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Introduction
There have been significant efforts towards improving

predictions of the canopy drag of urban environments based on
the surface geometry. Some of the most successful approaches
are quasi-empirical formulations which treat urban agglomer-
ates as a porous medium. Crucially, they make assumptions
about the turbulence structure of the flow above and within
the canopy which are still a target of intense scrutiny, partly
because quality field and wind tunnel measurements are chal-
lenging to obtain, and few numerical simulations of large cube
roughness proved to be sufficiently accurate. In this work, we
investigate the mean flow characteristics of boundary layers
developing over two staggered arrays of cuboids, with a uni-
form and a variable height distribution, in terms of velocity
and pressure and assess the adequacy of these assumptions.

Profiles of the normalised velocity deficit and the stream-
wise turbulence intensity show a remarkable collapse with
smooth-wall data at matching Reτ , evidencing the presence of
outer-layer similarity. The logarithmic regions are found to be
fully immersed in the roughness sublayer, extending down to
the height of the tallest obstacle. Although data in the canopy
layer were partially missing, horizontally averaged statistics
could still be obtained. Contrary to most formulations, the
mean velocity profile within the canopy is not exponential, and
the sectional drag coefficient and mixing length distributions
cannot be considered constant. In light of these results and
recent developments in urban canopy modelling, we propose a
formulation for the sectional drag coefficient, taking advantage
of the apparent self-similar behaviour of the axial-pressure dif-
ference across roughness elements.

Experimental methods
Experiments were conducted in the open-return, suction

wind tunnel at the University of Southampton. This facility
features a 7:1 contraction followed by a 4-m-long test section,
0.9 m wide and 0.6 m high. Boundary layers are established
directly on the wind tunnel floor and develop under a nomi-
nally zero-pressure gradient. Hot-wire velocity measurements
in the freestream show that the turbulence intensity remains
lower than 0.2% at 10 m/s. This work follows the convention
that x, y, and z are the streamwise, wall-normal, and spanwise
directions, respectively.

We investigate the boundary-layer flow developing over
a staggered cube array with plan solidity λP = 0.25 (C10U)
and an array of cuboids with the same plan arrangement
but variable height distribution (C10R), illustrated in figure

Figure 1: Perspective view of the staggered cube array with
plan solidity λ = 0.25 (C10U), on the left, and the array of
cuboids with the same plan arrangement but variable height
distribution (C10R), on the right.

Table 1: Relevant parameters of the boundary-layer flow.
The friction velocity Uτ was directly measured using a FE
balance and the zero-plane displacement dp was estimated
from pressure data following Jackson’s (1981) hypothesis.

C10U C10R

Surface Exp. LC Exp. XCC

Uτ/U0 0.0651 0.110 0.0689 0.0816

U p
τ /U0 0.0627 − 0.0678 −

dp/H 0.619 0.617 0.735 0.710

H+ 440 600 465 391

Reτ 5,288 4,800 6,091 3,910

y+0 39.9 60 53.7 37.1

1. At the measurement location, 3.3 m downstream of the
contraction, the mean roughness height H ≈ 0.1δ , where
δ is the boundary layer thickness. The wall shear stress
was directly measured using a floating element balance, as
detailed in Ferreira et al. (2018). Snapshots of planar particle
image velocimetry (PIV) were acquired at different spanwise
locations to obtain an accurate spatial representation of the
flow field within the canopy. In contrast to previous studies
(Cheng & Castro, 2002; Cheng et al., 2007; Claus et al., 2012),
where the surface pressure was measured by pressure tapping
opposite faces of individual roughness elements, the mean
pressure field was estimated from in-plane velocity data and
the surface value extrapolated from the nearest data point. As
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discussed in Ferreira & Ganapathisubramani (2020), while this
approach suffers from the missing out-of-plane components of
velocity and acceleration, it still produces sensible estimates
of surface pressure at a higher spatial resolution. Values of the
frictional velocity Uτ and the zero-plane displacement height
d (Jackson, 1981) for C10U , inferred assuming a constant
spanwise distribution of the surface pressure, closely match
direct measurements using the FE balance and a pressure-
tapped roughness obstacle. Discrepancies are at worst 7% and
3.5%, respectively.

Additionally to experimental data, the present study also
considers direct numerical simulations of channel flows over
a series of cube arrays with varying λP by Leonardi & Castro
(2010) and the large-eddy simulation of a channel flow over
a geometrically similar array of cuboids to C10R by Xie
et al. (2008). The relevant boundary-layer parameters are
summarised in table 1.

Mean flow features
In this section, the basic properties of the boundary layer

developing over each obstacle array are examined. Following
the assessment of outer-layer similarity, the flow is considered
in terms of inner scaling, whereby dynamically relevant rough-
ness length scales and the zero-plane displacement height are
estimated. Horizontal-averaged quantities over the canopy re-
gion and the mean pressure fields, at selected spanwise loca-
tions, are also presented here. These are compared against re-
ported measurements and numerical solutions.

Outer-layer similarity
Canopy models rest on the principle of outer layer similar-

ity of Townsend (1976), whereby turbulent motions outside
the roughness sublayer (RS) become independent of viscos-
ity and the surface condition. The velocity profile above the
canopy may then be expressed by a standard log-wake function
that scales appropriately. Not included for brevity, the scaled
profiles of the horizontal-averaged velocity defect and turbu-
lence intensity collapse for y/δ > 0.2, evidencing the presence
of outer layer similarity despite the large relative roughness
height.

The extent of the RS has been regarded as an indicator of
outer layer similarity (Ligrani & Moffat, 1986), yet it is un-
clear what relevant length scales determine its extent and there
is no consensus on how to quantify it. The usual approach
consists of identifying the blending height above which the
flow is horizontally homogeneous. Following this definition,
the depth of the RS is approximately 1.85H (0.15δ ) for C10U
and 2.5H (0.18δ ) for C10R at the measurement location.
While a larger penetration would inevitably introduce inho-
mogeneities farther away from the wall, even in extreme cases
where δ/H = 5 (Amir & Castro, 2011), the outer region may
still conform to the usual universal profile. At the same time,
studies have found roughness with much smaller heights that
appeared to violate this hypothesis (Krogstad et al., 1992; Bha-
ganagar et al., 2004; Placidi & Ganapathisubramani, 2018), so
it would be misleading to expect it to hold solely based on this
criterion.

Several authors have attempted to find alternative, ‘mean-
ingful’ indicators that embody the roughness effect on the
mean flow. They are typically based on a ratio between the
characteristic turbulent length scale in the outer region and
that of the surface roughness, such as δ/H, δ/HS or δ/y0
(Jiménez, 2004; Flack et al., 2005; Castro et al., 2013), where
HS is the sand-grain roughness of Nikuradse (1950). Some of

Figure 2: Horizontal-averaged, inner-scaled velocity profile
over C10U (blue) and C10R (red). Dotted-dashed lines are
the log-law fit through the data points in the inertial sublayer
(highlighted grey) with a von Kármán constant κ = 0.384.
The vertical dash lines indicate the maximum canopy height
and the arrows the edge of RS. The solid-back line represents
the smooth-wall log-law profile with negative wall intercept
A =−5.

these criteria reliably predict outer layer similarity for different
surfaces, but consistently fail for large obstacle arrays. Placidi
& Ganapathisubramani (2018) recently argued that a suitable
parameterisation must account, in addition to a relative mea-
sure of the roughness strength, for the nature of the canopy
drag associated with the local surface topology, in which case
it should consist of a combination of multiple parameters,
rather than a single one. Their results suggest that, for large
obstacle arrays, if the plan area of the sheltered region exceeds
∼ 20% of the floor area of a repeating unit, then wall similarity
is likely to hold provided that δ/H > 7 and δ/HS > 10. This
effect is quantified in Placidi & Ganapathisubramani (2018) by
the sheltered solidity fraction λS = (AT −AS)/AT , where AT
is the total plan area and AS is the sheltered plan area. Partic-
ularly, λS|C10U = 0.5 and λS|C10R = 0.62 satisfy the condition
λS < 0.8, and, since δ/H > 7 and δ/HS > 10 are also verified,
both cases meet the proposed requirements for wall similarity.

Boundary-layer parameters
The extent of the inertial sublayer (IS) and the height of

the zero-plane displacement d were estimated by fitting the
indicator function Ξ, using the von Kármán constant κ = 0.384
and Uτ from floating element measurements. Estimates of d
as the log-law intercept compare well with those determined
as the centroid of the surface drag, following Jackson’s (1981)
hypothesis. Both methods predict an increase due to height
variability, and the discrepancy between them is at worse
8.5%.

The horizontal-averaged, viscous-scaled velocity profiles
are shown in figure 2. Contrary to the traditional well-
defined layer arrangement above the canopy, wherein the RS
is followed by the IS, in turn preceding the outer region, the
current analysis (based on the indicator function) suggests
that the IS extends down to the top of the canopy and is
fully immersed within the RS. This observation supports the
hypothesis of Cheng & Castro (2002) that the horizontal-
averaged velocity profile may assume a logarithmic behaviour
where turbulence is predominantly influenced by the surface
geometry. Furthermore, it suggests that using a logarithmic
profile to set the velocity-continuity condition at the edge of
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urban canopies, as in the models developed by Macdonald
(2000), Coceal & Belcher (2004), Millward-Hopkins et al.
(2011) and Yang et al. (2016), is a sensible approximation,
especially for uniform arrays.

Within the canopy layer
Given the three-dimensional nature of the flow within the

canopy layer, snapshots of the flow field were taken at different
spanwise locations, and the flow statistics in the region with
no optical access (behind out-of-plane obstacles) were linearly
interpolated along the streamwise direction for C10U. A
similar treatment could not be carried out for C10R owing to a
substantial lack of data. All field variables within the canopy
were extrinsically averaged over the total volume, as outlined
in Böhm et al. (2013).

The horizontal-averaged velocity profile normalised by
UH is given in figure 3a. The data show a remarkable
collapse with the direct numerical simulation (DNS) from
Leonardi & Castro (2010), revealing a strong shear layer
around the canopy top where the vertical velocity gradient is
most intense. Incidentally, the velocity scaling UH is inferred
at this location, so its uncertainty is intrinsically high whether
field or point measurement techniques are considered. In
agreement with observations by Coceal & Belcher (2004) and
Castro (2007), the velocity profile within the canopy does not
exhibit exponential growth. This appears to be the case for
all urban-like roughness, even those with a variable height
distribution that are characterised by much lower velocity
gradients. Equivalent measurements had previously been
reported by Macdonald (2000) and Cheng & Castro (2002).
They were either vertically unresolved or incomplete in the
lower half of the canopy, and the velocity profile would
appear to follow an exponential curve. Similarly, Castro
(2017) showed that exponential velocity profiles may arise if a
sufficiently coarse grid is used in numerical simulations.

The variation of the sectional drag coefficient CD and the
mixing length lm within the canopy are shown in figures 3b
and 3c, respectively. CD is defined as

CD(y) =
2D(y)

ρ|U(y)|U(y)
, (1)

where D(y) = λP∆p(y) is the canopy drag force per unit
volume of air and ∆p is the sectional drag profile (discussed
in detail in the following section). lm is given by

lm =

√
−uv

∂U/∂y
. (2)

In-plane and horizontal-averaged quantities still show similar
trends, albeit to a lesser extent. There is a fairly good
agreement between estimates of CD. Specifically, the present
measurements and DNS data collapse in the upper half of
the canopy for y/h > 0.7. The values inferred from velocity
data and surface pressure by Cheng & Castro (2002) are
relatively higher, yet they still capture the general behaviour
of the sectional drag coefficient, contrary to suggestions that
the lowest data point could be an outlier (Coceal & Belcher,
2004), in which case it would appear to plateau. Constant CD
is a crucial assumption of urban-canopy models. However, by
definition, it is likely to grow exponentially approaching the
wall (refer to equation 1). The viability of this approximation
has been rigorously examined by Castro (2017) for a range of
packing densities and different plan arrangements, staggered
and aligned. He stresses that unless λP ≤ 0.15, assuming
uniform distributions of CD across the canopy is a clear

Figure 3: Flow statistics within the canopy of C10U, obtained
by taking the streamwise average along the centre plane of the
roughness obstacles (red) or taking the horizontal average over
a repeating unit (blue). (a) Mean velocity profile normalised
by the velocity at the top of the canopy layer UH =U(y/H =
1). (b) Sectional drag coefficient, as defined by equation 4.4.
The canopy drag force was estimated from pressure data and
normalised by the horizontal-averaged velocity field. Values
inferred from velocity data and surface pressure from Cheng
& Castro (2002) are included for reference. (c) mixing length
scale given as the ratio (−u′v′)/(∂U/∂y).

oversimplification. Such is also the case of the mixing length
scale, which peaks at around the mid-canopy height.

Scaling the sectional drag profile
Addressing the need to improve the current assumptions

of canopy models, we examine whether the sectional drag pro-
file ∆p can be described by a functional relationship, governed
by a combination of scaling laws. Yang et al. (2016) param-
eterise the wake geometry of individual roughness elements
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based on the ratio of the horizontal convective velocity scale
(Uh) to the turbulent transport velocity scale in the vertical
direction (Uτ ). They argue that the wake expansion rate be-
hind solid objects, whose aspect ratio is on the order O(1) or
lower, is primarily driven by U+

h = Uh/Uτ since the contri-
bution to entrainment by the lateral shear layers is relatively
small. Specifically, for a given obstacle array, the sheltered
volume fraction within the canopy is proportional to U+

h and,
consequently, so is the horizontal-averaged vertical velocity
gradient. We may then interpret this quantity as a measure of
the strength of the shear layer that is not explicitly dependent
on τh. This is valid provided the plan solidity λP remains con-
stant (i.e. varying the Reynolds number alone), or otherwise
it must also be taken into account. For example, surfaces with
different plan densities may have similar U+

h , but the sparser
would naturally have a less prominent shear layer over a re-
peating unit. Following this argument, the non-dimensional
shear expressed by G(λP,U+

h ), which contains information
about the local Reynolds number and the mean velocity shear
at the height of the obstacles, is investigated as an appropriate,
useful scaling parameter for the sectional drag profile of urban
canopies.

Figure 4 shows the sectional drag profile ∆p(y) of individ-
ual roughness elements within staggered-cube arrays of vary-
ing plan solidity and the array of cuboids C10R. Values are
normalised by ρU2

τ /λP, corresponding to the average contri-
bution to surface drag across roughness elements. The pres-
sure distribution over the windward side dominates the sec-
tional drag profile. High-pressure regions typically develop
near the top, where the velocity is higher, giving rise to a local
maxima ( p̂u, ŷu) that falls in the range 0.8−0.9h, where h is the
local roughness height, as indicated in figure 5. The sectional
drag becomes less significant towards the wall, reaching a local
minimum ( p̂l , ŷl) before recovering to mean values. Although
profiles can be markedly different, they show similar features,
suggesting they could be described by a suitable functional ex-
pression using appropriately scaled parameters, namely the lo-
cation and magnitude of the local extrema, (p̂u, ŷu) and (p̂l , ŷl),
which effectively capture their general behaviour.

Shown in figure 5, the location and magnitude of the
local extrema appear to scale well with λPU+

h , which can
interpreted as a measure of the intensity of the shear layer,
showing a positive linear relationship. Notably, the slope of the
linear regression of p̂u is steeper than that of (p̂u − p̂l), which
implies that for a given fetch δ/H and fixed Reτ , increasing Uh
(e.g. by increasing the local roughness height) mostly comes
with an increase in p̂u. Another interpretation could be that
the sectional drag profile gradually becomes more uniform
across the canopy the less prominent the shear layer is. This
is the case of the shorter roughness elements within C10R.
The relationship between the height of the local extrema and
the significance of the shear layer is comparably weaker. As
shown in figures 5c and 5d, the data does not follow a clear
trend. Other factors besides the strength of the shear layer
may also be important yet cannot be readily identified. Note
that ŷu is expected to plateau near the top of the roughness
element since the pressure field above the canopy takes on
the value of the freestream static pressure (i.e. ∆p = 0 at
y/h = 1). This boundary condition sets the upper limit for
ŷu, necessarily lower than 1. Given the small dispersion of
the data around the mean value, we assume, for modelling
purposes, ŷu = 0.85± 0.05. The position of the local minima
ŷl appears to be driven by the size of the frontal recirculating
region, which develops upstream of the roughness obstacles
and imposes a low-pressure value on the windward face.

Figure 4: Sectional drag profile relative to the average drag
produced by an individual roughness element ρU2

τ /λP. (a)
Uniform cube array with varying solidity fraction. Blue-
coloured line represents the sectional drag derived from field
pressure data normalised by Uτ as measured using the FE
balance. Red-shaded lines correspond to DNS data from
(Leonardi & Castro, 2010). The arrows indicate the local
extrema ( p̂u, ŷu) and (p̂l , ŷl). (b) Array of cuboids of variable
height. Solid lines represent the sectional drag derived from
pressure field data, colour-coded based on local height as
shown in the top-right corner. Circles correspond to LES data
from Xie et al. (2008).

Modelling aspects
The scaling arguments outlined above offer a pathway to

derive a functional expression for the sectional drag profile
of individual roughness elements. However, a meaningful
scaling factor for the height of the local minima ŷl is still
missing. Assuming the size of the recirculating region is
governed by mutual sheltering effects, ŷl may be estimated by
a geometric wake-sheltering model, such as that of Millward-
Hopkins et al. (2013) and Yang et al. (2016). These simplified
models establish a sheltered region of low momentum and an
unsheltered region characterised by the horizontal convective
velocity scale Uh. The degree of wake sheltering is quantified
by the equivalent sheltered-layer height for arbitrary arrays,
hs, ranging form unsheltered to fully sheltered 0 < hs < 1.
This length scale is determined by the wake geometry of
the roughness element, which is a function of the width,
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Figure 5: Empirical correlations for the sectional drag param-
eters. (a) Magnitude of the local maxima p̂u, (b) the peak-
to-peak amplitude (p̂u − p̂l), (c) position of the local maxima,
and (d) position of the local minima normalised by the local
roughness height h, upon λPU+

h , interpreted here as a measure
of the significance of the shear layer.

height, and the wake-expansion rate), as well as the planar
arrangement and height distribution of the surface roughness.
The sheltered-layer height hs effectively captures the impact
of surface geometry on the canopy-flow topology and could
potentially be used to estimate the location of the local minima
ŷl . It then follows that ∆p+ = F(λU+

τ ,hs) can be used
as a shape function for the axial pressure difference across
individual roughness elements.

Figure 6: Estimated drag profiles of selected obstacles in
C10R. Dashed lines are cubic splines in three pieces with
zero-derivatives at the local extrema (equation 3), specified
via empirical correlations depicted in figure 5. ŷl was set to
0.25H. Solid lines are the corresponding profiles obtained
from pressure data.

Considering a piecewise third-order polynomial function
(i.e. cubic spline) with zero derivatives at the local extrema
for F , The ith piece of the 1-dimensional spline through points
[0, ŷl , ŷu,1] is represented by

p̂i = λ∆p+i = ai +biŷ+ ciŷ2 +diŷ3,

with

d p̂
dŷ

(ŷu) =
d p̂
dŷ

(ŷl) = 0.

(3)

p̂u, p̂l , and yu are given by the empirical correlations defined
in figure 5, while yl would be governed by hs from the wake
sheltering model. The boundary condition at the wall p̂i(0) =
p̂l +Cw(h/H)(p̂u − p̂l). This linear model is a function of
the relative height distribution h/H, ensuring that p̂i(0) is
always greater than p̂l . The coefficient Cw = 1/4 was adjusted
to yield the best fit of the shape function to the sectional
drag profile of a roughness element of average height (1H).
The estimates depicted in figure 6 were obtained by taking
into account the spatially-averaged velocity distribution over
C10R and the value of friction velocity. Using the correlations
derived above, these quantities allow to determine the local
extrema for each roughness element, except for ŷl that we set
to 0.25H for illustration purposes — if ŷu < ŷl , then ŷl = ŷu
and λ∆p+l = λ∆p+u . Otherwise, ŷl would have been estimated
from a wake-sheltering model.

The functional relationship outlined above adequately
reproduces the profiles of sectional drag across the entire
canopy height. Discrepancies with results from pressure
reconstruction arise from the spread of the data around the
regression lines in figure 5. Setting ŷl to 0.25H does not seem
to have a significant impact on the quality of the reconstructed
profiles. Based on the contribution of the largest roughness
elements, partially sheltered and unsheltered, which contribute
to nearly 90% of the total pressure drag, the zero-plane
displacement d/H = 0.75. This value is only marginally
higher than that obtained directly from pressure data (refer
to table 1) and lower values would have been expected had
the shortest obstacles been accounted for. Besides U+

h , the
distribution of surface drag could also be determined by
specifying the value of the friction velocity Uτ , yielding an
average relative error of approximately 20%.

5



13th International Symposium on Turbulence and Shear Flow Phenomena (TSFP13)
Montreal, Canada, June 25–28, 2024

1 Summary
Scaled profiles of the horizontally-averaged axial velocity

and turbulent intensity revealed the existence of outer-layer
similarity for y/H > 0.2, despite the large relative roughness
height. The IS is fully immersed within the RS and persists
down to the edge of the canopy for both surfaces. Estimates
of the displacement height defined as the origin of the log-
law compare well with those determined as the centroid of
the surface drag. Both methods predict an increase due to
height variability and the discrepancy between them is at
worse 8.5%. The horizontal-average velocity profile within
the canopy layer does not exhibit an exponential behaviour,
and both the sectional-drag coefficient and the mixing length
vary significantly.

The normalised axial-pressure difference across individ-
ual roughness obstacles exhibits a self-similar behaviour that
can be described by a functional expression parameterised by
the local extrema (p̂l , ŷl) and ( p̂u, ŷu). Based on scaling argu-
ments, we established correlations for the location and inten-
sity of these peaks. The non-dimensional shear factor (at the
obstacle height) λPU+

h was shown to be a relevant parameter
that linearly scales the intensity of the local extrema p̂l and p̂u.
The height of the local maxima ŷu, in turn, varies marginally
with λPU+

h , and the experimental and DNS datasets exhibit
distinct trends, indicating that other factors might also play a
role. Results further suggest that the size of the recirculating
region on the windward face of the cuboids is the driving pa-
rameter for the height of the local minima ŷl . It is thus highly
dependent on the surface geometry, including the shape of the
obstacles, the plan arrangement and the relative height distri-
bution. It is argued that ŷl is associated with mutual shelter-
ing effects and could possibly be parameterised by a geomet-
ric wake-sheltering model, such as that of Yang et al. (2016).
Using a three-piece cubic spline and assuming a fixed ŷl , the
normalised sectional-drag profile of individual roughness ob-
stacles and surface drag distribution over C10R could be repro-
duced, and showed a good qualitative agreement with pressure
data.
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