using the
middle of the street canyon as the reference point. The two-point correlation coe�cient
was computed using

Ruu =
u0(xref , yref )u0(x, y)q
u0(xref , yref )

q
u0(x, y)

. (3.1)

Figure 4(a) shows contour fields of Ruu for both the ML model and the PIV data.
The ML model e↵ectively captures the general spatial structure, particularly near the
reference point xref = 0, yref = 0. In Figure 4(b), a spanwise slice is presented at
the streamwise position of x = 0. This further shows the model’s capability to predict
fluctuations’ decorrelation at smaller spatial lags, indicating its potential in forecasting
the spanwise turbulence structure. We note that the noise observed in the ML results can
be attributed to the use of 400 snapshots for computations, whereas the experimental
data utilized 10000 snapshots.

3.3. Future model improvements

The presented ML model exhibits potential for improvement. Figure 5 displays the
spanwise-averaged streamwise roof-level standard deviation profiles for the streamwise
and vertical velocity components, denoted as �u and �w, respectively. These profiles il-
lustrate the comparison between the ML model trained with one configuration (solid
red line) and two configurations (dashed red line). Referring to Figure 5, there is an
underprediction and incorrect spatial evolution in both �u and �w. However, after in-
corporating an additional configuration (C3hR1h) into the model’s training, there’s an
improvement in agreement with the experiment. Specifically, the spatial evolution of the
standard deviation is closer to the experimental data, albeit accompanied by a slight
overestimation.

This observation motivates further refinement of the ML model. Our proposed ap-
proach involves leveraging findings from a quadrant analysis and the computation of
amplitude modulation coe�cients derived from experimental data. We aim to utilize
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the streamwise position of x = 0. This further shows the model’s capability to predict
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the spanwise turbulence structure. We note that the noise observed in the ML results can
be attributed to the use of 400 snapshots for computations, whereas the experimental
data utilized 10000 snapshots.
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spanwise-averaged streamwise roof-level standard deviation profiles for the streamwise
and vertical velocity components, denoted as �u and �w, respectively. These profiles il-
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Figure 7. POD modes 1,2,4 and 20 of the PIV (a) and ML (b) data. (c) First 30 eigenvalues.
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