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ABSTRACT
This study investigates using direct numerical simulation

(DNS) the recovery of the energy-containing scales of motion
(energy-containing motions) when these are removed at the in-
flow boundary condition of a flat plate zero-pressure-gradient
turbulent boundary layer (ZPG-TBL). Specifically, the re-
moved energy-containing motions are those that act as net en-
ergy providers in the turbulent energy cascade, and are thus
identified as the velocity fluctuations with wall-normal and
spanwise wavelength coordinate associated with an energy-
supplying contribution in the spanwise spectra of the interscale
turbulent transport. The removal of these motions results in a
significant reduction of the Reynolds stresses and in the elim-
ination of net turbulent kinetic energy generation in the buffer
layer. With dissipation globally dominating over production,
turbulent energy attenuates. However, as the flow progresses
downstream, in the buffer layer production from the mean
shear intensifies, eventually surpassing dissipation. The excess
of turbulent kinetic energy in the buffer layer is transported to
lower and upper locations, and the canonical ZPG-TBL state is
eventually recovered, with locations closer to the wall recov-
ering more rapidly. Importantly, the recovery of the turbulent
motions in the outer-wall is shown to be preceded by an energy
flux coming from the buffer layer, suggesting that the near-
wall region do not only recovers faster but that it has a role in
the recovery of the outer turbulent motions. Analysis of span-
wise spectral energy densitiy of the streamwise velocity and of
the streamwise vorticity suggests that near-wall streaks are the
initial coherent energy-containing motions formed, with quasi-
streamwise vortices developing only further downstream.

INTRODUCTION
Wall-bounded turbulence is often conceptualised as a su-

perposition of energy-containing eddying motions spanning
a wide range of sizes across the boundary layer. A re-
current approach to study these dominant flow motions has
consisted in conducting numerical experiments that simulate
isolated length scales in the flow, achieved by considering
a reduced subset of the flow and/or specifying a restricted
range of wavenumbers (Jiménez & Lozano-Durán (2016)).
These experiments provided evidence supporting that energy-
containing motions under these simulating conditions com-
plete a self-sustaining regeneration cycle in the near-wall

(Jimenez & Moin (1991); Hamilton et al. (1995); Jimenez
& Pinelli (1999)) and in the logarithmic (Flores & Jiménez
(2010); Hwang & Cossu (2011)) and outer regions (Hwang
& Cossu (2010)), suggesting the possibility that their gener-
ation at each length scale may rely on an autonomous pro-
cess independent of the rest of the flow. However, despite the
body of numerical work quantifying the nature of the energy-
containing motions of wall-turbulence, the specific details of
how these motions originate remain unclear. In this work, a di-
rect numerical simulation (DNS) of a flat plate zero-pressure-
gradient turbulent boundary layer (ZPG-TBL) in which the
energy-containing motions are removed at the inflow boundary
condition is undertaken to investigate this aspect. Specifically,
the energy-containing motions that are removed correspond to
those motions providing net energy to the other motions as ac-
counted for in the non-linear term of the Navier-Stokes equa-
tions. Ultimately, this experiment aims to unveil the role that
different spanwise length scales might play in the formation of
the energy-containing motions by examining the role of the
spanwise scales involved in recovering these motions when
they are removed at an upstream flow cross-plane.

METHOD
In the following, the streamwise, wall-normal, and span-

wise spatial directions are denoted by x, y and z, and the corre-
sponding instantaneous velocities by ũ, ṽ, and w̃. In index no-
tation, these are indicated by xi and ũi with i = {1,2,3}. The
subscript ·|xi

is used to express the coordinate value at which
a variable is evaluated. The ensemble average ⟨·⟩ denotes av-
eraging over the spanwise homogeneous direction and time.
Mean values are denoted by capital letters, Ui = ⟨ũi⟩, while
fluctuations with respect to these averages by lower-cases,
ui = ũi −Ui. The superscript + denotes viscous units, which
are defined appropriately in terms of the kinematic viscosity ν

and the streamwise-dependent friction velocity uτ =
√

τw/ρ ,
where τw = µ∂U/∂y|y=0

is the mean wall shear stress, µ is
the dynamic viscosity and ρ is the constant fluid density. The
free-stream velocity is denoted by U∞ and the 99% boundary
layer thickness by δ . The Reynolds number based on the mo-
mentum thickness, θ , is defined as Reθ =U∞θ/ν .

The turbulent boundary layer flow is directly simulated
numerically over a smooth no-slip wall with spanwise peri-
odicity and streamwise non-periodic inflow and outflow. The
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TBL-DNS code solves the primitive-variable formulation of
the Navier–Stokes equations for incompressible fluids using a
fractional step method (Harlow & Welch (1965); Perot (1993))
with x-y staggered three-point compact finite differences (Lele
(1992)) for the spatial discretization of the derivatives in the
streamwise and wall-normal directions, and second order dis-
cretization for the pressure. Fourier decomposition in the
periodic spanwise direction is used, dealiased using the 2/3
rule. The equations are stepped forward in time using a
semi-implicit low storage three sub-step Runge-Kutta scheme
(Simens et al. (2009)). A detailed description of the code can
be found in Simens et al. (2009) and Sillero et al. (2013). The
DNS setup of the present simulation consists of two concate-
nated domains that run synchronously. The first domain, BL1,
runs a reference ZPG-TBL. This domain generates its own in-
flow by re-scaling the velocity fluctuations of a downstream
cross-plane, x = Xr, while fixing the inflow mean velocity to a
prescribed profile to ensure a constant inflow mass flux (Sillero
et al. (2013)). BL2 runs a ZPG-TBL DNS with its inflow
obtained by transferring at each time step the velocity cross-
plane of BL1 located at x = Xt such that Reθ |Xt

= 2500, with
the energy-containing motions filtered out, as detailed below.
Convective boundary conditions are applied at the outflow of
both domains and the mean pressure gradient is controlled and
kept small by imposing a streamwise dependent wall-normal
velocity, constant in time, at the upper boundary (Sillero et al.
(2013)). Parameters for the DNSs performed are presented in
table 1.

The energy-containing motions of the turbulence are un-
derstood as those fluid motions that carry most of the kinetic
energy and which, through a cascading process, supply net en-
ergy to the rest of fluid motions. Since in wall-bounded tur-
bulence these motions can be characterised by their spanwise
length scales (Flores & Jiménez (2010); Hwang (2015)), the
TKE equation for each spanwise Fourier mode provides an ef-
fective framework to identify and study these motions. This
equation can be derived by Fourier-transforming one-half of
the trace of the equation of the two-point correlations of the
velocity fluctuations (Lumley (1964); Lee & Moser (2019))
or equivalently, by starting from the Navier–Stokes equations
for the Fourier modes of the velocity and pressure fluctuations
(Bolotnov et al. (2010); Mizuno (2016); Cho et al. (2018)).
We adapt the formulation in Mizuno (2016) for channel flows
to ZPG-TBLs, and express the evolution equation for the TKE
spectrum, ê = ûiûi

∗/2 with ·̂ denoting Fourier expansion coef-
ficient in the spanwise direction and ·∗ complex conjugation,
as:

∂ ê(x,y,kz)

∂ t
= Re

{
−U j

∂ ê
∂x j

}
︸ ︷︷ ︸

Ĉ

+Re
{
−ûi

∗û j
dUi

dx j

}
︸ ︷︷ ︸

P̂

+

(
−ν

∂ ûi

∂x j

∂ ûi
∗

∂x j

)
︸ ︷︷ ︸

ε̂

+Re

{
−ûi

∗ ∂

∂x j
(̂uiu j)

}
︸ ︷︷ ︸

T̂turb

+Re

{
− 1

ρ

∂ p̂v̂∗

∂x j

}
︸ ︷︷ ︸

T̂p

+ν
∂ 2ê
∂x2

j︸ ︷︷ ︸
T̂ν

(1)

with (∂/∂x1,∂/∂x2,∂/∂x3) = (∂/∂x,∂/∂y, ikz) and summa-
tion implied over repeated indices. The overline · indicates
time averaging and Re{·} means the real part of the complex

number. The left hand side of the equation represents the rate
of change of TKE of each spanwise Fourier mode. This term
vanishes if the flow is statistically steady. The terms on the
right-hand side are known as the rate of: (i) mean convec-
tion (Ĉ) (ii) turbulence production (P̂), (iii) viscous dissipa-
tion (ε̂), (iv) turbulent transport (T̂turb), (v) pressure transport
(T̂p) and (vi) viscous transport (T̂ν ). Note that the only term in
the right hand side involving an interaction between spanwise
wavenumbers (or scales) is the non-linear turbulent transport
term. This term can be further decomposed into a linear and a
non-linear term (Mizuno (2016)):

T̂turb(x,y,kz) = Re
{
−1

2
d
dy

ûi
∗(ûiv)

}
︸ ︷︷ ︸

T̂⊥
turb

+Re
{

∂

∂x j
ûi
∗(ûiu j)−

1
2

d
dy

ûi
∗(ûiv)

}
︸ ︷︷ ︸

T̂ ∥
turb

(2)

The first term in the right hand side of equation (2), the lin-
ear term, yields the transport of turbulent energy in the wall-
normal direction at constant spanwise wavenumber, and there-
fore is referred to as the spatial turbulent transport. The sec-
ond term in the expression, the non-linear term, yields the
turbulent energy transport between spanwise wavenumbers at
constant y, and is referred to as the interscale turbulent trans-
port. Note that this term accounts for the redistribution of tur-
bulent kinetic energy among the various scales of motion and
does not make any contribution to the total energy budget:

∑
k

T̂ ∥
turb(x,y,kz) = 0 (3)

It should be noticed that the decomposition of the turbulent
transport term is not unique. The adopted decomposition fol-
lows Mizuno (2016) and has also been adopted in other studies
in the literature (Lee & Moser (2019)).

It is reasonable to argue that the bulk of the energy-
containing motions would leave a distinct imprint on the en-
ergy spectrum of T̂ ∥

turb, in the form of a discernible region of
negative energy - where a negative value in the spectrum indi-
cates a net energy-supplying contribution. That is, that region
would be mostly representative of the scales of motion that are
net energy providers to the other motions. Figure 1 presents
the premultiplied spectral energy density of T̂ ∥

turb at the trans-
fer plane. A contour enclosing the region characterised by
negative values in the spectrum has been approximated and is
represented in the figure by the solid black curve. The inflow
boundary condition of BL2 is generated by transferring at each
time-step the velocity field at the transfer plane to the inlet of
BL2 with the energy-containing motions removed. This filter-
ing is accomplished by setting to zero the velocity fluctuations
with coordinate (y,λz) located within the approximated con-
tour. Since the DNS code employed is spectral in the spanwise
direction, this filtering operation is easily implemented. Note
that this filtering operation does not modify the zeroth span-
wise Fourier mode and consequently, i.e., preserves the mean
mass flow rate.

Finally, note that the budget equation of TKE, e =
⟨uiui⟩/2, is obtained by summing each term of equation 1 over
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Table 1. Parameters of the turbulent boundary layer. Along the three axes, Lx, Ly and Lz are the domain dimensions and Nx,Ny and Nz

are the collocation grid sizes. T is the total time over which statistics have been accumulated after transients. δ and uτ taken at the at
the BL1 transfer plane, Xt .

Case Reθ (Lx,Ly,Lz)/δ ∆x+, ∆y+min, ∆z+ Nx,Ny,Nz Tuτ/δ

BL1 290−4000 101.64,4.82,5.4π 11,0.28,5.51 8193,315,2730 8.9

BL2 2500−3750 48.38,4.82,5.4π 11,0.28,5.51 3900,315,2730 8.9

Figure 1. ykzT̂
∥

turb(y,λz) at x = Xt . Contour levels are
-0.8(0.1)0.8 times the absolute maximum in the spectrum.

all wavenumbers:

∂e(x,y)
∂ t

=C+P+ ε +Tturb +Tp +Tν (4)

The balance between production and dissipation yields
the source term of TKE, ξ =P+ε . This term categorizes wall-
normal locations as either an energy-source (ξ > 0), energy-
sink (ξ < 0) or energy-neutral (ξ = 0). Finally, note that the
sum of the various transport terms which describes how energy
is redistributed among different wall-normal locations corre-
sponds to the divergence of an energy flux, φ =

∫ y
0 (Tturb+Tp+

Tν )dy, that connects energy-source and energy-sink regions.

RESULT
The effect of removing the energy-containing motions at

the inflow boundary condition of a ZPG-TBL is first studied
by examining the evolution of the profiles of the mean veloc-
ity and Reynolds stresses. The profiles of the single-point TKE
budget terms are then discussed. Finally, the spanwise spectral
energy density of the streamwise velocity and of the stream-
wise vorticity are examined.

The profiles of the mean velocity, the root-mean-squared
(rms) turbulent velocity fluctuations and the Reynolds shear
stress of BL2 are presented and compared to those of BL1 in
figure 2. The streamwise coordinate x̃, common to both BLs,
defines the streamwise location at which quantities are being
evaluated based on the distance from this streamwise location
to the transfer plane when referring to BL1 and to the domain’s
inlet when referring to BL2. This distance is expressed in terms
of the boundary layer thickness measured at the transfer plane,
δ|Xt

. The streamwise locations shown in the figure were cho-
sen by examining the evolution of the absolute and relative
differences of the mean and fluctuating velocities at fixed y+

between BL1 and BL2 (not shown), and selecting the stream-
wise locations which best represent the overall evolution of

these quantities. The removal of the energy-containing mo-
tions at the inlet of BL2 results, as expected, in a significant
decrease in the (ensemble averaged) rms of turbulent veloc-
ity fluctuations and Reynolds shear stress. Since the filtering
operation does not affect the zeroth spanwise Fourier mode,
the mean velocity profile of BL2 is identical to that of BL1,
i.e., the mean flow rate is preserved. The mean velocity pro-
file at x̃ = 0.5δ|Xt

, when compared to x̃ = 0δ|Xt
, has ampli-

fied above the viscous sublayer, where the profile scales lin-
early with distance from the wall. This amplification of the
profile, overall by a constant factor, indicates a lower value
of the friction velocity at the downstream location. Indeed,
as the flow progresses downstream from the inlet of BL2, the
mean velocity profile has to adjust to the (remaining) Reynolds
shear stress. This adjustment results in a reduction of the wall
shear stress, τw = µ∂U/∂y|y=0

, and thus of the friction veloc-
ity, uτ =

√
τw/ρ .

Note that the streamwise velocity fluctuations are, on av-
erage, the only ones that receive energy directly from the mean
flow through the production term. Part of this energy is then
redistributed to the other two velocity components by action
of the pressure. When comparing the mean velocity profile
at x̃ = 0.5δ|Xt

and x̃ = 1.75, despite a reduction in the friction
velocity that results in an amplified profile at x̃ = 1.75, the
profiles in the buffer layer at both streamwise locations align
closely over a certain wall-normal range. This implies that
mean kinetic energy is lost to streamwise turbulent energy at
these wall-normal locations, consistent with the evolution of a
buffer layer peak in the rms of the streamwise velocity fluc-
tuations. With the strengthening of the streamwise velocity
fluctuations in the buffer layer, the recovery of the transver-
sal, i.e., wall-normal and spanwise, velocity components fol-
lows at the downstream locations. The evolution of the mean
velocity profile from x̃ = 1.75δ|Xt

to x̃ = 6δ|Xt
suggests that

the friction velocity is gradually recovering to that of BL1. At
x̃ = 6δ|Xt

, the profiles of BL2 in the near-wall overall resemble
those of BL1, while discrepancies are still pronounced in the
outer-wall. Comparing the mean velocity and the rms of the
streamwise velocity at x̃ = 6δ|Xt

and x̃ = 20δ|Xt
, a transfer of

mean kinetic energy to the streamwise velocity fluctuations is
evident, and it is followed by a recovery in the transversal ve-
locity fluctuations at the downstream locations. Turbulence in
the flow therefore recovers and evolves towards the canonical
ZPG-TBL state as the flow progresses downstream. Note that
most of the streamwise evolution of the profiles is captured
within the first 20δXt , which is followed by a slower recovery
that continues until the end of the domain. Hence, it is reason-
able to expect that the streamwise extent of BL2 is large enough
to capture the relevant processes that lead the recovery of the
energy-containing motions within this domain. The evolution
of these profiles shows that the near-wall region recovers faster
than the outer region, consistent with the shorter time-scales
of the turbulence near the wall. However, whilst the current
research suggests that the energy-containing motions in the
outer region might exhibit self-sustaining dynamics (Flores &
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Jiménez (2010); Hwang & Cossu (2011, 2010)), it remains un-
clear whether the dynamics in both layers evolve towards the
canonical ZPG-TBL state independently or if the faster recov-
ery near the wall influences the recovery in the outer region.

To that end, figure 3 compares the streamwise evolution
of the profiles of the terms in the TKE budget equation for
BL1 and BL2. For BL1 (figure 3(a)), as is already known for
canonical ZPG-TBLs, the viscous sublayer serves as the main
energy-sink, while the buffer layer acts as the main energy-
source. Note that the excess of TKE produced in the buffer
layer is transported towards the lower and upper locations,
where energy is finally dissipated. In particular, the sum of
all transport terms exhibits its global minimum at the location
where the energy-source is most intense, y+ ≈ 15, which im-
plies that the energy flux bifurcates at this wall-normal loca-
tion into a downward and an upper flux. The downward en-
ergy flux is shown to be dominated by viscous transport while
the upper energy flux by turbulent transport. The logarithmic
and outer layers exhibit near energy-neutral conditions, with
dissipation slightly exceeding production. It should be pointed
that although work in the literature suggests the existence of
an energy-source in the outer-layer (Cimarelli et al. (2015);
Sillero et al. (2013)), this source is not observed in our current
data. This might suggests that the role and dynamics of the
outer region might not be accurately captured. Specifically, the
residual of the TKE budget terms exhibits, in viscous units, a
maximum of 0.1% within the outer region, at a location which
coincides with the reported location of the outer energy-source
(Cimarelli et al. (2015)). Although this discrepancy exempts
from quantifying the influence of the recovery of the inner-
wall on the outer motions, it will be argued that it does not
prevent from examining whether the more rapidly recovering
buffer layer has an influence on the recovery of the outer tur-
bulent motions.

At x̃ = 0δ|Xt
of BL2 (figure 3(a)), the residual in the TKE

budget quantifies the suppression of TKE associated with the
removed energy-containing motions. Note that this is the only
streamwise location in the domain where, due to the artifi-
cial removal of TKE, the residual deviates from zero.The pro-
duction term has been largely removed, as anticipated by the
profile of the Reynolds shear stress at this streamwise loca-
tion (figure 2(m)). Dissipation, although attenuated, globally
dominates over production. At x̃ = 0.1δ|Xt

, dissipation re-
mains dominant but has largely attenuated, consistent with the
smaller magnitude of the turbulent intensities and of their spa-
tial gradients. The only active transport term is viscous dif-
fusion, which transports (remaining) energy from the buffer
layer towards the wall. With the absence of an energy-source,
the flow would eventually laminarise. However, at x̃ = 0.5δ|Xt

,
a weak energy-source within the buffer layer is observed, con-
sistent with the evolution of a peak in the profile of the rms
of the streamwise velocity fluctuations (figure 2(a)). Thus, de-
spite turbulent energy attenuating as the flow evolves from the
inlet of BL2, energy from the mean flow continues to be re-
distributed to the streamwise velocity fluctuations, eventually
surpassing the rate of energy dissipation. As the flow advances
to x̃ = 1.75, the energy-source intensifies in the buffer layer,
and an upper energy flux due to turbulent transport supplies
energy to the logarithmic layer. Note that while at x̃ = 1.75δ|Xt
an upward energy flux from the buffer layer provides en-
ergy to the locations above, turbulent intensities decrease for
around y+ ≳ 150 from x̃ = 1.75δ|Xt

to x̃ = 6δ|Xt
, indicating

that turbulence in the outer region is attenuating rather than re-
covering towards its energy neutral conditions, which would
also precede the re-establishment of a potential outer energy-

source. Considering the smaller shear and smaller value of
the outer energy-source compared to the energy-source in the
buffer layer (Cimarelli et al. (2015)), it is unlikely that the pre-
sented picture would change much despite the current under-
prediction of the source term in the outer region. That is, even
if an outer energy-source were detected and removed by the fil-
tering operation, the upward energy flux from the more rapidly
recovering buffer layer would supply energy to the outer region
prior to the recovery of the outer energy-source. This implies
that the near-wall has a role in, at least accelerating, the recov-
ery of the outer turbulent motions.

Insight into the energy-containing motions that first ap-
pear in the flow can be gained by examining the spanwise
spectra of the streamwise velocity and streamwise vorticity,
presented in Figures 4 and 5, respectively. Note that spectra
are premultiplied by kz to express energy density per logk on
the log-scale plots. Figure 4(a) shows that the removal of the
energy-containing motions at the inflow of BL2 results in the
removal of most of the energy in the kzEuu spectrum, and in
particular in the removal of the the near-wall spectral peak, lo-
cated for BL1 at λ+

z ≈ 100 and y+ ≈ 15. This near-wall peak
in the kzEuu spectrum is attributed to the near-wall cycle of
streaks of streamwise velocity and quasi-streamwise vortices,
and its location is known to be roughly independent of the
Reynolds number (Jiménez (2013)). As the flow progresses
from the inflow to x = 6δ|Xt

, the energy in the kzEuu spectrum
of BL2 builds around a peak located in the buffer layer, that
gradually shifts its location as the flow evolves, while it re-
duces in the rest of the spectrum. Downstream of x = 6δ|Xt

,
the spectral energy in kzEuu gradually propagates towards re-
gions located further away from the wall and into larger span-
wise wavelengths. At x = 0δ|Xt

, the kzEωxωx spectrum of BL1
exhibits two peaks. The peak within the buffer layer is at-
tributed to streamwise vortices, while the peak closer to the
wall arises due to vortices created by the no-slip condition at
the wall (Jeong et al. (1997)). In the spectrum of BL2, both of
these peaks have been removed by the filtering operation that
removes the energy-containing motions, and only traces of en-
ergy of the streamwise vorticity are detected. No noticeable
energy in the spectrum of BL2 seem to be present for loca-
tions x = 0.5−1.75δ|Xt

. It should be noted that at x = 1.75δ|Xt
,

the kzEuu spectrum of BL2 shows the presence of a peak in the
near-wall. This presence of a near-wall peak in the kzEuu spec-
trum and the absence of energy in the near-wall of the spectrum
of kzEωxωx , suggests the presence of near-wall streaks and the
absence of near-wall quasi-streamwise vortices. At x = 6δ|Xt

,
the kzEωxωx spectrum of BL2 exhibits energy peaks at the same
locations as those detected in the spectrum of BL1. In partic-
ular, the buffer layer peak in the spectrum suggests the pres-
ence of the quasi-streamwise vortices that are involved in the
near-wall cycle. This would imply that a near-wall cycle was
initiated between x = 1.75δ|Xt

and x = 6δ|Xt
.

DISCUSSION
This study has investigated the recovery of the energy-

containing motions when they are removed at the inflow
boundary condition of a flat plate ZPG-TBL DNS. The bulk
of the energy-containing motions has been identified with a
distinctive connected (y,λz)-region within the spanwise spec-
tral energy density of the interscale turbulent transport with
negative value, i.e., a net energy-supplying contribution. The
removal of these motions at the inflow boundary condition re-
sults in a significant reduction of the Reynolds stresses at this
streamwise location. In particular, analysis of the single-point
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Figure 2. Statistical velocity profiles. (a-c) Mean velocity profile. Root-mean-squared of the: (d- f ) streamwise, (g-i) wall-normal
( j-l) and spanwise velocity fluctuations. (m-o) Reynolds shear stress. BL1 (—); BL2 (−−);. Streamwise locations x̃/δXt : 0 (—); 0.5
(—); 1.75 (—); 6 (—); 20 (—); 46 (—);. Vertical dashed black lines are y+ = 5 and y+ = 30.

Figure 3. Terms in the TKE budget equation. BL1 (—); BL2 (−−);. Streamwise locations x̃/δXt : (a) 0; (b) 0.1; (c) 0.5; (d) 1.75; ( f )
6; (g) 20;. ∂e+/∂ t (—); P+ (—); ε+ (—); ξ+ (—); C+ (—); T+

turb (—); T+
ν (—);

(
T+

turb +T+
ν +T+

p
)

(—);. C in BL1 and Tp in both
BL1 and BL2 are small and not shown for better clarity. Similarly, the residual is only plotted at x̃/δXt = 0 of BL2.

TKE budget terms shows that the turbulent energy-source in
the buffer layer is removed, resulting in dissipation globally
dominating over the nearly nonexistent production. As the
flow progresses downstream, turbulence attenuates due to the
prevailing dominance of dissipation. Nonetheless, the produc-
tion term does not completely decay and eventually surpasses
the rate of dissipation in the buffer layer, leading to net energy
generation in the streamwise velocity component. With part of
this energy redistributed to the other two velocity components,

Reynolds shear stress is generated and the energy-source in
the buffer layer gradually recovers its intensity. The excess
of turbulent kinetic energy in the buffer layer is transported
to the lower and upper locations, leading to the eventual re-
covery of the canonical ZPG-TBL state. The canonical ZPG-
TBL state is shown to recover more rapidly in the near-wall
region than in the outer region. The lack of an outer energy-
source in our data prevented from quantifying the influence of
the near-wall on the recovery of the outer-wall. However, it
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Figure 4. kzEuu(λz,y) at streamwise locations x̃/δXt :
(a) 0, (b) 0.5, (c) 1.75, (d) 6, (e) 20 and (f) 46. The spectrum
of BL1 is illustrated by the black contour lines, which are
(0.1,0.2,0.4,0.6,0.8) times the maximum of the spectrum at
the given location. The colormap visualizes the spectrum of
BL2, with contour levels 0.1 to 1 times the maximum of the
spectrum of BL1 at the transfer plane Xt

Figure 5. kzEωxωx(λz,y) at streamwise locations x̃/δXt :
(a) 0, (b) 0.5, (c) 1.75, (d) 6, (e) 20 and (f) 46. The spectrum
of BL1 is illustrated by the black contour lines, which are
(0.1,0.2,0.4,0.6,0.8) times the maximum of the spectrum at
the given location. The colormap visualizes the spectrum of
BL2, with contour levels 0.1 to 1 times the maximum of the
spectrum of BL1 at the transfer plane Xt

was argued that even if an outer energy-source were detected
and removed by the filtering operation, an energy flux from
the more rapidly recovering buffer layer would precede the
recovery of the outer energy-source, implying that the near-
wall has a role in, at least accelerating, the resurgence of the
outer turbulent motions. Analysis of the spanwise spectral en-
ergy densitiy of the streamwise velocity and streamwise vor-
ticity suggests that near-wall streaks are the initial coherent
energy-containing motions formed with quasi-streamwise vor-
tices only developing further downstream.
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