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ABSTRACT
The present study aims to capture drag effects resulting

from turbulent flows in wall-bounded configurations with ho-
mogeneous roughness. The focus is on the formulation of a re-
duced model which allows turbulent boundary-layer-type flow
simulations without the usual computational overhead associ-
ated to 3-D numerical simulations requiring faithful surface
topology representation and associated boundary conditions.
The framework of the model is derived from volume-averaging
theory (VAT). On one hand, a Darcy-like 1-D model enables a
reduced dynamical representation of roughness effects for the
wall-normal coordinate. The effect of the turbulent flow, which
is not usually part of Darcy-like models, is considered by in-
corporating the effect of the hydrodynamic dispersion tensor
using a map-based stochastic approach. The latter is known
as One-Dimensional Turbulence (ODT) in standalone appli-
cations. The comprehensive modeling framework allows then
the full-scale resolution of wall-normal transport processes in
a relatively inexpensive 1-D computational domain. We first
test and compare the performance of the ODT standalone ap-
plication using a previously published ad-hoc parametric forc-
ing approach (PFA) for Direct Numerical Simulations (DNS)
of turbulent flows over homogeneous roughness. These results
are compared to those of simulations using the suggested VAT-
derived model for the homogeneous roughness. To that ex-
tent, we show that simulated roughness-induced drag and wall-
normal stress contributions are comparable to available direct
numerical simulation (DNS) data. In comparison to the ad-
hoc PFA, the new suggested VAT-derived model allows more
physical insights regarding the effects of the form of the ho-
mogeneous roughness (statistical moments) on the stress con-
tributions.

CONTEXT AND SIGNIFICANCE
Roughness and turbulence may very well be two of the

most naturally occurring phenomena. Most industrially rel-
evant flows are turbulent, and most engineering surfaces are
also rough. Although formally a field of aerodynamics and
fluid mechanics, the interactions between rough surfaces and
turbulent flows are studied in a wide field of disciplines. The
atmospheric boundary layer over canopies or buildings is a re-
lated formal topic in atmospheric sciences as in Cooke et al.
(2024), civil and structural engineering as in Toja-Silva et al.
(2018), and similar. Corrosion can also be considered as a
closely related formal discipline for more technical applica-

tions, see Thorat et al. (2024) for applications. Recent discus-
sions on the importance of understanding roughness and full-
scale drag predictions situate drag uncertainty estimates on a
range of 10− 30%. In the context of the naval or aerospace
industry, this amounts to a very significant part of the costs, or
conversely, of the potential profits, see Chung et al. (2021) for
details.

In an age of ample computational development, Direct
Numerical Simulations (DNS) are the method of choice for
accurate prediction of drag generated over rough surfaces. At-
tempts to fully resolve surface topology in DNS are an ac-
tive research field, and techniques such as conformal map-
pings, immersed boundary methods or discrete element meth-
ods are frequently used, see e.g., Busse et al. (2015). Gen-
eralization of DNS studies done in this way is extremely dif-
ficult. On one hand, DNS with accurate topology represen-
tation are computationally very expensive, and as such, there
are not that many published DNS studies. On the other hand,
it is not an easy task to decide on the relevant length scales
of the roughness which aid towards generalization and uni-
versality. To that extent, understanding roughness-turbulence
interactions necessarily involves first a discussion on rough-
ness characterization. Consensus seem to revolve around using
both the statistical distribution of roughness peak heights, i.e.,
the probability density function (PDF) of roughness heights,
as well as the spatial correlation of the roughness, which could
be represented by a horizontal-wavenumber power spectrum,
see Pérez-Ràfols & Almqvist (2019). These studies motivate
our choice for roughness characterization in the modeling ap-
proach.

STANDALONE APPLICATION OF ODT USING
AD-HOC DRAG PARAMETRIC FORCING

As a first part of this study we focus on the standalone
application of the One-Dimensional Turbulence (ODT) model
with an ad-hoc parametric forcing approach (PFA) for rough-
ness drag. The PFA introduces the effect of the roughness by
means of a source term in the Navier-Stokes momentum equa-
tion, see Busse & Sandham (2012). The form of the source
term, however, was not originally related to the surface ge-
ometry of the roughness. One important step towards a more
geometry-related form of the roughness term in the PFA is
found in the approach followed by Forooghi et al. (2018),
who introduces a source term fF,i in the form of a Darcy-

1



13th International Symposium on Turbulence and Shear Flow Phenomena (TSFP13)
Montreal, Canada, June 25–28, 2024

Forchheimer model,

fF,i(y) =−A(y)ui −B(y)ui |ui| (1)

No summation is implied over repeated indices for the previ-
ous equation. The velocity field is noted as ui for i ∈ {1,2,3}.
Also, A(y) and B(y) are wall-normal dependent coefficients
which are formulated on the basis of the kinematic viscosity
ν , the wall-normal porosity profile ε(y), the interface area per
unit total volume s(y), and the projected frontal surface area
per unit total volume s f (y). The latter profiles can all be ob-
tained for a given rough surface. In summary,

A(y) = kK
νs2(y)
ε(y)

, B(y) = cD
s f (y)

2
(2)

Although Forooghi et al. (2018) is able to formulate a
model which replaces the arbitrary form of the forcing function
from Busse & Sandham (2012) by a more physical formulation
as in Eq. (1), the model falls short when two arbitrary constant
coefficients are introduced in Eq. (2). These are kK and cD,
which can be interpreted as a Carman-Kozeny constant and a
type of drag coefficient, respectively. Needless to say, there is
no formal derivation from first principles that can be made for
these coefficients which somehow relates them to the homoge-
neous surface geometry. To that extent, Forooghi et al. (2018)
performs DNS of open channel turbulent flows in order to de-
termine kK and cD for some selected roughness geometries at
specific Reynolds numbers.

We intend to test the effect of the coefficients found for
the PFA by Forooghi et al. (2018) in the reduced order One-
Dimensional Turbulence (ODT) model. ODT is a map-based
stochastic turbulence model, see Kerstein (1999). Its best ap-
plication is on turbulent flows which exhibit statistics domi-
nated by velocity gradients in one direction. This is usually
the case for most boundary-layer flows. Following previous
related applications of ODT for wall-bounded flows, e.g., in
Lignell et al. (2013); Klein et al. (2022), we utilize a tem-
poral ODT formulation which evolves scalar velocity compo-
nent profiles on a wall-normal domain parallel to the planar
coordinate y. The governing equations for the velocity compo-
nents ui, where u1 is the streamwise-directed and u2 the wall-
normal-directed component, can be written as

∂ui

∂ t
+M (ui) =− 1

ρ

dp
dx

δi1 +ν
∂ 2ui

∂y2 + fF,i ̸=2 (3)

Here, ρ and ν are the density and kinematic viscosity of the
fluid, assumed constant, respectively. Note the dynamic vis-
cosity µ = ρν . Likewise, −dp/dx is a constant pressure-
gradient forcing the flow, which corresponds to the time-
averaged pressure gradient balancing the wall-shear stress in
the wall-bounded configuration. Also, δi1 is 1 for i = 1 and
zero otherwise. No forcing is applied on the u2 velocity com-
ponent. Regarding the ODT model, M (ui) is the model-
represented turbulent advection and pressure-scrambling ef-
fect. Eq.(3) is integrated numerically in time as in a 1-D
DNS, yet as seen, this numerical integration procedure only
observes the mean pressure gradient, the drag forcing, the
viscous term, and the advection of ui by the mean velocity
u2 in the wall-normal direction; the latter is zero from usual
boundary-layer assumptions on fully-developed flow and no-
slip conditions at the wall. The turbulent transport induced

by the advection of ui by u2, as well as the turbulent pres-
sure transport in the form of so-called pressure scrambling, is
modeled in ODT by transformations affecting the scalar pro-
files: ui(t,y) → ui(t, f (y)) + ci(α)K(y). In the transforma-
tion, ui(t, f (y)) is a mapping on the 1-D profile implemented
at (discrete) time t. An additional modification due to a ker-
nel function K(y) and a y-uniform coefficient ci is also ap-
plied to model the pressure-scrambling effect, see Kerstein
et al. (2001). The coefficient ci depends, among others, on a
model parameter α which we set to a theoretical limit α = 2/3
corresponding to equalization of ui component available ki-
netic energy during mappings, see Kerstein et al. (2001). The
mappings are sampled following a stochastic process. An
(over-)sampling process in-time, which uses a sampling time-
interval much smaller than the Kolmogorov time-scale of the
flow, implements mappings given by a randomly sampled eddy
position y0 and a sampled eddy size l from a presumed proba-
bility density function (PDF) h(l). The form of h(l), however,
is irrelevant. Sampled mappings are only implemented as long
as the time-scale of the mapping is feasible, an eddy turnover
time ∆tl . Feasibility is decided for the rate (∆tl)−1, following
a scaling proportional to a local kinetic energy balance, see
Kerstein et al. (2001); Klein et al. (2022),

1
∆tl

=
Cν

l2

√√√√ 3

∑
i

(
ui,K l

ν

)2
−Z (4)

noting

ui,K =
1
l2

∫
l
ui(t, f (y))K(y)dy, K(y) = y− f (y) (5)

As in any turbulence model, empiricism is captured in the
form of model coefficients C and Z. Mappings are only im-
plemented for sampled eddy events on which ∆tl is real; that
is, the quantity within the square-root in Eq. (4) must be pos-
itive. Additionally, mappings with real ∆tl must conform, on
average, with a very small mean acceptance probability char-
acterizing the (Poisson) stochastic process used for the sam-
pling. Further details of the sampling process can be found in
Lignell et al. (2013).

Figure 1. Effects of Z parameter variation on P+ (left), and
C parameter variation on C f (right) in a smooth wall channel.

We comment briefly on the effect of the C and Z model pa-
rameters as observed in smooth-wall turbulent channel flows.
Figure 1(left) shows the effect of Z on the turbulence kinetic
energy (TKE) production P+ (in viscous units) of a turbulent
channel flow with friction Reynolds number Reτ = 590 (refer-
ence DNS data is taken from Moser et al. (1999)). It is notable
that a change in Z causes a shift in the peak of production P̂+,
and to that extent, there is only one correct value of Z. Most
notably, and as seen in Eq. (4), Z has the form of the square of a
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local Reynolds number, or conversely, of a viscous coordinate.
For smooth wall turbulent channel flows,

√
Z coincides with

the viscous coordinate y+
P̂

multiplied by the corresponding lo-
cal production to dissipation ratio P̂/DP̂. Based on these ob-
servations, Z is very insensitive to Reτ effects. Figure 1(right)
shows the effect of C on the mean streamwise velocity profile
u+(y+). There is an optimal choice of C for the best fit of the
mean velocity profile, which could also correspond to the cor-
rect reproduction of the skin friction coefficient C f predicted
by DNS. Note that larger values of C cause smaller effects on
C f .

Before commenting on the obtained ODT results for
rough wall flows with the described PFA suggested by
Forooghi et al. (2018), we detail an alternative drag forcing,
motivated on the basis of volume-averaging theory (VAT).

VAT-BASED DRAG PARAMETRIC FORCING
Conceptualizing the homogeneous roughness as one orig-

inated by a set of discrete roughness elements is an alternative
approach which can be used to derive a drag parameteriza-
tion more closely related to the surface geometry. Our starting
point is to conceptualize an averaging plane of thickness ∆y
which will span through the entire numerical domain, see Fig-
ure 2. The thickness ∆y is set as the numerical resolution of
our simulation, which is capable of resolving the Kolmogorov
scale of the turbulent flow. The averaging plane is a repre-
sentative elementary volume (REV). The choice of the shape
of the roughness elements may be arbitrary, see also Forooghi
et al. (2017). In the current study, we work with elements in
the shape of a truncated cone with a relative pre-specified base
and top diameter ratio, see Figure 2.

Figure 2. Averaging plane and roughness elements.

The discrete roughness elements distributed on the homo-
geneous rough surface yield certain statistical area moments
for the surface k̃(x,z). The first-order statistical area-moment
is the melt-down height kMD, that is,

kMD =
1

LW

∫ L

0

∫ W

0
k̃dzdx (6)

Here L and W are the streamwise and spanwise extent of the
rough surface, respectively. The root-mean-square value kRMS
is the second-order moment of the deviation (with respect to
the mean kMD), and is calculated similarly, as well as the
normalized Skewness Sk (third-order moment), see details in
Forooghi et al. (2017). By specifying kMD, kRMS and Sk, it is
possible to fit a PDF of the area-moments of k̃(x,z). We choose
to fit a Weibull PDF β (k̃;φ ,θ), with φ and θ as shape and scale
parameters, following a strategy by Yang et al. (2022),

β (k̃;φ ,θ) = φθ
φ k̃φ−1e

−
(

θ k̃
)φ

(7)

The cumulative distribution function (CDF) associated
to β (k̃;φ ,θ) is the porosity profile ε(k), see Altland (2022).
Given that only positive values can be sampled from the
Weibull PDF, we use the coordinate translation y = k̃− kmin,
where kmin is the minimum roughness height which truncates
the distribution. As long as kmin = 0, the obtained PDF can be
integrated analytically yielding ε(k) = ε(y), that is, the wall-
normal porosity profile. This assumption also implies that
ε(y = 0) = 0. For the more general case ε(y = 0) ̸= 0, which
is equivalent to ε(kmin) ̸= 0, as some of the cases in Forooghi
et al. (2018), one can first calculate kmin for a prescribed poros-
ity value ε(y = 0) ̸= 0 solving from the analytical CDF. That

is, kmin =
{
− ln |1− ε(y = 0)|1/φ

}
/θ . After kmin is obtained,

we can use the transformation k̃ = y+ kmin, to find ε(y) from
the analytical CDF,

ε(y) = 1− e−[θ(y+kmin)]
φ

(8)

In addition to ε(y), we also determine wall-normal pro-
files for the (averaged) equivalent diameter of the discrete
roughness elements D◦(y) and the equivalent flow (free area)
pore diameter Dk(y). We stress that D◦(y) ̸= Dk(y). Due to
the shape of the discrete roughness elements as seen in Figure
2, D◦ = γk, where γ is a constant scalar equal for all rough-
ness elements and k is the mean roughness height. It is clear
that k ̸= kMD, and in fact, k is obtained from considering the
expected value of the one-point PDF of the roughness heights,
i.e., a different PDF to β (k̃;φ ,θ). We can consider the rough-
ness heights conformal with a probabilistic fractal set, as long
as a sufficiently large distribution of roughness heights ex-
ists, i.e., kmin ≪ kmax, where kmax is a pre-specified maximum
roughness height truncating the distribution. Conceptualizing
roughness as a fractal set is not a new idea, see Majumdar &
Bhushan (1990). Depending on whether kmin = 0 or kmin > 0,
the roughness can be characterized as a probabilistic fractal by
assuming a self-similar power law distribution of heights with
upper, or lower and upper truncation, respectively, see Shen
(2011). In the example case of lower and upper truncation, the
PDF of the stochastic roughness heights k∗ is

ψ(k∗) =
Fk−F

max
1− (kmin/kmax)F (k∗)F−1 , F > 0 (9)

Here, F is a positive fractional exponent. This PDF has a
mean value k which is the result of the converging integral∫ kmax

kmin
k∗ψ(k∗)dk∗. The integral can be solved analytically, see

Shen (2011), such that with known values of k, kmin and kmax,
it is possible to estimate F . The exponent F is not necessarily
the geometric fractal dimension. Rather, it is simply a frac-
tal exponent which we take as a Korcak-law exponent, see
Imre & Novotný (2016). This is done in order to estimate
the total number of roughness elements in the homogeneous
surface as NT =

(
k2

max/k2
min

)F . Note that considering both
β (k̃) and ψ(k∗) is our equivalent interpretation of the need
to consider both the PDF of roughness heights (ψ(k∗)) and
their power spectrum (related to β (k̃)) as in Pérez-Ràfols &
Almqvist (2019) and Yang et al. (2022).

Considering the total base-area of the rough-
ness, Ab = (1− ε(y = 0))LW , as the expected value
of a distribution of roughness element diameters, i.e.,
Ab = NT (π/4)E

[
D2
◦(y = 0)

]
, and given the assumed shape

of the roughness elements in Figure 2, we can calculate the
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roughness element aspect ratio γ as

γ =

√√√√ 4Ab

πNT
∫ kmax

kmin

{
(k∗)2

ψ(k∗)
}

dk∗
(10)

This allows then the determination of D◦(y) and Dk(y) as

D◦(y) = γk−0.9γy, Dk(y) =

√
4LWε(y)

πNT
(11)

Since the distribution ψ(k∗) allows heights k∗ > k, but
D◦(y) from Eq. (11) is only valid for y ≤ k, we superpose
an exponential decay in the range k < y ≤ kmax such that
D◦(kmax)→ 0; we take D◦(kmax) as 1% of D◦(y = k). For
the next step of our model formulation, we define the volume
(or surface) averaging, as well as the intrinsic averaging of the
3-D velocity field ui(x,y,z),

⟨ui,σ ⟩=
1

LW

∫ L

0

∫ W

0
uiχdzdx, ⟨ui,σ ⟩σ =

⟨ui,σ ⟩
ε

(12)

Here, χ is a unitary indicator function which is only nonzero
within the fluid phase σ . To that extent, ⟨ui,σ ⟩(y) and
⟨ui,σ ⟩σ (y) are the volume and intrinsic averaging of ui(x,y,z),
respectively. All assumptions from classical VAT are consid-
ered, see Whitaker (1999). The scale separation between the
roughness (horizontal) scale, i.e., the pore scale Dk, and the
size of the REV is respected, such that Dk ≪

√
L×W . Poros-

ity is also considered homogeneous in the horizontal direc-
tions x and z. A decomposition of variables is performed as in
Whitaker (1999), namely, ui,σ = ⟨ui,σ ⟩σ +u′′i,σ , noting ui,σ =

uiχ and pσ = pχ = ⟨pσ ⟩σ + p′′σ , noting pσ = pχ . Double-
primed variables such as p′′σ represent (non-resolved) residual
quantities. Following the derivation steps in Whitaker (1999),
and dropping all subindices σ , it is then possible to arrive at
the volume-averaged momentum equation

∂ ⟨ui⟩σ

∂ t = − 1
ρ

(
px=L−px=0

L

)
δi1 − 1

ρ

∂ ⟨p⟩σ

∂y δi2

+ν
∂ 2⟨ui⟩σ

∂y2 − 1
ε

∂ ⟨u′′2 u′′i ⟩
∂y + ν

ε
⟨ui⟩σ ∂ 2ε

∂y2

+ 1
ρεLW

∫
Aint

(
−p′′δi j +µ

∂u′′i
∂x j

)
n̂ jdAint

(13)

In the above equation, Aint is the interfacial area between the
fluid and the roughness, δi j is 1 for i= j and zero otherwise; n̂ j
is the normal vector in j direction of the surface with area Aint;
also, (px=L − px=0)/L is an overall streamwise pressure drop
due to the homogeneous roughness. Eq. (13) was derived con-
sidering the result ⟨u2⟩ = 0 from the volume-averaged conti-
nuity equation (with constant density). The fourth term on the
RHS of Eq. (13) can be decomposed onto the sum of a linear
(advection) part ML (⟨ui⟩) and a nonlinear part MN (⟨ui⟩).
The sum of ML (⟨ui⟩) with the fifth and sixth terms in Eq.
(13) can be modeled by means of a Darcy-Forchheimer total
permeability tensor, see Whitaker (1996),

−νεK−1
T,i j⟨u j⟩σ = 1

ρεLW
∫

Aint

(
−p′′δi j +µ

∂u′′i
∂x j

)
n̂ jdAint

−ML (⟨ui⟩)+ ν

ε

∂ 2ε

∂y2 ⟨ui⟩σ
(14)

We assume an isotropic total permeability tensor equal to its
streamwise component KT,i j = KT,xxδi j. Substituting Eq. (14)
on Eq. (13), and following classical VAT, we consider the
asymptotic steady-state laminar flow limit neglecting the so-
called Brinkman correction. In such case, the volume inte-
gration of the resulting VAT-based momentum equation leads
to µεK−1

T,xx⟨u1⟩σ LW∆y =−NT ∆p◦π∆yD◦. Noting that within
the REV, the presence of roughness elements is equivalent to
the presence of cylindrical obstacles, we note ∆p◦(y) as the
pressure drop due to one cylindrical roughness element (at
wall-normal position y). KT,xx(y) has units m2, such that its
corresponding dimensionless form can be obtained by division
with D2

k(y), the square of the pore diameter. Denoting ∆p◦/L
as dP/dx, the resulting nondimensional total permeability ten-
sor can then be written as

D2
kK−1

T,xx =
NT πD◦

W
G, G =−

D2
k

µ⟨u1⟩
dP
dx

(15)

G(y) is a nondimensional pressure gradient. According to
this choice, we can also define a local pore Reynolds num-
ber as Rep(y) = ∥⟨ui⟩∥(y)Dk(y)/ν . Khalifa et al. (2020) have
obtained, for a unit-cell of a staggered array of cylinders, a
quadratic regression for G, as a function of Rep. The re-
gression yields a very good fit for all regimes in the range
Rep ≤ Rep,F2, where Rep,F2 is the end of the Forchheimer
regime. Thus, it is possible to estimate G(Rep) using the sug-
gested regression by Khalifa et al. (2020),

G(y) = ĉ1 + ĉ2
∥⟨ui⟩∥Dk

ν
+ ĉ3

∥⟨ui⟩∥2 D2
k

ν2 (16)

Here, ĉ1, ĉ2 and ĉ3 are coefficients which depend on the poros-
ity and therefore, on the wall-normal coordinate y. Interpola-
tion of the values of ĉ1, ĉ2 and ĉ3 for specific porosity val-
ues is possible. Substituting Eq. (15) and (14) on Eq. (13),
while noting (px=L − px=0)/L = dpσ/dx, we obtain the re-
duced modeled VAT-based momentum equation

∂ ⟨ui⟩σ

∂ t + 1
ε
MN (⟨ui⟩) = ν

∂ 2⟨ui⟩σ

∂y2 −νε
NT πD◦

W
G
D2

k
⟨ui⟩σ

− 1
ρ

dpσ

dx δi1 − 1
ρ

∂ ⟨p⟩σ

∂y δi2

(17)

It is now easy to see, by substitution of the definition of G
from Eq. (16), that we have obtained a drag parameteriza-
tion which is very similar to that proposed by Forooghi et al.
(2018). However, we now have eliminated the degrees of free-
dom associated to the ad-hoc parameters kK and cD. Figure 3
compares the forcing coefficients obtained with the VAT-based
formulation with those obtained by Forooghi et al. (2018) for a
rough surface with k/H = 0.12 (k+ = 67, Reτ ≈ 500). The co-
efficient associated with the linear velocity term (A-equivalent)
is underestimated, while the coefficient associated with the
quadratic velocity term (B-equivalent) is overestimated. The
cubic velocity coefficient term from the VAT-based model is,
in comparison, negligible to the other two.

We finalize the model formulation by stressing some re-
marks. First of all, it is noted that component i = 2 of Eq. (17)
is simply a balance between the wall-normal pressure gradient
and the nonlinear advection term MN (⟨u2⟩), as in any sta-
tistically stationary and statistically streamwise homogeneous
turbulent channel flow analysis. To that extent, the role of
the pressure is expected to be roughly the same as that in a
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Figure 3. Drag forcing coefficient profiles, in viscous units.

classical turbulent channel, among others, responsible for re-
distribution of TKE among Reynolds stress components. The
role of MN (⟨ui⟩) is then that of a nonlinear interaction term
which should be responsible for nonlinear turbulent advective
TKE transport. Hence, it is easy to see the correspondence be-
tween MN (⟨ui⟩) and the modeled ODT turbulent advection
term M (ui) in Eq. (3). Note also that ⟨u2⟩= 0 by continuity,
and thus, the component i = 2 of Eq. (17) is an over-constraint
on the system. This finalizes our model formulation. Multiply-
ing Eq. (17) by ε , and replacing the component i = 2 of Eq.
(17) for an unconstrained model equation, the ODT governing
equation for the suggested VAT-based drag forcing is

∂ ⟨ui⟩
∂ t +M (⟨ui⟩) =− 1

ρ

dp
dx δi1 +ν

∂ 2⟨ui⟩
∂y2 −νεΓ

G
D2

k
⟨ui ̸=2⟩ (18)

We use Γ = NT πD◦/W . We do not consider drag forcing on
the ⟨u2⟩ velocity component. Also, we interpret the vector
norms in Eq. (16) as the absolute value of the velocity compo-
nent ⟨ui⟩ for any i, as in Forooghi et al. (2018).

SIMULATION RESULTS AND DISCUSSION
We carry out ODT simulations of turbulent channel flows

for the surfaces with homogeneous roughness listed in Table
1. The surface with k/H = 0.12 is evaluated at Reτ = 498,
yielding k+ ≈ 67. The surface with k/H = 0.19 is evaluated
at Reτ = 499 yielding k+ ≈ 110. It is noted that the surface
with k/H = 0.19 does not have a height distribution. Thus, it
cannot be characterized by a fractal set. For this surface, we
provide NT = 1080 in order to estimate γ .

Table 1. Characterization of the evaluated homogeneous
rough surfaces. Note that ε(0) refers to ε(y = 0).

k/H kMD/H kRMS/H Sk kmax/H ε(0)

0.12 0.074 0.045 0.21 0.21 0.045

0.19 0.1 0.045 0.21 0.19 0

We define Reτ = uτ (H − kMD)/ν , where H is the half-
height of the computational channel. With this definition, kMD
acts as a virtual origin. Below this origin, the forcing enforces
artificial no-slip conditions on the u1 and u3 velocity compo-
nents. In any case, the traditional no-slip boundary conditions
at y = 0 and y = 2H are respected. First, ODT simulations
are carried out using both the forcing specified by Forooghi
et al. (2018), e.g., for case k/H = 0.12 using the coefficients

shown in Figure 3 (parameters kK = 25 and cD = 1.5 in Eq.
(2)). Next, the alternative VAT-based forcing is used. The pre-
scribed ODT model Z for these simulations is estimated as in
smooth channels, but considering the position of the viscous
coordinate y+

P̂
being approximated by k+max, usually close, see

Yuan & Piomelli (2014). To that extent, the relevant coordi-
nate, measured from the virtual origin, is k+max − k+MD. This
yields Z = 5350 for the fractal roughness case and Z = 2500
for the non-fractal case. The values of the C parameter are
calibrated for best matching of the mean velocity profile or
of C f . We find C = 3 when using the forcing from Forooghi
et al. (2018) and C = 4 when using the VAT-based forcing for
the fractal roughness case. For both types of forcing, we find
C = 2.5 for the non-fractal roughness.

Figure 4. Mean velocity profiles. Case k/H = 0.19 is shifted
upwards 5 viscous units for better visualization.

Figure 4 shows a comparison of the wall-normal mean
streamwise velocity profiles. Reasonable reproduction of the
mean velocity profile is obtained in all cases. Arguably, the
simulation of the non-fractal roughness surface yields worse
results when compared to the fractal roughness case. The re-
production of the mean velocity profile in the fractal rough-
ness case using the VAT-based forcing is remarkable. Figure
5 shows the contributions to the stress balance affecting u1
obtained when using the ad-hoc forcing from Forooghi et al.
(2018) in ODT. The value of the wall-shear stress is computed
using the methodology in Forooghi et al. (2017), i.e., linearly
extrapolating the value of the total stress to the virtual ori-
gin kMD. Besides the reasonable reproduction of the Reynolds
stress in comparison to the DNS data of Forooghi et al. (2018),
we find that the position y+

P̂
coincides exactly with the coordi-

nate k+max. Despite both coordinates being close to each other,
this need not be the case, as discussed in Yuan & Piomelli
(2014). The viscous stress also shows a very steep decrease
immediately after k+max. Figure 6 shows the same stress contri-
butions, but now using the suggested VAT-based forcing. Less
steep gradients are observed for the viscous stress. Also re-
markable is the fact that y+

P̂
̸= k+max, a more physical result.

CONCLUSION
We presented an overview of the application of the ODT

model for turbulent channel flows with homogeneous rough-
ness. To that extent, a PFA for the roughness-induced drag
was used in ODT. We have verified the effects of using the pro-
posed PFA in Forooghi et al. (2018). Although model results
using this forcing are reasonable, there is an inherent limitation
in the suggested PFA in the sense that it introduces two arbi-
trary coefficients, kK and cD, which cannot be derived from
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Figure 5. Stress contributions using drag PFA from Forooghi
et al. (2018) in ODT.

Figure 6. Same as Fig. 5 but using VAT-based drag PFA.

first principles. These were obtained in Forooghi et al. (2018)
by a DNS calibration procedure. This is unjustifiably expen-
sive from the computational point of view. To address this is-
sue, we have suggested an alternative on the basis of VAT. By
doing so, we have also identified correspondences with nondi-
mensional drag representations for staggered cylinder arrays
in Khalifa et al. (2020). The alternative VAT-based forcing has
no arbitrary coefficients on its formulation. Nonetheless, as a
turbulence model, ODT is not exempt from empiricism, and
also introduces additional model parameters. We argue that
for the case at discussion, there is only one model parameter
which needs to be calibrated in ODT, the C parameter. This is
still an improvement from the previous DNS PFA with two dif-
ferent model coefficients. We also verified that the suggested
VAT-based forcing is able to deliver more physical-based re-
sults in ODT, at least concerning the stress contributions and
TKE production. Thus, this study advances the State of the
Art by providing a parametric drag representation which is di-
rectly obtainable from the geometric characterization of the
roughness. Higher order flow statistical moments, which can
also be obtained without further alteration of the ODT model
formulation, will be addressed in future work.
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