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ABSTRACT
Two direct numerical simulation databases are examined

to understand the effect of mean shear on the outer layer tur-
bulence of pressure-gradient turbulent boundary layers along
with two homogeneous shear turbulence databases. We com-
pare the shape of Reynolds-shear-stress carrying structures
in all cases, choosing five streamwise locations in the tur-
bulent boundary layers with different pressure gradient sign
and/or intensity, as well as upstream history. The results indi-
cate that the shape of the structures is very similar across all
flows when their size is between 1 to 10 Corrsin length scales.
This suggests that mean shear acts in a similar manner in all
these flows to generate Reynolds-shear-stress carrying struc-
tures and therefore turbulence production.

INTRODUCTION
When a turbulent boundary layer (TBL) is exposed to an

adverse pressure gradient (APG), the mean velocity defect be-
comes significant, resulting in higher mean shear in the outer
layer and reduced shear near the wall. These changes lead to
significant alterations in turbulence characteristics. In canon-
ical wall-bounded flows like channel flows or zero-pressure-
gradient (ZPG) TBLs, turbulence is dominant in the inner re-
gion. Unlike canonical flows, in APG TBLs with large veloc-
ity defect, Reynolds stresses reach their highest values in the
outer layer (Maciel et al., 2018). Moreover, turbulence pro-
duction in the outer layer of APG TBLs surpasses that in the
inner layer (Gungor et al., 2022). Even in APG TBLs with a
small velocity defect, where the Reynolds stresses do not ex-
hibit an outer peak, Reynolds stress levels are elevated in the
outer layer. The increased turbulence activity in the outer layer
is a crucial distinction between APG TBLs and canonical wall
flows, underscoring the significance of the outer layer in APG
TBLs.

Gungor et al. (2016) and Kitsios et al. (2017) suggested
that large-defect APG TBLs resemble free-shear flows due to
the changes in the mean velocity profiles. Besides APG TBLs,
Dong et al. (2017) demonstrated that large-scale sweeps and
ejections in the overlap layer of channel flows, which carry

most of the Reynolds shear stress, resemble those found in ho-
mogeneous shear turbulence (HST). They concluded that these
large-scale structures are associated with the local mean shear,
rather than with the presence of a wall. Later, Gungor et al.
(2020) examined sweeps and ejections in the outer layer of
an APG TBL and also observed that they resemble those in
HST. Furthermore, their findings indicated that outer layer tur-
bulence in APG TBLs with a significant velocity defect is only
minimally influenced by turbulence in the near-wall region.

In this work, we extend the study of Gungor et al. (2020)
by considering a wider variety of pressure gradient situations
and flow histories of non-equilibrium TBLs. We examine
the spatial characteristics of Reynolds-shear-stress carrying
structures through their aspect ratios for two direct numer-
ical simulation (DNS) databases. These flow cases are the
non-equilibrium PG TBLs of Gungor et al. (2022) with a Reθ

reaching 8650 and of Gungor et al. (2024) with a Reθ reaching
13000.

FLOW DESCRIPTION
Figure 1a shows the spatial evolution of the pressure

gradient parameter based on Zagarola-Smits velocity (UZS),
βZS = (δ/ρU2

ZS)(d pe/dx), for the two PG TBLs, where δ is
the local boundary layer thickness and pe is the pressure at the
edge of the BL. βZS follows the ratio of pressure force to the
turbulent force in the outer layer (Maciel et al., 2018). DNS23
evolves from a ZPG TBL to a TBL with a large velocity defect
first but then later it is exposed to a favourable pressure gradi-
ent (FPG), which results in a FPG TBL with a flow history of
an APG TBL. DNS22 is a non-equilibrium APG TBL, which
evolves from a ZPG TBL to a TBL on the verge of separa-
tion. The shape factor distribution in figure 1b shows the dif-
ference between the two cases. DNS22 is in stronger disequi-
librium than DNS23, whereas the Reynolds number is higher
in DNS23 than in DNS22.

For analyzing the flows in detail, we choose two stream-
wise positions from DNS22 and three positions from DNS23
and collect spatio-temporal data from these positions. The first
position of each flow has a small velocity defect (H = 1.65 and
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Table 1: The main properties of the flow cases.

Position H Reθ Reτ

ZPG 1.35 6500 1989

DNS22-APG1 1.65 2985 626

DNS23-APG1 1.60 5259 1007

DNS23-FPG 1.60 12207 2182

DNS22-APG2 2.63 5769 455

DNS23-APG2 2.78 10306 696
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Figure 1: The βZS and H distribution of the TBL cases.

1.60 for DNS22 and DNS23, respectively) while the second
one has a large velocity defect (H=2.63 and 2.78, for DNS22
and DNS23, respectively). The third position of DNS23 has
the defect of the first position (H = 1.60) but the flow is under
the effect of a FPG and a long non-equilibrium history. The
ZPG TBL of Sillero et al. (2013) at Reτ = 1306 is also used as
a reference case. Table 1 summarizes the main parameters of
these streamwise positions.

Figure 2 presents the mean velocity and the ⟨u2⟩ profiles
as a function of y/δ for the cases described above. In both the
small- and large-defect APG cases, the two flows exhibit sim-
ilar mean velocity profiles at comparable H values. However,
differences arise due to small variations in H values, distinct
flow histories, and Reynolds numbers. The FPG case exhibits
a distinct mean velocity profile compared to the small-defect
APG TBL cases, attributed to its APG-FPG flow history. How-
ever, the mean shear is similar above y/δ = 0.3. Figure 2b
illustrates, as widely reported in the literature, that outer layer
turbulence becomes dominant as the defect increases. In the
small-defect APG cases (blue lines), the higher levels of ⟨u2⟩
observed in DNS22 align with the larger H and mean shear,
while the contribution of flow history remains relatively small.
Conversely, in the large-defect APG cases (orange lines), the
larger mean shear and more gradual increase of the APG result
in higher levels of ⟨u2⟩ for DNS23. Regarding the ⟨u2⟩ profile
of the FPG case, although it has recovered the near-wall peak,
its outer level is much higher than those of the small-defect
APG TBLs and resembles those of the large-defect cases. This
indicates a delayed response of outer turbulence. Thus, we
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Figure 2: The mean velocity (top) and ⟨u2⟩ profiles of the
selected flow cases as a function of y/δ .

have a set of flow cases that combine both similar and very
different PG TBLs.

To understand the importance of the mean shear for the
outer layer, we examine the Corrsin shear parameter (S∗) in all
cases. S∗ is defined as S∗ = Sq2/ε , where S is the mean shear,
q2 is twice the turbulence kinetic energy and ε is turbulence
dissipation. It indicates the importance of the interaction be-
tween the shear and energy-carrying structures. When S∗ is
much greater than 1, these structures are primarily influenced
by the local mean shear. Conversely, when S∗ is less than or
approximately equal to 1, turbulence becomes disconnected
from the mean shear (Jiménez, 2013). Figure 3a presents S∗ as
a function of y/δ for the TBL cases. S∗ remains fairly constant
between y/δ = 0.3 and 0.8 for all cases except DNS23-FPG
where it is constant between y/δ = 0.4 and 0.8.

We employ the Corrsin length scale (Lc) as the length
scale for the structures to evaluate the effect of mean shear on
these structures. Lc is defined as (ε/S3)1/2. The Corrsin length
scale is an intermediate length scale that represents the size of
the smallest structures interacting with the mean shear. When
Lc < 1, turbulent structures are decoupled from mean shear
and become isotropic in size. Figure 3b shows the Corrsin
length scale (Lc), normalized with δ , and plotted as a func-
tion of y/δ . One striking result is that the behaviour of Lc/δ

profiles are very similar for each defect situation (ZPG/APG1
(small velocity-defect), APG2, and FPG) in the region be-
tween y/δ = 0.3 and 0.8.

In addition to these databases, we employ two HST
databases with Taylor microscale Reynolds numbers of 104
and 248, as described in detail by Dong et al. (2017), to better
understand the influence of mean shear in the outer layer.
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Figure 3: The Corrsin shear parameter (a) and Corrsin
length scale (b) for the TBL cases as a function of y/δ .

RESULTS
Structure Identification Method

We examine the Reynolds-shear-stress carrying structures
and they are classified into four groups based on their quad-
rant position in the u-v plane: outward interactions (Q1, u > 0
and v > 0), ejections (Q2, u < 0 and v > 0), inward inter-
actions (Q3, u < 0 and v < 0) and sweeps (Q4, u > 0 and
v < 0). For this work, we only consider the intense Q2s and
Q4s, which are the ones that predominantly carry the Reynolds
shear stress. To identify these intense Q2 and Q4 structures,
we employ the clustering technique where structures are de-
fined as connected regions satisfying the following condition
(Lozano-Durán et al., 2012; Maciel et al., 2017b):

|u(x)v(x)|> H∗
σuσv. (1)

Here, H∗ is the threshold constant and σ is the root-mean-
square of the velocity fluctuation denoted by the index. Con-
nectivity is defined with the six orthogonal neighbours in the
mesh of the DNS. The value of H∗ was determined to be 1.75
through percolation analysis by Lozano-Durán et al. (2012) for
channel flows and by Maciel et al. (2017b) for various APG
TBLs. Because of its consistent value, we adopt H∗ = 1.75
without conducting further percolation analysis.

For this study, the Q structures are identified using spatio-
temporal data, with the streamwise direction being temporal
and the wall-normal and spanwise directions being spatial.
Taylor’s frozen turbulence hypothesis is applied to each Q
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Figure 4: Reynolds shear stress profiles (solid lines) com-
pared with the Reynolds shear stress carried by the iden-
tified intense Q− events (dotted lines) for DNS22 (a) and
DNS23 (b).

structure individually to convert time into the streamwise di-
rection x, utilizing the local mean velocity at the structure’s
center as the convection velocity. The y location of the struc-
ture’s centre is calculated by taking the arithmetic mean of its
minimum and maximum y locations.

Figure 4 compares the amount of Reynolds shear stress
carried by the identified Q− structures, where Q− stands for
combined intense Q2s and Q4s, to the total Reynolds shear
stress as a function of y/δ for all cases along with the ZPG
TBL of Sillero et al. (2013). With the chosen extraction thresh-
old value (H∗ = 1.75), the identified Q− structures carry ap-
proximately half of the total amount of Reynolds shear stress
in all cases.

We distinguish between wall-attached and wall-detached
Q structures due to their known differences in properties and
dynamic significance. In canonical wall flows, wall-attached
Q structures are larger and predominantly carry the Reynolds
shear stress in the overlap layer (Lozano-Durán et al., 2012;
Maciel et al., 2017a,b). However, in large-defect APG TBLs,
detached Q structures become more numerous and contribute
equally to the Reynolds shear stress as attached ones (Maciel
et al., 2017a). Attached structures are defined as those with a
minimum distance to the wall less than 0.05δ , while the rest
are considered detached structures. The joint probability den-
sity functions of the minimum and maximum wall distances
of the Qs (not shown) confirm that this boundary at y = 0.05δ

adequately separates both types of structures.
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Table 2: Parameters of the attached/detached structures. Ni and Vi are the percentages of Q of each class in terms of their
number and volume.

Position NQ2 NQ4 VQ2 VQ4

Attached Detached Attached Detached Attached Detached Attached Detached

DNS22-APG1 16.9 31.5 18.4 33.2 34.9 25.2 13.3 26.7

DNS22-APG2 2.9 42.2 4.5 50.4 31.2 29.6 15.9 23.3

DNS23-APG1 18.2 31.2 19.1 31.6 42.6 20.5 15.7 21.3

DNS23-APG2 2.0 42.6 3.4 52.0 26.7 31.2 19.9 22.3

DNS23-FPG 13.2 35.0 14.3 37.5 51.3 11.7 23.5 13.6

Table 2 shows the percentage of the attached and detached
Q−s in terms of their number and volume for the present flow
cases. In all flow cases, there are far more detached struc-
tures than attached ones. Despite this, the volume occupied
by attached and detached structures tends to be similar overall,
with two exceptions. Firstly, in the small-defect APG TBLs,
attached Q2s occupy more volume than detached ones, as in
canonical wall flows. Secondly, in the FPG TBL, both types
of attached Qs occupy significantly more space than their de-
tached counterparts.

Reynolds Shear Stress Contributions

After identifying the Q structures, we investigate the con-
tribution of each type of Q to the Reynolds shear stress. Fig-
ure 6 illustrates the Reynolds shear stress contributions from
intense Q structures separated both in quadrant type and at-
tached/detached type, as a function of y/δ for DNS23 and the
ZPG TBL case of Sillero et al. (2013). It is important to stress
that the contributions are normalized with the local ⟨uv⟩ and
therefore it may give the impression that the Reynolds shear
stress increases towards the boundary layer edge, which is not
the case as shown in figure 4. The behavior of intense Qs ex-
hibit similarities in all cases. The contribution to the Reynolds
shear stress predominantly comes from the Q− structures (Q2s
and Q4s). Moreover, the contribution of Q2s and Q4s in-
creases and decreases with y, respectively.

Despite these similarities, the pressure gradient alters the
structures significantly. In the lower part of the boundary layer,
the contribution of Q+s (Q1s and Q3s) become more relevant
for the large-defect case APG2. Their intensity is at the same
levels as Q2s in APG2 whereas it is small in APG1. More-
over, the Q4 structures are the most important structures in the
lower half of APG2. This is not the case for ZPG and APG1
where Q2s’ and Q4s’ contributions are at the same level except
the very near-wall region where Q4s’ contribution peaks in all
cases. The differences show the effect of the velocity defect
and consequently the pressure gradient on structures.

In the FPG case, the contribution of Q2s and Q4s are com-
parable in the lower half of the boundary layer. Furthermore,
the Q+s’s importance decreases but they are still higher than
for APG1 and ZPG. One important difference of the FPG and
the other three cases is that the attached structures dominate
the flow even in the upper part of the boundary layer. This
could be due, at least in part, to the downward (negative v)
advection of the structures in the FPG region.

∆x

∆z

∆y

Figure 5: A Q2 structure with the circumscribing box
used to indicate the size of the structure. The dashed
line shows the diagonal.

Size and shape of the structures
In this study, as discussed above, we examine the spa-

tial features of Q2s and Q4s in the region between y/δ = 0.3
and 0.8. Therefore, structures whose centres are outside of
this region are discarded from the analysis. Besides this, we
only consider wall-detached structures for this analysis, be-
cause wall-attached structures can be geometrically affected
by the wall and their spatial features can be very different from
those of wall-detached ones (Dong et al., 2017). By doing that,
we aim to isolate the effect of the mean shear in different flow
cases. Table 3 presents the number and volume of detached
Q2 and Q4 structures in the region between y/δ = 0.3 and
0.8. The number of Q2s is slightly less than Q4s in all flow
cases. For their volumes, which are more important than their
numbers, Q2 structures occupy a larger volume than Q4s in the
APG TBL cases. The ratio of the volume Q2s occupy to the
volume Q4s occupy is very similar in all APG cases. Contrary
to this, Q4s have a larger volume in the FPG case. Nonethe-
less, it can be said that both Q2s and Q4s are relevant in the
region of interest of all flow cases.

To investigate the spatial features of the Q structures, we
utilize their aspect ratios because they provide information of
the shape of Qs and whether they are isotropic or not. Fig-
ure 5 shows a single Q2 structure with the circumscribing box
extracted from D23-APG1. The dimensions of the box are uti-
lized as the dimensions of the structure. Figure 7 shows the
average aspect ratio (ai j = ∆i/∆ j) for all cases as a function

of the diagonal of the structures
(
d =

√
∆2

x +∆2
y +∆2

z
)
. The

box diagonal d is normalised with Lc. In addition to this, we
employ two HST cases of Dong et al. (2017) for comparison.
We utilize these two HST cases, which are the same case with
different Reynolds numbers, to see the effect of a flow driven
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Table 3: Parameters of the structures used in the paper.
Structures are between 0.3δ < yc < 0.8δ and ymin >
0.05δ . Ni and Vi are the percentages of Qs of each class
in terms of their number and volume.

Position N2 N4 V2 V4

DNS22-APG1 46.4 53.7 62.8 37.2

DNS23-APG1 47.7 52.3 59.3 40.7

DNS22-APG2 44.1 56.0 61.5 38.5

DNS23-APG2 44.3 55.7 62.3 37.7

DNS23-FPG 49.2 50.8 45.5 54.5

by only shear, in the absence of a wall.
Figure 7(a,b) depicts the average aspect ratio azy and axy

for all detached Q−s between y/δ = 0.3 and 0.8 for the TBL
cases along with the HST cases. The azy curves collapse al-
most perfectly for structures whose diagonals are between 1Lc
and 10Lc. The aspect ratio is slightly above 1 and then de-
creases to slightly below 1 with increasing structure size until
above approximately d = 10Lc. The diverging trends between
HSTs and TBLs for large-scale structures above d = 10Lc are
attributed to the distinct boundaries of these two types of flows.
In HSTs, the ratio azy decreases due to the unbounded nature
of structures in the y direction (Dong et al., 2017). Conversely,
in TBLs, azy increases as the structures are bounded in y.

The trend for axy is also very similar for all TBL cases
between 1Lc and 10Lc. Furthermore, the TBL and HST cases
coincide well for structures whose diagonal is between ap-
proximately d/Lc = 3 and 10. Overall, the similarity is less
pronounced for axy compared to azy. This difference may hap-
pen for several reasons. The TBLs are in non-equilibrium in
the streamwise direction, which is not the case for the HSTs.
Moreover, we use Taylor’s hypothesis to estimate the stream-
wise length of structures. It is possible that the hypothesis fails
for small-scale structures with a diagonal of d/Lc ≈ 1−2. But
more work is required to understand this difference.

Figure 7(c − e) illustrates separately the average aspect
ratios for Q2s and Q4s. The trend for azy is almost identical
for both Q2s and Q4s. This is important as it suggests Q2s and
Q4s have similar spatial features in the spanwise direction with
respect to their wall-normal height. The only deviation is for
FPG case for Q4s above d/Lc ≈ 7, where azy is slightly more
than the others. As for axy, the trend is almost the same for
all TBLs but the aspect ratio is different for Q2s and Q4s. The
Q2 structures are streamwise elongated as their aspect ratio is
around 1.5 while Q4 structures’ aspect ratio is slightly above
1.

The findings above show that the Q structures in the TBL
cases and HSTs behave very similarly and almost identically
in some cases when their diagonal is scaled with Lc. This per-
fectly highlights the major role the mean shear plays for Q
structures and therefore for turbulence production.

CONCLUDING REMARKS
In this study, we analyze the Q structures and the effect of

mean shear on these structures in two non-equilibrium TBLs
of Gungor et al. (2022) and Gungor et al. (2024) along with
the HST cases of Dong et al. (2017). We identify individual Q
structures in the flow and examine the spatial properties of de-

tached sweeps and ejections through their aspect ratios, azy and
azy. For the TBLs, the region considered is the middle of the
outer layer between 0.3δ and 0.8δ . The spatial characteristics
of these structures seem to be governed by the mean shear as
their aspect ratio behaves very similarly in all the flows, and all
regions of the TBLs, when the size of the structures is normal-
ized with the Corrsin length scale. The relative contribution
of detached sweeps and ejections to the Reynolds shear stress,
however, depends on the pressure gradient context in boundary
layers.
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Coherent structures in statistically stationary homogeneous
shear turbulence. Journal of Fluid Mechanics 816, 167–
208.

Gungor, A.G., Maciel, Y., Simens, M. & Soria, J. 2016 Scaling
and statistics of large-defect adverse pressure gradient tur-
bulent boundary layers. International Journal of Heat and
Fluid Flow 59, 109–124.

Gungor, T.R., Gungor, A.G. & Maciel, Y. 2024 Turbulent
boundary layer response to uniform changes of the pressure
force contribution. arXiv preprint arXiv:2402.13067 .

Gungor, T.R., Maciel, Y. & Gungor, A.G 2020 Reynolds shear-
stress carrying structures in shear-dominated flows. Journal
of Physics: Conference Series 1522, 012009.

Gungor, T.R., Maciel, Y. & Gungor, A.G. 2022 Energy transfer
mechanisms in adverse pressure gradient turbulent bound-
ary layers: production and inter-component redistribution.
Journal of Fluid Mechanics 948, A5.
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G., Gungor, A.G., Jiménez, J. & Soria, J. 2017 Direct nu-
merical simulation of a self-similar adverse pressure gra-
dient turbulent boundary layer at the verge of separation.
Journal of Fluid Mechanics 829, 392–419.

Lozano-Durán, A., Flores, O. & Jiménez, J. 2012 The three-
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Figure 6: Fractional contributions to ⟨uv⟩ from attached Qs (solid), and detached Qs (dashed) for ZPG (a), APG1(b), APG2
(c), and FPG (d) of DNS23. The dotted line is the total fractional contribution of all Q2s and Q4s.
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Figure 7: Average aspect ratio of the circumscribing boxes for detached Q− structures whose center is between y/δ = 0.3
and 0.8 as a function of the box diagonal of the structure for all Q−s combined (a,b), Q2s (c,d) and Q4s (e, f ). The box
diagonal is normalized with Lc.
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