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ABSTRACT
The dynamics of inertial heavy particles in high Reynolds

number turbulence, especially particle clustering, are impor-
tant fundamental processes, e.g., for raindrop formation in at-
mospheric flows. To examine the clustering behavior in the
turbulence inertial subrange, three-dimensional direct numer-
ical simulations of particle-laden homogeneous isotropic tur-
bulence is performed at resolution 40963 for high Reynolds
number Reλ = 648 and with 3.2× 109 particles for several
Stokes numbers. The results show that the slope of the particle
number density spectra at scales in the turbulence inertial sub-
range is dependent on the Stokes number. It is also observed
that the number density spectra in the inertial subrange obey a
function of the scale-dependent Stokes number.

INTRODUCTION
Turbulent flows laden with inertial particles are frequently

found in natural or industrial flows, for instance, atmospheric
flows with cloud droplets and aerosols, protoplanetary disks
with dust particles, and spray combustion. Inertial particles
display nonuniform distribution, i.e, clustering, in turbulence
due to deviation of particle motion from the fluid particle tra-
jectory. The clustering mechanism has been studied exten-
sively (see, e.g., Brandt & Coletti, 2021; Bec et al., 2024). For
the case of dilute and heavy particles, such as cloud droplets
and aerosols, one of the important parameters to characterize
the clustering is the Stokes number St, which is a measure of
particle inertia and is defined as the ratio of the particle relax-
ation time τp to the Kolmogorov time τη . For small inertia,
i.e., St � 1, the particles are swept out due to the centrifugal
effect from turbulent vortices and concentrate in low vorticity
regions, which is referred to as the preferential concentration
(Maxey, 1987; Squires & Eaton, 1991).

In the atmospheric science, modeling of the clustering be-
havior in high Reynolds number turbulence is important for
improving cloud microphysics models because the clustering
of cloud droplets can increase collision and coalescence fre-
quency in raindrop formation process. To estimate the clus-
tering behavior in such high Reynolds number turbulence, it is

useful to clarify the characteristics of particle clustering in in-
ertial subrange of turbulence. In our previous work (Matsuda
et al., 2022), we reported that for Reλ > 300, the particle num-
ber density spectra exhibit two well pronounced bumps. The
bump at near dissipation scales is attributed to the large en-
strophy of such small eddies, whereas the bump at larger scale
is attributed to the clustering in the turbulence inertial range.
This result can raise the question whether the particle cluster-
ing shows a scale similarity in the turbulence inertial subrange.

When we consider particle clustering at scales in the in-
ertial subrange, it is expected that the clustering behavior is
strongly affected by the flow at similar scales. Therefore, to
discuss the clustering in the inertial subrange, previous stud-
ies introduced the scale-dependent Stokes number (Falkovich
et al., 2003; Bec et al., 2007; Bragg et al., 2015; Ariki et al.,
2018), which is defined as Str = τp/τr, where τr is the flow
time scale at the scale r. According to dimensional analysis
following Kolmogorov’s idea (Kolmogorov, 1941) (K41), the
flow time scale at the scale r in the inertial subrange is given
by τr = ε−1/3r2/3, which means Str = τpε1/3r−2/3. Here, ε

is the mean energy dissipation rate. Therefore, it has been ex-
pected that the preferential concentration mechanism becomes
dominant at sufficiently large scales depending on the Stokes
number. Based on this expectation, a universal scaling for the
number density fluctuation in the inertial subrange has been
proposed so far as a function of Str (Bragg et al., 2015; Ariki
et al., 2018). However, such Str dependence has not been con-
firmed even by experiments at high Reynolds numbers (Saw
et al., 2012; Petersen et al., 2019) and remains an open ques-
tion (Bec et al., 2024).

Thus, in this work, we aim to clarify the Stokes-number
dependence of the number density spectrum, particularly in
the inertial subrange using three-dimensional direct numeri-
cal simulation (DNS) of particle-laden homogeneous isotropic
turbulence at high Reynolds number.

DIRECT NUMERICAL SIMULATION
We consider a statistically homogeneous velocity field

uuu(xxx, t) of an incompressible fluid. The governing equations
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are the incompressible Navier–Stokes equations, i.e., the mo-
mentum and continuity equations, respectively:

∂uuu
∂ t

+uuu ·∇uuu = − 1
ρ

∇p+ν∇
2uuu+ fff , (1)

∇ ·uuu = 0, (2)

where p(xxx, t) is the pressure, fff (xxx, t) is an external solenoidal
forcing, ν is the kinematic viscosity, and ρ is the fluid density.
The particles are modeled as point particles. We assume that
the particle size is sufficiently smaller than the Kolmogorov
scale η = (ν3/ε)1/4 and the particle density ρp is sufficiently
larger than ρ . Then, Lagrangian motion of inertial heavy par-
ticles is described by the following equations:

dxxxp

dt
= vvvp, (3)

dvvvp

dt
= −

vvvp−uuu(xxxp)

τp
, (4)

where xxxp and vvvp are the position and velocity of a Lagrangian
particle, and τp is the relaxation time of particle motion. The
particles are one-way coupled with the fluid flow because we
consider that the particles are sufficiently dilute to neglect the
reaction of the particles to the fluid flows. Gravity is neglected
to examine only the inertial effect.

We use the same DNS code described in, e.g., Onishi et al.
(2011) and Matsuda et al. (2021). Equation (1) coupled with
Eq. (2) is solved in a cubic computational domain with length
2π . Periodic boundary conditions are imposed. The equations
are discretized on Cartesian staggered grids. Fourth-order
central-difference schemes are used for the advection and vis-
cous terms. A second-order Runge–Kutta scheme is used for
time integration. The velocity and pressure are coupled by the
Highly Simplified Marker and Cell (HSMAC) method (Hirt
& Cook, 1972). We applied random forcing for turbulence in
accordance with the velocity forcing proposed by Yoshida &
Arimitsu (2007). The forcing is applied to the large-scale flow,
where the wavenumber |kkk| is smaller than 2.5, and changes
randomly, having a correlation time of Tf . We set Tf = 1
to be close to the large-eddy turnover time. Individual parti-
cles are tracked by the Lagrangian method. The initial particle
distribution is random and homogeneous. The time evolution
of xxxp and vvvp are computed by the second-order Runge–Kutta
scheme.

The important parameters in this study are the Stokes
number defined above and the Taylor-microscale Reynolds
number Reλ ≡ u′λ/ν , where u′ is the root-mean-square ve-
locity fluctuation, and λ = (15νu′2/ε)1/2 is the Taylor mi-
croscale. The DNS is performed for Reλ = 648 using 40963

grid points. The Stokes number St is 0.1, 0.2, 0.5 and 1.0. The
number of particles for each Stokes number is Np = 3.2×109.
The initial particle distribution is random and homogeneous.
The flow velocity and particle distribution data are sampled
after the time integration of 10Tf , and three-dimensional data
are saved for 10 time instances at interval of Tf .

RESULTS AND DISCUSSIONS
When the particle clustering is dominated by the pref-

erential concentration mechanism, the clustering formation,
i.e., the divergence of particle velocity, is proportional to the
second invariant of velocity gradient tensor (Maxey, 1987),
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Figure 1. Spectrum of the second invariant of the velocity
gradient tensor Q for Reλ = 648 as a function of kη .

which is defined by Q = (Ωi jΩi j − Si jSi j)/2 where Ωi j =
(Di j −D ji)/2 and Si j = (Di j +D ji)/2 with Di j = ∂ui/∂x j.
Thus, we first assess the scale similarity of Q in the in-
ertial subrange. The Fourier spectrum of Q is defined as
EQ(k) = ∑k |Q̂(kkk)|2, where ·̂ denotes the Fourier transform,
and ∑k = (4πk2/Nk)∑k−1/2≤|kkk|<k+1/2 with the number Nk of
wavenumber vectors in the range k−1/2≤ |kkk|< k+1/2. Ac-
cording to the dimensional analysis following K41, the spec-
trum EQ(k) has a k5/3 scaling in the turbulence inertial sub-
range at sufficiently high Reynolds number (Monin & Yaglom,
1975). Figure 1 shows the spectra EQ(k), as a function of
kη . This figure confirms that, the compensated spectrum for
0.008 . kη . 0.03 is almost flat, which implies that EQ(k)
well obeys the k5/3 scaling in this range.

We examine the number density spectrum En(k) =

∑k |n̂(kkk)|2 in the inertial subrange. To compute the spectrum,
the number density field n(xxx) on equidistant grid points is ob-
tained by using the histogram method, and n(xxx) is normalized
so that 〈n〉 = 1, where 〈·〉 means the ensemble average. Fig-
ure 2(a) shows the number density spectra En(k) for different
Stokes numbers. We can observe that, in 0.008 . kη . 0.03,
the slope of En(k) is clearly dependent on the Stokes num-
ber. Based on the expectation that the preferential concentra-
tion mechanism is dominant for Str � 1, Ariki et al. (2018)
predicted En(k) ∝ τ2

pε2/3k1/3 for a scale k = r−1 that satisfies

r � Λ, where Λ = τ
3/2
p ε1/2. Figure 2(b) shows the spectra

En(k) compensated by the prediction by Ariki et al. (2018).
The spectrum for St = 0.1 is almost flat in 0.008 . kη . 0.03,
but the spectra for the other St show different slopes in that
wavenumber range. These results indicate that the particle re-
sponse to the Q distribution is dependent on the Stokes num-
ber, and thus the clustering mechanism can be different from
the classical preferential concentration mechanism.

To examine Str dependence of En(k), the spectra is nor-
malized by Λ, since kΛ = St3/2

r for k = r−1, and displayed in
figure 3 as a function of kΛ. The spectra for the wavenum-
ber range 0.008 . kη . 0.03 are indicated by the solid lines.
We can observe that the spectra for different Stokes numbers
form a single curve, which can be given by a function of Str.
Therefore, the inertial particle clustering at the inertial scales
is strongly affected by the flows at the similar scales, but the
slope of the spectrum changes significantly depending on Str.

The spectra that obey the k1/3 scaling could be observed
for kΛ� 10−3 (i.e., Str � 10−2), whereas a different regime
is observed for kΛ & 10−3. In our manuscript (Matsuda et al.,
2024), we examined the mechanism behind the Str dependence
of the spectra using a balance equation for the particle number
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Figure 2. (a) Particle number density spectra for St = 0.1,
0.2, 0.5 and 1.0 at Reλ = 648 as a function of kη . (b) The same
spectra compensated by the prediction by Ariki et al. (2018).
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Figure 3. Particle number density spectra for St = 0.1, 0.2,
0.5 and 1.0 at Reλ = 648 as a function of kΛ. For each St,
the solid line indicates the spectrum in the inertial subrange
(0.008 . kη . 0.03), and the dotted line is used for other
wavenumbers. The gray solid line is a fitting curve represent-
ing Str dependence of the inertial-scale clustering.

density spectrum. The results suggest that the change in the
slope can be explained by the modulation of the preferential
concentration mechanism due to the conservation of n.

We note that the prediction of Kolmogorov-like power
law for En(k) is equivalent to h(r) ∝ St2

r = τ2
pε4/3r−4/3 in

physical space (Ariki et al., 2018), where h(r) is the pair-

correlation function (PCF) h(r) = 〈θ(xxx+rrr)θ(xxx)〉 with θ(xxx) =
{n(xxx)− 〈n〉}/〈n〉. The PCF satisfies h(r) = g(r)− 1 for the
radial distribution function (RDF) g(r) = 〈n(xxx+rrr)n(xxx)〉/〈n〉2.
When Str � 1, the above prediction also corresponds to the
prediction for the RDF, logg(r) ∝ St2

r (Bragg et al., 2015; Bec
et al., 2024), which is also based on the preferential concen-
tration mechanism. On the basis of our findings, we conjec-
ture that a regime different from these predictions could also
be observed for the PCF and RDF in the inertial subrange for
sufficiently high Reynolds number.

CONCLUDING REMARKS
Stokes-number dependence of inertial heavy particle clus-

tering has been examined by using three-dimensional DNS
of particle-laden homogeneous isotropic turbulence at a high
Reynolds number Reλ = 648 and with 3.2× 109 particles.
The results show that the slope of the particle number density
spectra in the turbulence inertial subrange is dependent on the
Stokes numbers, implying that the clustering mechanism can
be different from the classical preferential concentration mech-
anism. It is also observed that the number density spectra in the
inertial subrange well obey a function of the scale-dependent
Stokes number, but the slope of the spectrum changes signifi-
cantly depending on the scale-dependent Stokes number.
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