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ABSTRACT
Data-driven methods are improving our capability to pre-

dict, control and understand turbulent flows. However, these
techniques often rely on having access to complete flow field
measurements, which are difficult to acquire due to the multi-
scale nature of turbulence. Fortunately, velocity field data
may be reconstructed from measurements of a few “strate-
gically placed” point sensors. In recent work, we achieved
this by combining a greedy sensor selection algorithm with a
low-rank representation of the flow in terms of the leading em-
pirical orthogonal functions (EOFs) that arise from the mean
flow linearization (Herrmann et al., 2023). Here, we include
an eddy viscosity model in our linearized equations to com-
pute eddy EOFs to investigate if they offer a more efficient
low-rank representation for coherent perturbations of the mean
flow. We test our method on data from numerical simulations of
turbulent flow in a minimal channel at Re𝜏 = 185. The flow re-
construction performance and sensor locations are investigated
and compared with those obtained using a data-driven sensor
placement strategy based on proper orthogonal decomposition
modes. Our equation-based framework proves to be an attrac-
tive alternative, since it performs similarly to the data-driven
approach, but it does not require data snapshots and relies only
on knowledge of the mean flow.

INTRODUCTION
Reconstruction of velocity fluctuations from sparse sen-

sor measurements remains an open challenge due to the com-
plexity of high-dimensional turbulence (Arun et al., 2023).
Such a reconstruction would enable the use of emerging data-
driven methods — which require complete flow field snapshot
data — to build reduced-order models that are useful to pre-
dict, control, and understand the dominant underlying flow
physics (Taira et al., 2017; Brunton et al., 2020; Herrmann
et al., 2021; Schmid, 2022; Baddoo et al., 2022, 2023).

Recently, Towne et al. (2020) formulated a resolvent-based
method to estimate space-time flow statistics from limited data.
Subsequently, Martini et al. (2020) and Amaral et al. (2021)
developed and applied, respectively, an optimal and noncausal

resolvent-based estimator that is able to reconstruct unmea-
sured, time-varying, flow quantities from limited experimen-
tal data as post-processing. Arun et al. (2023) developed a
framework for efficient streaming reconstructions of turbulent
velocity fluctuations from sparse sensor measurements aimed
at real-time applications.

More recently, Herrmann et al. (2023) proposed and
demonstrated a framework for sparse sensor placement for re-
construction of turbulent channel flow. The approach uses a
greedy algorithm for scalable sensor selection (Manohar et al.,
2018), and leverages a low-rank representation of the flow
field in terms of modes arising from the mean-flow-linearized
Navier–Stokes operator. Specifically, the leading eigenvectors
of the controllability Gramian are used as a basis. These modes,
also known as empirical orthogonal functions (EOFs), repre-
sent the flow structures that account for most of the sustained
variance in the response to delta-correlated white-noise forc-
ing (Farrell & Ioannou, 1993; Dergham et al., 2013). Moreover,
EOFs enjoy a well-established connection to resolvent response
modes (Zhou et al., 1999; Farrell & Ioannou, 2001; Dergham
et al., 2011). In this work, we include an eddy viscosity model
in the mean-flow-linearization to obtain eddy EOFs in search
for a more efficient low-rank representation of coherent pertur-
bations in wall-bounded turbulent flows. With these modes,
we investigate whether we can improve the performance of
our method to reconstruct turbulent flows from sparse sensor
data (Herrmann et al., 2023).

Sparse sensor placement for reconstruction
Consider sparse observations 𝒚 = 𝑷T𝒙 of the state 𝒙 ∈ R𝑛

of a dynamical system, where 𝑷 = [𝒆𝛾1 · · · 𝒆𝛾𝑟 ] ∈ R𝑛×𝑟 is a
sampling matrix containing 𝑟 columns of the identity matrix.
Reconstruction of 𝒙 from 𝒚 can be achieved by using a low-rank
representation of the state 𝒂 ∈ R𝑟 , given by a basis 𝑽 ∈ R𝑛×𝑟
so that 𝒙 ≈ 𝑽𝒂 ⇒ 𝒚 ≈ 𝑷T𝑽𝒂, and solving in the least squares
sense to obtain 𝒂 = (𝑷T𝑽)−1𝒚. The problem of sensor selec-
tion for state reconstruction amounts to designing 𝑷 so that the
matrix 𝑷T𝑽 is well conditioned for inversion, producing an ap-
proximation of 𝒙 that can be robustly inferred from 𝒚 (Manohar
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Figure 1. Schematic of the proposed method. Modes from mean-flow-linearized analysis are used together with greedy sensor
placement strategies to reconstruct turbulent velocity fluctuations from sparse measurements.

et al., 2018). The resulting reconstruction �̃� can be interpreted
as an interpolatory projection of the true state onto the span of
𝑽 using the interpolation points selected by 𝑷, as follows

�̃� = 𝑽 (𝑷T𝑽)−1𝒚 = 𝑽 (𝑷T𝑽)−1𝑷T𝒙 = P𝒙, (1)

with P being the interpolatory projector (Sorensen & Embree,
2016; Herrmann et al., 2023).

Finding the optimal sampling matrix that minimizes the
projection error for a given basis𝑽 requires a brute force search
over all possible sampling location combinations. While this
can be achieved for small-scale systems (Chen & Rowley,
2011), with 𝑛 ∼ O(104) at the moment of this writing, the
computational cost makes it intractable in higher dimensions.
Alternatively, there are several fast greedy algorithms that can
be used to approximate the optimal sensor locations avoiding
the combinatorial search. In the context of reduced-order mod-
eling, the empirical and discrete empirical interpolation meth-
ods, EIM (Barrault et al., 2004) and DEIM (Chaturantabut
& Sorensen, 2010), were developed to find locations to inter-
polate nonlinear terms in a high-dimensional dynamical sys-
tem, which is known as hyper-reduction. An even simpler and
equally efficient approach is the Q-DEIM algorithm, introduced
by Drmac & Gugercin (2016), which leverages the pivoted QR
factorization to select the sampling points. Manohar et al.
(2018) showed that this is also a robust strategy for sparse
sensor placement for state reconstruction in a variety of appli-
cations.

METHODOLOGY
This section describes our approach for sensor selection

informed by the mean-flow-linearized dynamics, the numerical
setup for the simulations carried out to test the method, and the
computation of the modes used as bases for the interpolatory
projections.

Equation-based sparse sensor placement
In the context of this work, the state 𝒙 corresponds to a

spatial discretization of velocity fluctuations in a turbulent flow.
The evolution of these fluctuations is governed by

d𝒙
d𝑡

= 𝑨𝒙 + 𝒇 , (2)

where 𝑨 ∈ R𝑛×𝑛 is the mean flow linearization operator (with
or without an eddy viscosity model) and 𝒇 ∈ R𝑛 is the forcing
containing the nonlinear terms McKeon & Sharma (2010). The
incompressible Navier–Stokes equations can be written in this

form by projecting the velocity field onto a divergence-free
basis to eliminate the pressure variable.

The quality of the state reconstruction from sparse sensors,
given by (1), depends strongly on both the low-rank represen-
tation, given by the basis𝑽, and the sensor placement, given by
the sampling matrix 𝑷. In the context of fluid flows, 𝑽 may be
formed using a variety of data-driven or equation-based modal
decompositions (Taira et al., 2017). In this work, we opt for an
equation-based approach and take the leading empirical orthog-
onal functions (EOFs) as our modes (Herrmann et al., 2023).
The EOFs represent the flow structures that account for most of
the sustained variance in the response to delta-correlated white
noise forcing (Farrell & Ioannou, 1993, 2001; Dergham et al.,
2013), and can be computed as the leading eigenvectors of the
full-input controllability Gramian, given by

𝑾𝒄 =

∞∫
0

𝑒𝑨𝑡 𝑒𝑨
∗𝑡 d𝑡 =

1
2𝜋

∞∫
−∞

𝑯(𝑖𝜔)𝑯∗ (𝑖𝜔) d𝜔, (3)

where 𝑨 is the mean flow linearization operator, 𝑒𝑨𝑡 is the time
propagator, and 𝑯(𝑖𝜔) is the resolvent operator. Alternatively,
EOFs admit deterministic interpretations as the solutions to the
optimization problems

𝒗 = argmax
𝒗

∥𝑒𝑨∗𝑡 𝒗∥2
L2

∥𝒗∥2 = argmax
𝒗

∥𝑯(𝑖𝜔)∗𝒗∥2
L2

∥𝒗∥2 , (4)

where the L2−norm represents energy integrated over time or
across all frequencies. Therefore, the leading EOFs represent
the flow structures that best align with the optimal responses to
initial conditions over all time horizons and, equivalently, to the
optimal responses to harmonic forcings across all frequencies.
In this work we consider the cases with and without an eddy
viscosity model and therefore compute EOFs and eddy EOFs.

Once the basis is determined, the sensor placement prob-
lem can be solved using one of several available greedy algo-
rithms to avoid the brute-force search over all possible sampling
locations, such as the discrete empirical interpolation method
(DEIM) (Chaturantabut & Sorensen, 2010) or QR-pivoting (Dr-
mac & Gugercin, 2016; Manohar et al., 2018). Here, we adhere
to the latter method because it provides near-optimal interpo-
lation points and is simple to implement leveraging the pivoted
QR factorization available in most scientific computing soft-
ware packages. A schematic of the proposed approach is shown
in figure 1.

Direct numerical simulations
As a test bed system, we use a minimal channel flow

at Re𝜏 = 185. This corresponds to a pressure-driven turbu-
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Figure 2. Isosurfaces of streamwise velocity for the leading
EOFs, eddy EOFs and POD modes for turbulent channel flow.
Symmetry-related modes and mean flow modes are skipped to
show a larger variety of structures.

lent flow, governed by the incompressible Navier–Stokes equa-
tions, in a doubly-periodic plane channel. The domain size
is 1.83× 2× 0.92 dimensionless length units along the 𝑥, 𝑦,
and 𝑧 coordinates that indicate the streamwise (periodic), wall-
normal, and spanwise (periodic) directions, respectively. For
a Reynolds number of Re = 4200, based on the channel half-
height ℎ and the centerline velocity for the laminar parabolic
profile𝑈𝑐,lam, leading to Re𝜏 = 185, this is the smallest domain
that is able to sustain turbulence and is known as a minimal
flow unit (Jiménez & Moin, 1991).

We use the spectral code Channelflow (Gibson et al., 2008;
Gibson, 2014) to perform direct numerical simulations (DNS)
and generate a dataset comprised of a long sequence of snap-
shots acquired after statistically stationarity is reached. The
code uses Chebyshev and Fourier expansions of the flow field
in the wall-normal and horizontal directions, and a 3rd-order
Adams–Bashforth backward differentiation scheme for the time
integration. We find that a grid with 32× 101× 16 (after de-
aliasing) in 𝑥, 𝑦, and 𝑧 and a time step of 0.005 time units are
sufficient to discretize the domain and keep the CFL number
below 0.55, for the case studied. The flow is initialized from a
random perturbation of the laminar profile, simulated for 104

time units (based on ℎ/𝑈𝑐,lam) until transients have died out
and statistical stationarity is reached, and then velocity field
snapshots are saved every 0.2 time units for over an additional
1.5× 104 time units, which is enough to get converged statis-
tics. The streamwise velocity for a typical flow field snapshot
is shown in figure 3(b).

Modal bases

Proper orthogonal decomposition (POD) modes are com-
puted from the DNS dataset. First, the snapshots are Fourier-
transformed in the horizontal directions and an independent
analysis is carried out for each pair of streamwise and spanwise
wavenumbers. This ensures that the resulting modes respect
the shift-equivariance of the flow in the homogeneous direc-
tions (Sirovich, 1987). Moreover, flow through a plane channel
is also equivariant under the dihedral group of transformations
𝐷2, meaning that, a vertical reflection, a spanwise reflection,
or a rotation about the 𝑥-axis of an observed flow field yields
another admissible flow field (Sirovich, 1987). To respect these
symmetries, the appropriate transformations are applied to the
Fourier-transformed flow fields and appended as additional data
snapshots before proceeding with the decomposition.

Furthermore, EOFs and eddy EOFs are computed from
the mean-flow-linearized governing equations. The mean flow
is computed from the DNS snapshots and used to build the
mean-flow-linearized operators with an in-house code based
on the modified Orr–Sommerfeld/Squire formulation to ac-
count for spatial variations of viscosity in the wall-normal
direction as in (Reynolds & Hussain, 1972; Del Alamo &
Jimenez, 2006; Pujals et al., 2009; Hwang & Cossu, 2010b,a;
Morra et al., 2019; Symon et al., 2023). Moreover, for zero
streamwise and spanwise wavenumbers, we replace the Orr–
Sommerfeld/Squire operator for the viscous diffusion operator
acting on the wall-normal and streamwise velocities, as in ear-
lier works (Waleffe, 1997; Cavalieri & Nogueira, 2022). Our
code uses Chebyshev spectral collocation to discretize the wall-
normal direction with the same grid used in the DNS. For the
eddy viscosity, we use the Cess profile (Cess, 1958)
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Figure 3. Sparse sensor placement for reconstruction of velocity fluctuations in the turbulent flow in a minimal channel at Re𝜏 = 185.
(a) Reconstructed snapshots based on 𝑟 sparse sensor measurements and EOFs (red), eddy EOFs (yellow), and POD modes (blue). (b)
The flow field snapshot from the DNS being reconstructed. The colormap shows streamwise velocity. (c) Normalized reconstruction
error in the L2-norm as a function of basis size using the three bases.
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𝐴

] )2
]1/2

+1ª®¬ , (5)

where the constants 𝜅 = 0.426 and 𝐴 = 25.4 were selected
to fit experimental mean velocity profiles at Re𝜏 = 2000 by
Del Alamo & Jimenez (2006). In equation (5), 𝜈𝑇 (𝑦) repre-
sents the total effective viscosity that has been made nondi-
mensional using the scale 𝑢𝜏ℎ based on the friction veloc-
ity and the channel half-height. Therefore, in the nondimen-
sional linearized equations, we either use 1/Re𝜏 in front of
the viscous terms to consider only the molecular viscosity,
or replace it by 𝜈𝑇 to incorporate the eddy viscosity model.
The Fourier-transformed (in the homogeneous directions) lin-
earized operators with and without eddy viscosity are built for
every wavenumber tuple in the range resolved by the DNS.
The controllability Gramians, considering full state inputs, are
computed by solving the corresponding Lyapunov equation
with available routines in Matlab. EOFs and eddy EOFs are
obtained as the eigenvectors of the respective controllability
Gramian.

For each basis, the modes obtained for all wavenumbers
are stacked together and sorted in descending order according
to their energy content, that is, the singular values of the data
matrix for the POD modes, and the eigenvalues of the con-
trollability Gramians for the EOFs and eddy EOFs. Finally,
an inverse Fourier transform is applied to take the three sets
of modes to physical coordinates. The leading flow structures
corresponding to each basis are shown in figure 2. Interpo-

latory projections of velocity fluctuation snapshots from the
DNS are investigated. The EOFs, arising from the mean flow-
linearization with and without an eddy viscosity model, and
POD modes are compared as bases for the projections.

RESULTS AND DISCUSSION
We assess the performance of the presented framework to

reconstruct velocity fluctuations in the minimal channel flow
from sparse sensor measurements, as shown in figure 3. To
assess the performance, our metric of choice is the normalized
L2−norm of the state reconstruction error computed over the
entire dataset. Under this metric, POD modes provide the
optimal low-rank approximation of the state. Therefore, the
reconstruction error obtained using POD serves as a lower
bound for our data-free approach that leverages the EOFs and
eddy EOFs.

Considering the leading 𝑟 elements in each basis, we build
interpolatory projectors using 𝑟 tailored sensors, selected using
pivoted QR, that are complemented with an additional 2𝑟 ran-
dom sensors. Because this is a high-dimensional system with
a total of 𝑛 ≈ 1.6 · 105 states, complementing tailored sensors
with random ones is a simple strategy to improve the resulting
reconstruction that was suggested in the work of Manohar et al.
(2018). This is implemented by simply taking the leading 2𝑟
columns of a matrix containing all remaining possible sensors
after a random column permutation. These columns are then
concatenated to the sampling matrix 𝑃 used to build the projec-
tor. Increasing 𝑟 improves the reconstruction performance with
diminishing returns, quickly at first and slower for a larger basis
size, as shown in figure 3(c). Importantly, the reconstruction
error using the equation-based approach with EOFs or eddy
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Wavevector direction EOFs Eddy EOFs POD
Streamwise 118 124 122
Spanwise 116 76 164
Oblique 744 780 687

Mean flow mode 22 20 27

Table 1. Classification of the leading 1000 EOFs, eddy EOFs,
and POD modes according to their wavevector direction.

EOFs follow closely that obtained with the POD modes.
Leveraging the EOFs and eddy EOFs, the reconstruction

explains a large portion of the variance in the flow field, captur-
ing 50% of the kinetic energy of the turbulent fluctuations with
around 200 modes and 600 sensors, and more than 75% with
1000 modes and 3000, which amounts to measuring less than
2% of the full state. Here, we expected to find an improvement
in the reconstruction performance by using eddy EOFs over that
of using EOFs, due to the eddy viscosity partially accounting
for the colored statistics of the nonlinear forcing. However, our
results show that the reconstruction error obtained with both
approaches is very similar and, interestingly, the performance
including an eddy viscosity model is slightly worse.

Motivated by this finding, we take a more detailed look
into the spatial structure of the EOFs, eddy EOFs, and POD
modes, and their capability to capture the DNS data. First,
we analyze the types of flow structures contained in each basis
by counting, within the first 1000 modes, how many of them
correspond to streamwise, spanwise, or oblique waves or to
mean flow modes. This classification, shown in table 1, reveals
that, compared to the POD basis, both EOFs and eddy EOFs
include a significantly larger amount of oblique waves in place
of missing spanwise waves (streamwise streaks). This is more
pronounced for the basis of eddy EOFs, which contains less
than half the amount of streamwise streak modes, within the
leading 1000 modes, than the POD basis does.

In addition, we examine the spatial support of the com-
bination of modes within each basis. For this purpose, we
compute the orthogonal projection of the DNS data onto the
leading 1000 EOFs, eddy EOFs, and POD modes. We then
compute the wall-normal distribution of the RMS of the pro-
jection error as follows

𝒆(𝑦) = (𝑒𝑢, 𝑒𝑣 , 𝑒𝑤)T =
1

𝑇𝐿𝑧𝐿𝑥

𝑇∫
0

𝐿𝑧∫
0

𝐿𝑥∫
0

|𝒙− �̃� |2d𝑥d𝑧d𝑡, (6)

where 𝒙 is the fluctuation velocity field from the DNS and �̃� =

𝑽𝑽T𝒙 is its orthogonal projection onto the corresponding basis
𝑽. This error metric is plotted for the three velocity components
in figure 4. We find that, compared to the projection onto eddy
EOFs, the projection onto EOFs results in a lower error almost
everywhere. Nevertheless, for the eddy EOFs, there is a big
dip in the error distribution for the streamwise component in
the buffer layer at the location corresponding to the peak RMS
for the streamwise velocity fluctuations. In addition, eddy
EOFs also do a better job than EOFs at capturing the wall-
normal velocity fluctuations in the logarithmic layer. However,
these localized performance advantages of the eddy EOFs do
not compensate for the EOFs better capturing the flow field
in the viscous sublayer and, most notably, towards channel
center where the latter perform almost as well as POD modes.
These results are in agreement with the recent work of Symon
et al. (2023), who found that eddy resolvent modes were better
aligned with SPOD modes than standard resolvent modes for
flow structures associated with the near-wall cycle.

Wall-normal RMS profiles of orthogonal projection error
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Figure 4. Wall-normal distribution of the RMS of the orthog-
onal projection error obtained using the leading 1000 EOFs,
eddy EOFs, and POD modes as bases. Error metric defined in
eq. (6)

CONCLUSIONS
The EOFs provide an orthonormal basis of flow structures

that are hierarchically ordered by their accounting of the flow
response to forcing. In fact, they provide a basis that is optimal
for state reconstruction in the case of white-noise forcing. Fur-
thermore, these modes coincide with POD modes for a stable
linear system where every state is disturbed (Rowley, 2005).
However, for turbulent flows, the EOFs of the mean-flow lin-
earization form a sub-optimal basis for state reconstruction
because of the colored forcing statistics. Moreover, rather
than accounting for this effect, incorporating an eddy viscosity
model produces eddy EOFs that perform slightly worse than
standard EOFs at reconstructing turbulent fluctuations. Never-
theless, eddy EOFs are found to better represent streamwise and
spanwise velocity structures in the buffer layer and wall-normal
velocity structures in the logarithmic layer. Further differences
between the flow structures produced by the different modal
analyses should be investigated in future work. Furthermore,
obtaining converged POD modes requires long data sequences,
whereas the EOFs (or eddy EOFs) require only knowledge
of the mean flow. This is particularly appealing for the case
of turbulent flows, where fully space- and time-resolved ve-
locity field data snapshots can be obtained only numerically,
whereas the mean flow can be obtained from experiments. Im-
portantly, we showed that, for a minimal channel flow, the state
reconstruction performance of the EOFs and eddy EOFs fol-
low closely that of POD, even though this is achieved without
any data snapshots. Therefore, for turbulent flows, the pre-
sented approach based on EOFs of the mean flow linearization
and QR-pivoting is an attractive equation-based alternative to
the POD-based data-driven framework introduced by Manohar
et al. (2018).
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Aaron & Lesshafft, Lutz 2020 Resolvent-based optimal esti-
mation of transitional and turbulent flows. Journal of Fluid
Mechanics 900, A2.

McKeon, Beverley J. & Sharma, Ati S. 2010 A critical-layer
framework for turbulent pipe flow. Journal of Fluid Mechan-
ics 658, 336–382.

Morra, Pierluigi, Semeraro, Onofrio, Henningson, Dan S &
Cossu, Carlo 2019 On the relevance of reynolds stresses in
resolvent analyses of turbulent wall-bounded flows. Journal
of Fluid Mechanics 867, 969–984.

Pujals, Gregory, Garcı́a-Villalba, Manuel, Cossu, Carlo & De-
pardon, Sebastien 2009 A note on optimal transient growth
in turbulent channel flows. Physics of fluids 21 (1).

Reynolds, WC & Hussain, AKMF 1972 The mechanics of
an organized wave in turbulent shear flow. part 3. theoretical
models and comparisons with experiments. Journal of Fluid
Mechanics 54 (2), 263–288.

Rowley, C. W. 2005 Model reduction for fluids, using balanced
proper orthogonal decomposition. International Journal of
Bifurcation and Chaos 15, 997–1013.

Schmid, Peter J 2022 Dynamic mode decomposition and its
variants. Annual Review of Fluid Mechanics 54, 225–254.

Sirovich, Lawrence 1987 Turbulence and the dynamics of co-
herent structures. II. Symmetries and transformations. Quar-
terly of Applied Mathematics 45 (3), 573–582.

Sorensen, Danny C & Embree, Mark 2016 A DEIM induced
CUR factorization. SIAM Journal on Scientific Computing
38 (3), A1454–A1482.

Symon, Sean, Madhusudanan, Anagha, Illingworth, Simon J
& Marusic, Ivan 2023 Use of eddy viscosity in resolvent
analysis of turbulent channel flow. Physical Review Fluids
8 (6), 064601.

Taira, Kunihiko, Brunton, Steven L, Dawson, Scott T M,
Rowley, Clarence W, Colonius, Tim, McKeon, Beverley J,
Schmidt, Oliver T, Gordeyev, Stanislav, Theofilis, Vassilios
& Ukeiley, Lawrence S 2017 Modal analysis of fluid flows:
An overview. AIAA Journal 55 (12), 4013–4041.

Towne, Aaron, Lozano-Durán, Adrián & Yang, Xiang 2020
Resolvent-based estimation of space–time flow statistics.
Journal of Fluid Mechanics 883, A17.

Waleffe, Fabian 1997 On a self-sustaining process in shear
flows. Physics of Fluids 9 (4), 883–900.

Zhou, Kemin, Salomon, Gregory & Wu, Eva 1999 Balanced
realization and model reduction for unstable systems. In-
ternational Journal of Robust and Nonlinear Control 9 (3),
183–198.

6


