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ABSTRACT
We present a frequency-domain nonlinear reduced-

order modelling technique to find approximate periodic or-
bits (APOs) in turbulent flow problems and predict physical
quantities and dynamical features. Although finding Unsta-
ble Periodic Orbits (UPOs) is feasible in low-dimensional dy-
namic systems or low-Re turbulent flows, computing costs be-
come expensive for high-Re turbulent flows. Rather than find-
ing UPOs in full-state space, we propose to build a Reduced-
Order Model (ROM) to circumvent such impediment while
the benefit of periodicity is maintained by considering the
ROM in the frequency domain, which naturally accommodates
time-periodic velocity fields. To this end, the space-time ba-
sis functions of the low-order space are extracted using Spec-
tral Proper Orthogonal Decomposition (SPOD). The Navier-
Stokes equations are converted into a low-order algebraic sys-
tem via Galerkin projection onto selected SPOD modes. Nu-
merical solutions of the ROM are achieved using gradient-
based optimization of the amplitude coefficients, letting the
solutions in the ROM satisfy conservation laws. The pro-
posed approach is demonstrated in chaotic flows in a 2D lid-
driven cavity at Re=20,000. Numerical results show that the
frequency-domain ROM admits multiple solutions that capture
dominant dynamical flow features, such as vorticity structures,
and predicts well statistical quantities, such as mean turbulent
kinetic energy.

INTRODUCTION
Sensitivity analysis of turbulent flows is essential to find

gradients for optimization or control problems. It is, how-
ever, challenging to compute the gradient of a time-averaged
quantity due to the chaotic nature of turbulence (Wang, 2013).
Recent advances have relied on shadowing theory (Wang,
2013; Shawki & Papadakis, 2019) to obtain such gradients.
Still, the application of shadowing methods to high-Reynolds-
number (high-Re) turbulent flows has proven to be expensive
because of the rapid growth of computational costs (Ni &
Wang, 2017; Blonigan, 2017; Lasagna et al., 2019).

Unstable Periodic Orbits (UPOs), also known as Exact
Coherent States (ECS), have been widely exploited to describe
the dynamics and the statistics of turbulent flows, as they ef-
fectively represent nonlinear flow features, coherent structures
and bursting events (Kawahara & Kida, 2001; Graham & Flo-
ryan, 2021). In previous work, Lasagna (2020) proposed to
obtain the sensitivity of time-averaged quantities using long-
period UPOs. He found that the expectation of period averages
over thousands of long UPOs converges to statistical quanti-
ties computed from chaotic trajectories, and their sensitivity

analysis performs similarly to shadowing algorithms. The pe-
riodicity constraint prevents the exponential growth of small
perturbations, and the long period ensures that key statistical
quantities are well described. Crowley et al. (2022) observed
that the three-dimensional Taylor–Couette flow tracks the co-
herent structure of UPOs, which convincingly supports the ex-
istence of periodic orbits for turbulent flows. The Newton-
Raphson method is commonly employed to find UPOs in low-
dimensional chaotic systems, 2D Kolmogorov flow and low-
Re turbulent flows. Despite recent work in methods to find
such solutions (Parker & Schneider, 2022), finding UPOs is
still difficult and computationally expensive for high-Re flow
problems since UPOs proliferate dramatically with increasing
their time periods and become increasingly unstable with in-
creasing the Reynolds number (Page et al., 2022). Therefore,
using UPOs for sensitivity analysis for fluid systems described
by Navier–Stokes (NS) equations is challenging. Reduced-
order modelling techniques exhibit great potential to circum-
vent such roadblocks. For instance, the dynamic mode de-
composition (DMD) was found to generate robust guesses for
finding more UPOs than the conventional method with recur-
rent analysis (Page & Kerswell, 2020).

In this paper, we will exploit frequency-domain dimen-
sionality reduction techniques to search for what we define as
approximate periodic orbits (APOs). These solutions are close
to exact UPOs of the NS equations but are cheaper to obtain
numerically as they are solutions of a ROM. Our methodol-
ogy consists of formulating the search of APOs using a low-
dimensional subspace formed by space-time divergence-free
basis functions that satisfy the time-periodic constraint and
capture relevant structures. In this subspace, the dynamics
of the NS equations are captured by a nonlinear Galerkin
model in the frequency domain. Solutions of this ROM,
i.e. the APOs, are found by optimizing amplitude coefficients
to minimize the residual of the relevant conservation laws.
This approach drastically reduces the computational burden
associated with the search of full-order space-time velocity
fields (Parker & Schneider, 2022). The proposed approach dif-
fers from recent research using frequency-domain ROMs (Chu
& Schmidt, 2021; Lin, 2019) in that we consider fully nonlin-
ear Galerkin models that display self-sustaining inter-modal
energy transfers. When a reliable ROM is available, reduced-
order sensitivity analysis via time-periodic adjoint methods
can then be easily formulated and solved based on this peri-
odic velocity field to drive the adjoint equations.

We outline the frequency-domain nonlinear reduced-
order modelling method and formulate the APO search al-
gorithm using a gradient-based optimisation approach in a
low-dimensional frequency-domain setting. Spectral Proper
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Orthogonal Decomposition (SPOD) (Towne et al., 2018) is
used to extract the time-periodic space-time coherent struc-
tures. Numerical results on lid-driven cavity flow, which has
been extensively utilized in the literature as a testbed for the
development of modelling techniques, are discussed. The ef-
fectiveness of frequency-domain ROM is investigated qualita-
tively and quantitatively concerning dynamical flow features
and statistical quantities.

METHODOLOGY
Frequency-Domain Reduced-Order Modelling

The velocity field in a statistically stationary flow
state (Lumey, 1970) is expanded using SPOD modes over a
sufficiently long time interval T as

uuu(x, t) = ūuu(x)+uuu′(x, t)

= ūuu(x)+
N

∑
k=−N

M

∑
j=1

ak
jφφφ

k
j(x)e

ikωt (1)

where ūuu is the infinite-time-averaged flow, uuu′ is the fluctuation
field, and ω = 2π/T . The superscript k denotes the index of
discrete frequencies, and the subscript j represents the index
of SPOD modes. All SPOD modes ({φφφ

k
j}

k=−N,··· ,N
j=1,··· ,M ) have ho-

mogeneous boundary conditions on all boundaries and satisfy
mass conservation, while the mean flow satisfies the inhomo-
geneous boundary conditions of the problem. The amplitude
coefficients are described as {ak

j}
k=−N,··· ,N
j=1,··· ,M . The order reduc-

tion of the ROM is achieved by truncating the number of dis-
crete Fourier frequencies (N) and SPOD modes (M). Using
suitable modes, amplitude coefficients and frequency ω , any
UPO can be approximated by Equation (1).

By substituting the velocity expression in Equation (1),
the frequency-domain ROM is formulated with the aid of pro-
jecting the incompressible NS equations onto the space-time
basis functions φφφ

l
m eilωt . This yields a nonlinear algebraic sys-
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for l = −N, · · · ,N and j = 1, · · · ,M. The coefficients
rl

m
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)

denote the residuals of the ROM in the low-order
subspace. Model coefficients in the ROM are represented by
the tensors AAA,,,LLL,,,QQQ,,,CCC, defined as
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)
Ω
+
(

φφφ
l
m,∇ · (ūuuūuu)
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The tensor AAA represent the linear model coefficients from un-
steady terms, and LLL contains linear model coefficients arising
from the convection and viscous terms. The tensor QQQ denotes
nonlinear model coefficients arising from the convection term,
and this results from the interaction between low and high-
frequency SPOD modes. CCC denotes constant model coeffi-
cients from the mean flow field. δl0 and δmn are the Kronecker
delta. The inner product ( f ,g)Ω =

∫
Ω

f gdΩ is defined by the
integration of f and g functions on the computational domain.

Since the information in the temporal direction is stated in
the frequency domain, we refer to it as a frequency-domain
ROM here. This frequency-domain ROM is a nonlinear model,
which differs from linear SPOD-Galerkin models developed
by Chu & Schmidt (2021).

Gradient-based Optimization of Amplitude Co-
efficients

Using the amplitude coefficients obtained from the pro-
jection of DNS data can result in high residuals, violating
momentum conservation in the low-order space. However, if
UPOs governed by the NS equations were to be projected onto
the low-order space, their residuals should be small. In theory,
the solution of the frequency-domain nonlinear ROM could
be obtained numerically by solving Equation (2), i.e. finding
amplitude coefficients such that rl

m = 0 for all l and m us-
ing the Netwon-Raphson method. However, the truncation of
frequencies and SPOD modes implies that Equation (2) might
not have an exact solution. Hence, rather than directly solving
Equation (2), we propose to find the solution to this ROM by
minimizing the squared norm of all residuals {rl

m}
l=−N,··· ,N
m=1,··· ,M .

The minimization problem is formulated as

min
{ak

n}
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n=1,··· ,M
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New amplitude coefficients {ak
n}

k=−N,··· ,N
n=1,··· ,M are obtained by

solving this optimization problem, which better satisfies the
conservation laws in the low-order space. The proposed tech-
nique is akin to solving a periodic boundary value problem
in a low-dimensional subspace, as opposed to solving initial
value problems used in Galerkin projections, e.g. POD-based
ROM (Balajewicz et al., 2013).

Gradient-based optimization techniques are employed to
efficiently find the optimal solutions of Equation (4). To do
this, the gradient of the objective function with respect to the
amplitude coefficients is found, leading to the analytical ex-
pression
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where () is the conjugate operation. δk,l and δl,−k are the Kro-
necker delta. T l,l

m,n = ilωAl,l
m,n + Ll,l

m,n denotes the linear con-
jugate symmetric component. The indices used here satisfy
k,(l−k),(l+k)∈ {x|x =−N, · · · ,N}, and n = 1,2, · · · ,M. As
the velocity field is real-valued, the amplitude coefficients are
conjugate symmetric in the frequency domain. Therefore, the
independent amplitude coefficients are {ak

n}
k=0,··· ,N
n=1,··· ,M .

Initial guesses for the optimization problem are calcu-
lated from the projection of DNS data onto the selected SPOD
modes. We use L-BFGS to solve the optimization problem,
as it demonstrates faster convergence rates than simpler gradi-
ent descent methods. The optimal amplitude coefficients that
minimize J will then be used to reconstruct APOs for the fluid
flow problem. It is natural to anticipate a sizable inventory of
locally optimal solutions from this optimization since the ob-
jective function J is a quartic polynomial in terms of each am-
plitude coefficient and J is of high dimension (viz. M(2N +1)
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variables in total). Therefore, we should find multiple solu-
tions to this optimization problem, which will be reported in
the next section. This is consistent with the consensus that
large numbers of UPOs exist in turbulent flows.

RESULTS AND DISCUSSION
Numerical simulation of lid-driven cavity flow

The proposed approach is investigated in an unsteady lid-
driven cavity flow at Re= 20,000 in a 2D domain [0,1]× [0,1],
which exhibits abundant chaotic features (Cazemier et al.,
1998). Direct Numerical Simulation (DNS) of this flow
was conducted using OpenFOAM. The velocity and pres-
sure are solved with Pressure-Implicit with Splitting of Op-
erators (PISO) algorithm. A second-order central difference
method is applied for spatial discretization, and a second-order
Euler backward scheme is used for time direction. Linear in-
terpolation is employed to compute flux and variables at cell
surfaces. The absolute and relative tolerances for convergence
of numerical solutions are set to 10−5. The dimensionless time
step is selected to guarantee that the Courant number is less
than 2.4. The computational domain is discretized with 39600
quadrilateral grid cells.

Four instantaneous vorticity snapshots of the fully-
developed state are shown in Figure 1. The dominant unsteady
motions take place primarily in the shear layer bounding the
main vortex and interacting with the smaller-scale counter-
rotating vortices in the bottom right corner. The shear layer
is also perturbed in both the left-bottom and left-top corners
although the unsteadiness is less strong compared to that in
the bottom right corner, leading to nonlinear dynamics inside
the cavity. These dynamical flow features are used to quantify
the efficacy of the nonlinear frequency-domain ROM.
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Figure 1. Instantaneous vorticity field of the lid-driven cav-
ity flow at four different non-dimensional times of the fully-
developed state.

SPOD analysis
Long-time UPOs, which can span a good fraction of the

attractor, have been demonstrated to predict the time-averaged
quantities accurately (Lasagna, 2020). These predictions con-
verge to a defined value as the period of UPOs increases.

Given that the approach aims to obtain an approximation of
such UPOs, we consider a long period for the flow analysis
and reduced-order modelling to include a wide range of fre-
quencies. The recurrence analysis on the current case suggests
that the shortest recurrence period is 1.7. Therefore, we select
a much longer time interval T = 25.6 to capture at least 15
cycles of this motion.

The non-dimensional sampling time step is chosen to 0.1,
corresponding to the largest frequency of 5, and both low
and high-frequency flow structures are contained in the cur-
rent case. To identify space-time structures for the projection,
SPOD is conducted using N f = 256 discrete frequencies for
the Fourier analysis and a 50% overlap of DNS data. We use
10,000 DNS snapshots and thus have 77 data blocks for SPOD
analysis. A uniform window function is applied due to the long
periods considered here. Figure 2 shows the SPOD eigenvalue
spectra (λ k

j ) at different frequencies ( fk). Energy peaks are
observed at fk = 0.273,0.586,1.211,1.797, especially for the
first SPOD mode, as highlighted by vertical lines.
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Figure 2. Spectra of SPOD eigenvalues for the lid-driven
cavity flow, coloured by the index of SPOD modes and
marked with vertical lines for energy peaks at fk =

0.273,0.586,1.211,1.797.

The real part of the SPOD modes at these four frequen-
cies is shown in Figure 3. It is noted that the associated spa-
tial structures exhibit a distribution along the boundary of the
main vortex inside the cavity. Thus they can capture the dy-
namics around the shear layer mentioned above. The higher
the frequency, the smaller the spatial length scale. The spatial
structure displays a repeating pattern of alternating high and
low values in succession for different frequencies. However,
a distinct pattern emerges in the parallel distribution of spa-
tial structures, characterized by positive and negative values
near the top lid and bottom corner. The former corresponds
to the rotating convection of the vortex and shear layer, while
the latter indicates the strong shear regions. The interaction
between the main shear layer and corner vortices skews the
spatial structures, leading to small-scale structures. Therefore,
the spatial structures of SPOD modes reflect the difference be-
tween the rotating convection of the main vortex and the strong
shear-layer interaction around the bottom right corner and top
lid. Hence, we consider the first dominant SPOD modes, viz.
M = 1, for the investigation of frequency-domain ROMs in the
subsequent sections.
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Figure 3. Real part of the horizontal component of the first
SPOD modes at selected dominant frequencies marked by ver-
tical lines in Figure 2.

Frequency-domain nonlinear ROM
We construct a nonlinear Galerkin model by computing

the model coefficients (i.e. AAA,LLL,QQQ,CCC) from projection. Fig-
ure 4 shows the distribution of the real part of the model co-
efficients QQQ. These coefficients emphasize the nonlinear in-
teraction between different SPOD modes since they are the
coefficients of the quadratic terms of amplitude coefficients in
Equation (2). The tensor QQQ shows a sparse structure, suggest-
ing that the strength of nonlinear interactions (Jin et al., 2021;
Rubini et al., 2020) captured by the current ROM is highly
structured in frequency space.
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Figure 4. Real part of model coefficients QQQ in a SPOD-based
ROM for a lid-driven cavity flow. k, l =−N, · · · ,N denote the
indices of discrete frequencies.

The instantaneous turbulent kinetic energy (TKE) E =
1
2
∫

uuu′uuu′ dΩ is shown in Figure 5 for DNS data and the flow
field reconstructed from the projection. This reconstruction
maintains dynamic features but has a lower TKE than DNS
because of the mode truncation.

Figure 5. Turbulent kinetic energy reconstructed from the
projected amplitude coefficients of the frequency-domain
ROM for the first data block, compared with that obtained
from DNS data.

Amplitude coefficient optimization results
We project the DNS data of all blocks onto the low-order

subspace to obtain different initial guesses for the optimization
and visualize the squared magnitude of these coefficients in
Figure 6. These initial values are scattered around the first
SPOD eigenvalues and their mean value at each frequency is
equal to the corresponding eigenvalue. This agrees with the
SPOD properties, in which the first SPOD eigenvalue in each
frequency represents the ensemble average of the TKE over all
blocks. Thus these values are reasonable initial guesses for the
optimization.
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Figure 6. The squared magnitude of amplitude coef-
ficients (i.e. ak

1ak
1) projected from DNS data over all

blocks (light grey circles) compared to the first SPOD eigen-
values λ k

1 (sold blue line) at each frequency.

Although the flow solution as a function of non-
dimensional time varies from block to block, significant en-
ergy is still contained in motions at low frequencies associated
with the long-time motion of the vortex core. It is also noted
that the contribution of high frequencies (i.e. fk > 3) plateaus,
suggesting that their structures may be non-physical.

Figure 7 shows the optimization history using those 77
initial guesses projected. Various locally optimal solutions are
obtained from different initial guesses, which agrees with the
high dimension of the objective function. In the dynamical
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view, the turbulent flow is a trajectory that goes through a high-
dimensional state space by transiently visiting the unstable in-
variant solutions, including UPOs (Hopf, 1948). In that sense,
large numbers of UPOs exist to form the scaffold for the turbu-
lent flow trajectory (Page et al., 2022). Therefore, the property
of multiple APOs is useful in describing the dynamics of tur-
bulent flows and reliably predicting the statistical quantities. In
addition, the solutions to this optimization problem are proved
to found to be particularly robust to different initial guesses,
even for random initial values (analysis is not shown here).
This indicates that solving the frequency-ROM with optimiza-
tion methods is feasible and effective for obtaining APOs.

Figure 7. Optimization history of the objective function J
computed using 77 initial values projected from different data
blocks. J is normalized by the initial value J0.

The mean TKE is computed for each APO and compared
with DNS and projected initial solutions. Figure 8 shows these
mean TKEs and their statistics. The mean TKE is underesti-
mated when the projected amplitude coefficients of the ROM
are used. This resembles the reduction of the instantaneous
TKE shown in Figure 5. This gap is reduced via the opti-
mization of the amplitude coefficients in the frequency-domain
ROM. The statistics of the mean TKE are well predicted by
the optimal solutions, although with a slightly higher stan-
dard deviation compared to the DNS. These results show that
the current frequency-domain ROM can recover the main dy-
namics and obey the conservation law without additional treat-
ments. Furthermore, it avoids the blow-up issue of the tradi-
tional POD-based ROMs (Balajewicz et al., 2013) that require
calibration (Khoo et al., 2022; Rubini et al., 2020) to stabilize
the low-order system.

Finally, the truncation of discrete frequencies is consid-
ered in studying its impact on the low-order model. To quan-
tify the influence of frequency truncation, we compare the vor-
ticity field computed from the initial and optimal amplitude
coefficients of the ROM with that from DNS. A snapshot is
shown in Figure 9. The dominant dynamical features of the
main vortex and the interaction with the shear layer inside
the cavity can be captured in frequency-domain ROMs. This
might be related to the model that keeps the essential frequency
of fk = 0.586 at least, which contributes to the largest energy
in the spectra. By virtue of truncating discrete frequencies,
the high-frequency small scales are removed from the vorticity
field, thus circumventing the non-physical impact of high fre-
quencies on the reconstructed flow solutions. This suggests the
importance of frequency selection in building the frequency-
domain nonlinear ROM.

Figure 8. Probability density function (PDF) of the mean
TKE for the initial and optimal solutions reconstructed from
the frequency-domain ROM, compared to that of DNS. The
segments on the left side denote the statistical mean and the
standard deviation.

Figure 9. A snapshot of the vorticity field of the initial and
optimal solutions reconstructed from the frequency-domain
ROM, compared with that of DNS.

CONCLUSIONS
A framework for frequency-domain nonlinear reduced-

order modelling is formulated for turbulent flows. The effec-
tiveness of this method is articulated by investigating several
vital aspects of the ROM’s construction and results, which
demonstrates the ability to capture the dynamical features
of problems involved in turbulence. SPOD is used to ex-
tract dominant spatial-temporal coherent structures of the flow
problem. These SPOD modes are used as the basis functions of
the low-order space to build the frequency-domain ROM. Nu-
merical experiments of a 2D lid-driven cavity show that SPOD
modes are effective in representing nonlinear features inside
the cavity. The nonlinear interactions in the ROM are high-
lighted by the structure of nonlinear model coefficients (QQQ).
The gradient-based optimization of all ROM’s residuals is
found to improve the accuracy of periodic solutions, reducing
the deviation of turbulent kinetic energy. The main dynam-
ics of shear layers can be well captured by the APOs of the
frequency-domain ROM, as shown in the vorticity field. Trun-
cating the high frequencies enables us to remove the impact
of small-scale motions. The efficacy of the proposed ROM
is quantitatively articulated using the statistics of turbulent ki-
netic energy.

The periodicity of the proposed ROM allows us to obtain
bounded trajectories that can be utilized for sensitivity anal-
ysis, which will be studied in future work. The idea of cali-
bration of model coefficients or a closure model (Khoo et al.,
2022) may be adopted to further improve the ROM’s accuracy,
which is an open research topic.
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