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ABSTRACT

We derive analytically for the first time the downstream

evolution of the boundary layer thickness and the friction ve-

locity of the zero-pressure-gradient turbulent boundary layer

(ZPGTBL). Lie groups were used to derive the downstream

evolution and to obtain the full set of the similarity variables

and the leading-order similarity equations. An approximate

leading-order solution was obtained using matched asymp-

totic expansions. The similarities and differences between

ZPGTBL and turbulent channel flows in terms of the similarity

equations are discussed to support the notion of leading-order

universality of the near-wall layer.

INTRODUCTION

The zero-pressure-gradient turbulent boundary layer

(ZPGTBL) is one of the most important flows to understand

the fundamental physics of turbulence, and has been studied

extensively (e.g., Prandtl (1925); von Kármán (1930); Kle-

banoff (1954); Schlichting (1956); Clauser (1956); Monin &

Yaglom (1971); Sreenivasan (1989); Pope (2000); McKeon &

Sreenivasan (2007); Nagib et al. (2007); Marusic et al. (2010);

Smits et al. (2011)). Essential to the understanding of a bound-

ary layer is its similarity solution. The zero-pressure-gradient

laminar boundary layer (the Blasius boundary layer, Blasius

(1908)) has the well-known similarity solution, a key part of

which is the downstream evolution of the boundary layer thick-

ness and the surface stress.

Over the past decades there have been many efforts de-

voted to finding a similarity solution of ZPGTBL. Tennekes

& Lumley (1972) obtained a leading-order mean momentum

similarity equation. Mellor (1972) obtained the log law. How-

ever, prediction of the boundary layer thickness and the wall

shear stress has proven to be much more challenging and has

not been made successfully. Tennekes & Lumley (1972) used

the boundary layer thickness ∆ defined by Clauser (1956) us-

ing an integral quantity, not derived from the boundary layer

parameters, in contrast to that of the Blasius boundary layer.

Its downstream evolution and the friction velocity were not

predicted, preventing a proper definition of the similarity vari-

ables. A Lie group analysis was performed in Oberlack &

Khujadze (2006) to find a linear growth of the boundary layer

thickness, which is inconsistent with experimental evidence

(e.g., Marusic et al. (2015)). The same definition of ∆ as Ten-

nekes & Lumley (1972) was used in Monkewitz et al. (2007),

but did not provide an expression for it. The analysis in George

& Castillo (1997) attempted to obtain a similarity solution us-

ing the Reynolds-averaged boundary layer equations without

the viscous terms. However, as we show in this work, their

velocity scale for the outer layer is incorrect. Without a pre-

diction of the boundary layer thickness (and the friction veloc-

ity), the similarity variables cannot be properly defined. The

existence of a similarity solution and boundary layer similarity

also cannot be shown.

In this work we perform a symmetry analysis of the

Reynolds-averaged boundary layer equations to derive analyt-

ically for the first time the evolution of the boundary layer

thickness, δ , whose definition is not predetermined and will

come from the analysis, the evolution of the friction veloc-

ity, the full set of similarity variables, and the (ordinary dif-

ferential) similarity equations. We then employ the method of

matched asymptotic expansions to obtain an approximate so-

lution.

Parallel to the research on ZPGTBL, there also have been

much effort to investigate turbulent channel and pipe flows,

which are amenable to more rigorous asymptotic analysis

(e.g., Millikan (1938); Afzal (1976)). The near-wall (or in-

ner) layers of these flows are widely believed to have much

in common, i.e., the near-wall layers are universal. There is

also evidence against universality (e.g., McKeon & Morrison

(2007); Nagib et al. (2007); Marusic et al. (2015)). However,

there have been essentially no theoretical analyses on the simi-

larities and differences between these flows. The present work

will also help shed some light on the important issue of the

universality of the near-wall layers.

SYMMETRIES

Symmetries of differential equations refer to form invari-

ance of the equations under group transformations, and can be

exploited to help obtain solutions of the equations. One of the

symmetries of the Naiver-Stokes equations is invariance under

a one-parameter Lie dilation group (e.g., Bluman & Kumei

(1989); Cantwell (2002)). A key requirement for this invari-

ance is a fixed Reynolds number. However, it has long been

recognized that statistics of the energy-containing eddies in

turbulent flows at high Reynolds numbers are approximately

Reynolds number invariant. This approximate invariance is

associated with spontaneous breaking of the symmetries of

the Navier-Stokes equations from laminar to turbulent flows.

Therefore, while the symmetries of laminar flows are exact,

the symmetries of turbulent flows are only approximate. The

concept of spontaneous symmetry breaking and approximate

symmetry first emerged in condensed matter physics and later

1



13th International Symposium on Turbulence and Shear Flow Phenomena (TSFP13)

Montreal, Canada, June 25–28, 2024

were key to predicting certain non-zero mass particles in Yang-

Mills gauge fields (Higgs (1964, 2014); Castellani (2003)). In

the present work, we seek the leading-order symmetries and

similarity properties of ZPGTBL. Therefore, Reynolds num-

ber invariance of energy-containing statistics is invoked as the

(only) physical assumption.

We use Lie dilation groups to analyze the leading-order

symmetries (group transformation properties) of the ZPGTBL

equations: the mean momentum equation, the Reynolds stress

budget, and the mean continuity equation. The groups will be

used to derive the evolution of the boundary layer thickness

and the Reynolds shear stress and to obtain the similarity vari-

ables.

To obtain the leading-order symmetries, we recognize that

the outer layer is approximately Reynolds number independent

and whereas the inner layer depends on the viscosity. There-

fore, we need to derive the leading-order equations for the two

layers and analyze their symmetries separately.

OUTER-LAYER SYMMETRY
For the outer layer, the leading-order symmetries (or the

symmetries of the leading-order equations) can be obtained by

dropping the Reynolds-number-dependent terms. These sym-

metries are similar in nature to the approximate symmetries

previously investigated (e.g., Grebenev & Oberlack (2007)).

It is easily shown that by dropping the viscous term in the

mean momentum equation, as done by George & Castillo

(1997), the group leads to a boundary layer thickness δ ∝ x

and uv = const., inconsistent with the behaviors of ZPGTBL.

The reason is that there are other higher-order terms in the

equations that do not contain the viscosity, but are implicitly

Reynolds-number dependent. They also need to be identified

and dropped.

To identify the higher-order terms, we perform an order

of magnitude analysis of the boundary layer equations. The

mean momentum equation is

U∂xU +V ∂yU =−∂yuv−∂x(u2 −v2)+ν∂
2
y U, (1)

where U , V , uv, u2, v2, ν , and y are the streamwise and nor-

mal mean velocity components, the Reynolds shear stress, the

Reynolds normal stress components, the kinematic viscosity,

and the wall-normal coordinate, respectively (x and z are the

streamwise and spanwise coordinates respectively and u, v

and w are the corresponding velocity fluctuations respectively

hereafter). The Reynolds shear stress budget is

U∂xuv+V ∂yuv=−u∂y p−v∂x p−v2∂yU−∂yuv2+ν∂
2
y uv−εuv,

(2)

where εuv is the dissipation rate, which is generally negligible.

The TKE budget is

U∂xk+V ∂yk=−uv∂yU−∂y pv−∂y(u2 +v2 +w2)v/2+ν∂
2
y k−ε,
(3)

where ε is the TKE dissipation rate. We first consider the scal-

ing of the velocity defect U −Ue ∼Ue proposed in George &

Castillo (1997), where U and Ue are the mean streamwise ve-

locity and the free-stream velocity respectively. With this scal-

ing, the Reynolds shear stress and the shear production of the

turbulent kinetic energy (TKE) would scale as −uv ∼U2
e δ/L

and −uv∂yU ∼U3
e /L respectively, where L ∼ x is the stream-

wise length scale. Since shear production is the only pro-

duction mechanism, the TKE would scale as k ∼ U2
e . Ac-

cording to Taylor’s scaling (Taylor 1935), which follows from

the Reynolds-number invariance assumption, the dissipation

would scale as k3/2/δ ∼U3
e /δ , asymptotically larger than the

production, indicating that the scaling U −Ue ∼ Ue is incon-

sistent with the scaling of the dissipation, unless δ/L = const.
However, a linear growth of δ is inconsistent with experimen-

tal evidence. Here we will also show that δ/L 6= const. We

consider the mean momentum integral

−u2
∗ =

d

dx

∫ ∞

0
U(U −Ue)dy. (4)

As both U and U −Ue scale with Ue, the momentum integral

results u2
∗ ∼ U2

e δ/L ∼ uv. With Ue and u∗ as the outer and

inner velocity scales respectively, asymptotic matching of the

outer and inner expansions of the mean velocity profile (as-

suming existence of a similarity solution) gives

y+
dU+

dy+
=

Ue

u∗
yo

dUo

dyo
∼ (

L

δ
)1/2yo

dUo

dyo
, (5)

where y+ = u∗y/ν , U+ = U/u∗, yo = y/δ , and Uo = (U −

Ue)/Ue. Therefore,

(y+)α = (
L

δ
)1/2yα

o = (
L

δ
)1/2(Re−1

∗ y+)α . (6)

Reynolds number invariance requires

(
δ

L
)1/2Reα

∗ = const. (7)

As the outer and inner velocity scales are different, the velocity

profile in the matching layer cannot be logarithmic, resulting in

α 6= 0 and Reα
∗ = (u∗δ/ν)α 6= const.. Therefore δ/L 6= const.,

indicating that the scaling choice U −Ue ∼Ue is inconsistent

with the scaling of the dissipation rate. Furthermore, it can be

shown using the mean momentum integral that U −Ue ∼ u∗
and ∂U/∂y ∼ u∗/δ .

With U −Ue ∼ u∗, we perform an order of magnitude

analysis to identify the leading-order terms in the equations,

which are Reynolds number invariant. The resulting leading-

order mean momentum equation is

Ue∂xU =−∂yuv. (8)

Similarly we obtain the leading-order shear stress budget and

TKE budget,

Ue∂xuv =−(u∂y p+v∂x p)−v2∂yU. (9)

Ue∂xk =−uv∂yU −∂y pv−∂y(u2 +v2 +w2)v/2− ε. (10)

The velocity-pressure gradient term in the shear stress budget

scales the same as production. The pressure transport and tur-

bulent transport terms in the TKE budget scale the same as
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production. Therefore, they should dilate in the same way as

the production terms. The finite form of the dilation group is

x̃ = eax, ỹ = eby, Ũ =U, Ũ −Ue = eg(U −Ue),

∂Ũ = eg
∂U, Ṽ = ecV, ũv = ed2 uv, ũ2 = ed1 u2, ṽ2 = ed1 v2.

(11)

where a, b etc., are the group parameters. For the equations to

be invariant the exponents must satisfy g−a= d2−b, d2−a=
d1 +g−b, and d1 −a = d2 +g−b = 3d1/2−b, respectively,

leading to d2 = d1 = 2b−2a and g = b−a, and hence a two-

parameter dilation group.

To obtain a one-parameter group an additional relation-

ship is needed. Since the outer and inner layers are linked,

this relationship must come from asymptotically matching the

outer layer with the inner layer. However, at this point we do

not have similarity equations, and cannot yet perform match-

ing. Nevertheless, assuming that a similarity solution exists,

matching the two layers with identical velocity scales (u∗)

would result in a logarithmic velocity profile and a logarithmic

friction law. Therefore, we use the logarithmic friction law as

an ansatz to provide this relation. We will show later that the

group and the subsequent analysis indeed lead to the logarith-

mic friction law and that the similarity solution in the matching

layer satisfies the mean momentum equation. This essentially

amounts to guessing the solution of an equation and verifies it

later using the equation. The friction law dilates as

Ue

u∗eg
=

1

κ
ln

u∗δeg+b

ν
+D =

1

κ
(ln

u∗δ

ν
+g+b)+D. (12)

Note that δ as a function of x is not yet known, and therefore

is not fully defined. Since (12) is invariant under the dilation

group, we have

Ue

u∗
= eg

{ 1

κ
(ln

u∗δ

ν
+g+b)+D

}
=

1

κ
ln

u∗δ

ν
+D. (13)

Therefore

(eg −1)
{ 1

κ
ln

u∗δ

ν
+D

}
= (eg −1)

Ue

u∗
=−

g+b

κ
eg. (14)

This equation provides an implicit relationship between g and

b. Rather than directly solving (14) we examine infinitesimal

form of the group with exponents dg, da, and db etc. Taylor

expanding the second and third terms in (14) and keeping the

leading-order terms we have

dg
Ue

u∗
=−

dg+db

κ
or dg =

−db

κ
Ue

u∗
+1

=
−da

κ
Ue

u∗
+2

. (15)

From the continuity equation, we have dg − da = dc −

db, dc = 2dg. We obtain a one-parameter group

x̃ = edax, ỹ = edby, Ũ −Ue = edg(U −Ue), Ṽ = e2dgV,

ũv = e2dguv, ũ2 = e2dgu2, ṽ2 = e2dgv2, ũ∗ = edgu∗.

(16)

Note that δ dilates in the same way as y. From (16) we obtain

the characteristic equations of the group

du∗

u∗
=−

dy

y(κ Ue

u∗
+1)

=−
dδ

δ (κ Ue

u∗
+1)

=−
dx

x(κ Ue

u∗
+2)

=
d(U −Ue)

U −Ue
=

dV

2V
.

(17)

From the first and fourth terms we obtain (without the di-

mensional integration constant) x ∼ u−2
∗ eκUe/u∗ . Its non-

dimensional form is

Uex/ν = Rex ∼ (U2
e /u2

∗)e
κUe/u∗ . (18)

Similarly we obtain δ ∼ u−1
∗ eκUe/u∗ , V ∼ u2

∗. The non-

dimensional form of δ is

Ueδ/ν = Reδ ∼ (Ue/u∗)e
κUe/u∗ . (19)

Equations (18) and (19) are functions of Ue/u∗ which can

be used as a parameter to obtain the dependence of δ on x.

These are the central results of the present work and to our

best knowledge, are the first analytic derivation of the down-

stream evolution of the friction velocity and the boundary layer

thickness.

The first and last two terms in (17) result in U −Ue ∼ u∗
and V ∼ u2

∗. Non-dimensionalizing the variables using x, u∗
and Ue, we obtain for the first time the full set of the simi-

larity variables for the outer layer Uo = (U −Ue)/u∗, Vo =

VUe/u2
∗, yo = yUe/(xu∗), uvo = uv/u2

∗, u2
o = u2/u2

∗, v2
o =

v2/u2
∗. Here yo is defined using the boundary layer parame-

ters (x, Ue, and u∗), in a similar way to the Blasius boundary

layer.

INNER-LAYER SYMMETRY
We now perform a Lie group analysis of the leading-order

inner equations. The leading-order mean momentum equation

is Tennekes & Lumley (1972)

0 =−∂yuv+ν∂
2
y U. (20)

The dilation group is ỹ= eby, Ũ = egU, ũv= e2guv. The trans-

formation for uv is identical to the outer layer because it scales

with u2
∗ in both layers. For (20) to be invariant, the exponents

must satisfy 2g− b = g− 2b, b = −g. From the continuity

equation, we have g− a = c− b, c = −a. These group pa-

rameters are also consistent with the dilation properties of the

Reynolds shear stress and TKE budgets. The group now is

x̃ = eax, ỹ = e−gy, Ũ = egU, Ṽ = e−aV, ũv = e2guv, (21)

where a and g are related by (14). The characteristic equations

for the group are

du∗

u∗
=−

dy

y
=−

dx

x(κ Ue

u∗
+2)

=
dV

V (κ Ue

u∗
+2)

. (22)
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The first two terms result in u∗ ∼ y−1. The last two terms

lead to V ∼ x−1. We obtain the similarity variables for the

inner layer Ui = U/u∗, Vi = V x/ν, yi = yu∗/ν = y+, uvi =

uv/u2
∗. u2

i = u2u2
∗, v2

i = v2u2
∗, where Vi has not been properly

defined previously in the literature.

APPROXIMATE SOLUTION USING MATCHED
ASYMPTOTIC EXPANSIONS

In a typical Lie group analysis, after the symmetries are

identified and the similarity variables are obtained, the simi-

larity equations are derived and their solution is sought. In the

case of turbulent flows, the similarity equations are unclosed

and generally cannot be solved without a turbulence model.

However, matching the outer and inner asymptotic expansions

provides additional relations, allowing us to obtain an approx-

imate solution without a turbulence model.

We write the outer layer similarity variables as asymptotic

expansions

Uo(yo,Re∗) =Uo1(yo)+higher-order terms,

uvo(yo,Re∗) = uvo1(yo)+higher-order terms,
(23)

where the similarity variables Uo1 etc. are of order one. Substi-

tuting (23) into the mean momentum equation, we obtain the

leading-order similarity equation for Uo

−yodyo
Uo1 =−dyo

uvo1, (24)

which is identical to that obtained by Tennekes & Lumley

(1972). However, their definition of yo is different. Similarly,

the leading-order shear-stress budget is

−yodyo
uvo1 =−(u∂y p+v∂x p)

o
−v2

odyo
Uo1. (25)

Since the outer expansions are not valid in the viscous region

(the inner layer), inner expansions are also needed.

The inner similarity variables depend on y+ and Re∗. We

write them as asymptotic expansions,

Ui(y
+,Re∗) =Ui1(y

+)+higher-order terms,

uvi(y
+,Re∗) = uvi1(y

+)+higher-order terms.
(26)

We obtain the leading-order inner similarity equations

0 =−dy+uvi +d2
y+Ui

0 =−(u∂y p+v∂x p)
i
−v2

i dy+Ui1 +d2
y+uvi1

(27)

We now asymptotically match the outer and inner expan-

sions

U =Ue +u∗Uo =Ue +u∗Uo1(yo)+ ...,

U = u∗Ui = u∗Ui1(y
+)+ ....,

(28)

for yo ≪ 1 and y+ ≫ 1, resulting the log law (see e.g., Tong &

Ding (2020) for details)

Uo11 =
1

κ
lnyo +C, Ui11 =

1

κ
lny++B, (29)

where Uo11 and Ui11 are the leading-order expansions of Uo1

and Ui1, respectively. Inserting (29) into (28) we obtain the

dimensional outer and inner expansion as

U =Ue +u∗

{ 1

κ
lnyo +C+ ...

}
,U = u∗

{ 1

κ
lny++B+ ...

}
.

(30)

From (30) we obtain the logarithmic friction law

Ue

u∗
=

1

κ
ln

y+

yo
+B−C =

1

κ
ln

u2
∗x

Ueν
+B−C. (31)

Using (18) and (19) we have δ ∼ xu∗/Ue. The friction law can

then be written as (5), confirming the ansatz. Similarly we ob-

tain the matching results for the leading-order Reynolds shear

stress as uv = u2
∗(−1+y0/κ). One can also write down the ex-

pansions for the velocity-pressure–gradient terms and obtain

matching results (not done here). With (18) and (19) and the

fully defined similarity variables, (30) and uv= u2
∗(−1+y0/κ)

satisfy (1) to the leading order, verifying them (and 12) as part

of a similarity solution of the ZPGTBL equations. Further-

more, from a mathematical point of view, the boundary layer

equations and their boundary conditions are a well-posed prob-

lem, therefore have a unique solution. Physically, the evo-

lution of ZPGTBL is also unique. Hence the ansatz has led

to the unique similarity solution, fully justifying its use. The

solution also provide the downstream variations of the mean

velocity and shear stress profiles, which previously were not

available.

We now make preliminary comparisons of the theoreti-

cal prediction (18) and (19) of the non-dimensional velocity

Ue/u∗ (equivalent to the surface shear stress) and the non-

dimensional outer layer thickness Reδ = Ueδ99/ν (both as

functions of the non-dimensional downstream distance Rex =
Uex/ν) with the experimental data of Marusic et al. (2015)

(the SP40 configuration). The measured values of Ue/u∗ are

used as the parameter to obtain the theoretical values of Rex

and Reδ . The theoretical prediction contains several non-

dimensional coefficients that need to be obtained using experi-

mental data: The von Kármán constant κ = 0.420 and the non-

dimensional coefficient for δ99 are obtained by fitting (19) to

the experimental data; The virtual origin of x =−1.744 m and

the non-dimensional coefficient for Rex are then obtained by

fitting (18) to the data. In particular, the values of Ue/u∗ and

δ99 at x = 1.6 m are used to determine the non-dimensional

coefficients. The kinematic viscosity is taken as the value in

Marusic et al. (2015), ν = 15.1×10−6 m/s2. The results are

Rex = 0.06024
U2

e

u2
∗

eκUe/u∗ , Reδ = 0.02204
Ue

u∗
eκUe/u∗ . (32)

We then have δ99 = 0.3659xu∗/Ue, yo = 0.3659y/δ99 .

Figures 1 and 2 show that with these coefficients, the an-

alytic prediction, especially the functional form, has an excel-

lent agreement with the experiments. However, κ = 0.420

obtained here based on the boundary layer thickness and the

friction velocity, which are global behaviors, is quite differ-

ent from 0.384 obtained in the same experiment and by Nagib

et al. (2007) using the mean velocity profile, a local behavior,

but is much closer to that of Vallikivi et al. (2015) (0.40) and

the typical value of 0.421 in pipe flows (McKeon et al. (2004);

McKeon & Morrison (2007)). We emphasize that these are

preliminary comparisons with a single experiment. It is there-

fore unclear whether the different values are a coincidence or
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Figure 1. Ue/u∗ vs. the non-dimensional downstream dis-

tance Rex =Uex/ν . Circles: experimental data from Marusic

(2015) (the SP40 configuration); Solid line: Theoretical pre-

diction given by equation (32).
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Figure 2. Non-dimensional boundary layer thickness Reδ =

Ueδ/ν vs. Rex. Legend same as in figure 1.

an indication of the differences in the two ways of estimating

the von Kármán. This issue requires further attention in future

studies.

UNIVERSALITY OF NEAR-WALL LAYER
The leading-order equations allow us to compare

ZPGTBL with channel flows to examine the key question of

near-wall universality. In the inner layer the mean momen-

tum equation is dominated by the Reynolds stress and viscous

stress terms (Afzal (1976) and equation 27) in both flows. The

Reynolds shear stress budgets also have similar properties in

both flows, being dominated by the production, pressure, and

viscous terms (Hoyas & Jimenes (2008) and equation 27). The

similarity variables are also defined in the same way, indicat-

ing that the two flows have the same leading-order structure.

This issue can be further examined using the outer equa-

tions. In channel flows, the Reynolds shear stress budget

is a balance between shear production and velocity-gradient–

pressure interaction (Hoyas & Jimenes (2008)). The mean

velocity gradient is “adjusted” to balance the Reynolds stress

budget. The leading-order mean momentum equation is a bal-

ance between the shear stress derivative and the mean pres-

sure gradient (Afzal (1976)), with the latter imposing the linear

variation of the leading-order (linear) variation of the Reynolds

shear stress.

In ZPGTBL the Reynolds shear stress balance (equa-

tion 25) is among the mean advection, production and veloc-

ity gradient-pressure interaction. However, in the log layer

(yo ≪ 1), the advection term is of higher-order. Therefore

the balance in the log layer is asymptotically identical to that

in channel flows. While the mean momentum balance (24)

is between the mean advection and the shear stress deriva-

tive, the log law ensures the leading-order (linear) variation

of the Reynolds shear stress. Therefore, from the perspective

of both the inner and outer equations, the leading-order near-

wall structure of channel flows and ZPGTBL are the same,

supporting the notion of universality of the leading-order near-

wall turbulence. The differences observed in experiments are

potentially due to higher-order effects, which deserve further

attention.

CONCLUSIONS
We performed a symmetry analysis of the equations

for ZPGTBL using Lie dilation groups, and obtained local,

leading-order symmetries of the equations. We derived for the

first time the evolution of the boundary layer thickness and the

shear stress, and the full set of similarity variables. Using the

asymptotic expansions the leading-order similarity equations

for the outer and inner layers were obtained. Matching the ex-

pansions resulted in an approximate similarity solution in the

overlapping layer, the log law. The leading-order equations for

both the channel flows and ZPGTBL show similar properties

in the near wall layer, supporting the notion of its universality.
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