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ABSTRACT
We present two additions to the standard transient growth

theory. The first is a statistical framework for transient growth

that relates the statistics of the energy of evolving disturbances

to the statistics of the initial disturbances. We use this frame-

work to make a number of observations for Poiseuille flow,

including that the mean growth is likely to be much smaller

than the optimal growth and that the mean growth grows lin-

early with Reynolds number whereas the optimal growth grows

quadratically. The second is a method for estimating the opti-

mal growth from flow data, rather than the linearized Navier-

Stokes operator.

Introduction
The standard approach for theoretical analysis of the sta-

bility of a steady-state solution of the Navier-Stokes equations

is to linearize the equations around the solution and calculate

the eigenvalues of the resulting linearized Navier-Stokes (LNS)

operator. The steady-state solution is determined to be stable

via this analysis if all the eigenvalues have a negative real part

and unstable otherwise. This approach, usually referred to as

modal stability theory, has many successes; predicting the crit-

ical Rayleigh number in Rayleigh-Bénard convection and the

dominant wavenumber in the Kelvin-Helmholtz instability are

two examples. The modal approach fails to predict, however,

the instabilities that are observed in many shear flows. One dra-

matic example is that the eigenvalues around the parabolic pro-

file in pipe flow are always negative regardless of the Reynolds

number whereas pipe flow is observed to transition, usually in

the range of '4 = 2000. More broadly, the modal approach

fails to predict the turbulence observed in Couette flow, plane

Poiseuille flow, and boundary layer flows at certain conditions.

One mechanism leading to the turbulence observed in

these shear flows is the potential for transient growth in such

flows (Schmid & Henningson, 2001). Despite the fact that any

disturbance in a (unforced) linear system with negative eigen-

values will decay eventually as C → ∞, this decay may not

be monotonic so long as the associated eigenfunctions are not

orthogonal. Indeed, in shear flows, the eigenfunctions of the

LNS operator are highly non-orthogonal, leaving a potential for

large temporary growth of solutions to the linearized equations.

Though the linear approximation is valid for the small initial

disturbances, once they undergo large-scale growth, nonlinear

effects may take over, leading to transition.

The importance of transient growth in a given flow is

usually quantified by calculating the optimal growth, i.e., the

greatest ratio of initial and final energy among all possible

initial disturbances. This quantity, which we refer to as �>?C ,

can be calculated from the LNS operator A as the square of the

largest singular value of the matrix exponential,

�>?C (C) = f2
1 (L4

ACL−1) (1)

where L is the Cholesky decomposition of the weight matrix

used to quantify disturbance energy, W = L∗L.

In this work, we describe two approaches beyond the stan-

dard transient growth analysis described above. The first is a

statistical perspective (Frame & Towne, 2024) on growth moti-

vated by the (rather obvious) insight that real disturbances to the

flow will not exactly coincide with the optimal one. The ques-

tion becomes whether, or under what conditions, near-optimal

growth can be expected. We approach this question by deriving

an equation for the mean energy of the disturbances at time C

as a ratio of the mean initial energy of the disturbances, which

we refer to henceforth as �<40=. This quantity depends on the

statistics of the incoming disturbances – if these are likely to re-

semble the optimal disturbances, then the mean growth will be

near the optimal growth, for example. By conducting numeri-

cal experiments with these initial statistics in plane Poiseuille

flow, we make three key observations. First, the length scales in

the initial disturbances have a great impact on the mean energy

amplification, with shorter correlation lengths in the initial dis-

turbances leading to substantially less growth. Second, while

�>?C is known to scale quadratically with the Reynolds num-

ber, we find that �<40= scales only linearly in realistic cases.

Finally, we find that the probability density function (PDF) of

the growth is nearly a decaying exponential function, indicat-
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ing that in cases where the �<40=/�>?C ≪ 1, it is extremely

unlikely for disturbances to undergo near-optimal growth.

Secondly, we present an approach to estimate �>?C from

data. In the literature, �>?C is calculated exclusively from ma-

trix operations on the LNS operator, and a data-driven approach

is useful for a number of reasons. First, it allows estimation of

�<40= in cases where the LNS operator is not available, e.g.,

in experiments or, in many cases, in simulation data. Second,

in all but a few idealized cases, the LNS operator is too large to

perform the matrix operations necessary to obtain�>?C analyt-

ically. A data-driven method lends itself to these cases as well

because the LNS operator can be used to generate data from

which �>?C can be estimated. We demonstrate the method by

estimating the optimal spatial transient growth from data for a

transitional boundary layer from the Johns Hopkins Turbulence

Database (Li et al., 2008), finding �>?C (G) as well as the opti-

mal output modes. Finally, we compare the �<40= and �>?C

for this data, the former of which is easy to compute, finding

that �>?C/�<40= with the values we obtain is more than 102

for this case.

Statistical framework

We first derive a formula for the mean energy amplifica-

tion, finding that it depends on the correlation matrix of the

initial disturbances. We then model this correlation matrix for

Poiseuille flow and record a number of observations.

Mean energy amplification

A natural starting point for the statistical view is to derive

the mean energy of disturbances at time C. This energy may

be written as the inner product of the state at time C with itself

4(@@@C ) = @@@∗C W@@@C , where W is a weight matrix. This energy may

also be written as

4(@@@C ) = tr(L@@@C@@@
∗
C L
∗) (2)

where L∗L=W and where tr( · ) takes the trace of the argument.

The evolved state is related to the initial one by an evolution

operator @@@C = MC@@@0, so the energy at time C may be written in

terms of the initial state as

4(@@@C ) = tr(LMC@@@0@@@
∗
0M∗C L

∗) (3)

Taking an expected value, we have

E[4(@@@C )] = tr(LMCC00M∗C L
∗) (4)

where C00 = E[@@@0@@@
∗
0
] is the correlation matrix of the initial

disturbances. Finally, to quantify the growth (rather than that

energy) we divide by the expected initial energy

�<40=
=

tr(LMCC00M∗C L
∗)

tr(LC00L∗)
(5)

The quantity �<40= is the ratio of the expected energy at

time C to the expected initial energy, i.e., it is the amount by

which the mean energy is amplified over the time interval.

More generally, the correlation at time C is related to the initial

correlation as

CCC = MCC00M∗C (6)

Perhaps unsurprisingly, we see that the second-order

statistics, i.e., the mean and correlation, of the disturbances

at time C depend on the second-order statistics of the initial dis-

turbances. The initial correlation must, therefore, be modeled

to get a numerical value for �<40=.

Application to plane Poiseuille flow
We apply the framework described above to plane

Poiseuille flow. The numerics are handled with the code

provided in Schmid & Henningson (2001), which employs a

Chebyshev discretization of the linearized Navier-Stokes equa-

tions for channel flow (Herbert, 1977; Reddy & Henningson,

1993) and uses the wall-normal velocity E and vorticity [ as

coordinates. A number of observations are apparent with the

statistical lens.

Most transient growth analyses consider disturbances at

particular streamwise and spanwise wavenumbers, U and V,

respectively, as opposed to disturbances that have more general

streamwise and spanwise dependence. We take this as our

starting point as well, but show later that this choice alone

leads to substantial exaggeration of the mean growth. We take

the initial correlation C00 to contain energy only in E (which

promotes growth), and to be Gaussian-correlated in the wall-

normal direction, i.e.,

C
[[

00
(H1, H2, U, V) = exp[−

( H1 − H2

_

)2
] (7)

Here, _ is the correlation length in the wall-normal direction

at '4 = 1000. The resulting �<40= (C) optimized over time,

which we refer to as �<40=
<0G , is shown in Figure 1. At all of the

_−1

�
<
4
0
=

<
0
G

0 2 4 6 8 10
0

50

100

Figure 1: �<40=
<0G as a function of the inverse of the corre-

lation length _−1 in Poiseuille flow. The expected growth

decreases as the correlation length is shortened.

wavenumber pairs shown, short structures in the wall-normal

direction (large _−1) grow by less, and there is a non-zero

peak. The optimal growth over all wavenumbers for this flow at

'4 = 1000 is roughly 200 (Schmid & Henningson, 2001), thus

�<40=
<0G for (U, V) = (0,2) is comparable in scale to the optimal

growth when the wall-normal correlation length is long.

However, just as the H-dependence of the disturbances to

the flow will not happen to coincide with that of the optimal one,

the G and I dependence of real disturbances will not be optimal

either. That is, disturbances will not be perfectly streamwise-
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and spanwise-periodic with the optimal wavenumbers. The

impact of this additional nonoptimality can be assessed by

considering three-dimensional initial correlation matrices, and

we find this, again, leads to substantially less growth.

We take the correlation to be

C
[[

00
(GGG1, GGG222) = exp

[
−

(
|GGG2 − GGG1 |

_

)2 ]
(8)

where GGG1 = [G1, H1, I1]
) , and where | · | returns the Euclidean

length of the argument. In other words, (8) is an isotropic

Gaussian with correlation length _ with all its energy in the

vorticity. The growth�<40=
<0G that results is shown as a function

of Reynolds number in Figure 2 for various choices of _, along

with �
>?C
<0G . Two aspects are notable. First, at '4 = 1000,

�<40=
<0G = 4.5 for _ = 1 (the maximum over all _ occurs for _ =

0.83, and gives a similar �<40=
<0G ). Thus, �<40=

<0G is only 2.5%

of �
>?C
<0G at the same Reynolds number. Second, while �

>?C
<0G

scales quadratically with '4, �<40=
<0G scales only linearly. This

means that the amount by which �>?C overstates the growth of

realistic disturbances increases with Reynolds number.

Does the fact that the mean energy of disturbances is far

smaller than the maximum preclude the possibility of occa-

sional large-growth events? In other words, what is the prob-

ability of achieving large multiples of the mean? To answer

questions such as these, the probability density function (PDF)

of the disturbances at time C must be obtained, and to do this,

the PDF of the initial disturbances must be modeled. In Fig-

ure 3, we show the results of two different initial disturbance

PDFs, each with the same correlation. The first is a multivari-

ate Gaussian (MVG) distribution, and the second is the uniform

distribution on the #-sphere transformed linearly so that it has

the desired correlation (see Frame & Towne (2024) for details).

That both distributions have the same correlation implies that

the mean energies are the same.

First, the two empirical energy PDFs are quite similar

despite being generated by different initial disturbance PDFs.

This is an indication that, although the distribution of energy

does formally depend on the details of the distribution of the in-

coming disturbances, practically this dependence is quite weak.

This allows for an approximation of the distribution using only

information about the incoming correlation C00. The approxi-

mation shown is obtained by analytically calculating the fourth

moment of the energy PDF generated by the MVG distribution

and finding the exponential distribution that shares this fourth

moment.

Data-driven method for calculating optimal
transient growth

Despite the fact that transient growth is an important

mechanism for transition in many shear flows, its precise

influence is not easily assessed in many cases. Calculating

�>?C (C) involves computing exp[AC] with A ∈ C#G×#G .

Perhaps even more prohibitive for many flows of interest is that

obtaining A itself requires linearizing the governing equations

around the base flow; even with access to the governing

equations, this linearization can be remarkably cumbersome.

Thus, it is useful to have a non-intrusive means of calculating

�>?C , i.e., a method for taking simulation or experiment data

and estimating �>?C .

Formulation

We assume access to a set of initial disturbances

{@@@1
0
, @@@2

0
, . . . , @@@<

0
} and to the same disturbances some time C

later, {@@@1
C , @@@

2
C , . . . , @@@

<
C }. These disturbances are related by

@@@8C = MC@@@
8
0 (9)

for some unknown operator MC , which is assumed to be linear.

The growth undergone by the 8-th disturbance is ‖@@@8C ‖
2/‖@@@8

0
‖2,

but this is unlikely to be the maximum growth possible in the

system. With the assumption that the evolution operator is

linear, we can determine the evolution of any vector in the span

of the initial disturbances as

MC
©­«
<∑
9=1

@@@
9

0
k 9

ª®¬
=

<∑
9=1

@@@
9
C k 9 (10)

where the k 9 are scalar coefficients. The optimal growth is

approximated by finding the linear combination of the initial

and evolved states that corresponds to the largest growth. This

may be written formally as the following optimization problem

for the coefficients kkk,

�
>?C

33
= max

kkk

‖QCkkk‖
2

‖Q0kkk‖
2

(11)

where the data matrices are Q0 = [@@@1
0
, @@@2

0
, . . . , @@@<

0
], and QC =

[@@@1
C , @@@

2
C , . . . , @@@

<
C ], and �

>?C

33
is the data-driven approximation

of the optimal transient growth. As before, the weight ma-

trix W is used to define the inner product and thus the norm.

The optimization above may be written with L, the Cholesky

decomposition of the weight matrix, as

�
>?C

33
= max

kkk

kkk∗Q∗C L
∗LQCkkk

kkk∗Q∗
0
L∗LQ0kkk

(12)

This may be written as a Rayleigh quotient by introducing the

transformation EEE = Bkkk, with ��� defined by B∗B = Q∗
0
L∗LQ0.

With this transformation, (12) becomes

�
>?C

33
= max

EEE

EEE∗B−1∗Q∗C L
∗LQCB

−1EEE

EEE∗EEE
(13)

and the Rayleigh quotient is optimized when EEE = DDD1 (LQCB
−1),

where DDD1 ( · ) returns the first left singular vector of the argu-

ment. The optimizing coefficients are

kkk = ���−1DDD1 (LQCB
−1) (14)

and the data-driven approximation of the optimal growth is

�
>?C

33
= f2

1 (LQCB
−1) (15)

where f1 ( · ) returns the first singular value of the argument.

We note that in practice, the method must be regularized,
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Figure 2: Linear scaling of �<40=
<0G is observed in contrast to the well-known quadratic scaling of �

>?C
<0G . Here the

initial correlations are isotropic and the correlation between two points is a Gaussian function of their three-dimensional

separation with correlation length _. This mixes wavenumbers which leads to far less growth.

4

5 �
(4
)

← 99%← 90%

0 10 20 30 40 50 60

10−4

10−3

10−2

10−1

Figure 3: The empirically calculated energy PDFs for the multivariate Gaussian initial disturbance PDF and transformed

uniform PDF. Both result in very similar PDFs for the energy, which are nearly exponential. The approximation is

calculated without the Monte-Carlo and is accurate for both.

which is done by modifying the denominator in (12) to be

kkk∗ (Q∗
0
L∗LQ0+<WI)kkk, where W is a regularization parameter.

Connection to dynamic mode decomposition

The method may be equivalently formulated as approxi-

mating the linear operator MC with a similar procedure to that

used in dynamic mode decomposition (DMD) (Schmid, 2010),

then taking the first (square) singular value of this approxi-

mation. To properly account for the weight, we work with

the weighted states L@@@. Analogous to DMD, we look for the

matrix that most closely (in the least squares sense) maps the

initial (weighted) states to the evolved ones,

LQC ≈MC ,33LQ0 (16)

This operator is obtained by taking the pseudoinverse

MC ,33 = LQC (LQ0)
+
= LQCB

−1B−1∗Q∗0L∗ (17)

The first square singular value of this matrix gives the data-

driven approximation of �>?C ,

�
>?C

33
= f2

1 (LQCB
−1B−1∗Q∗0L∗) = f2

1 (LQCB
−1) (18)

The second equality shows the DMD formulation is equivalent

to the maximization formulation. It holds because 1) the singu-

lar values of any matrix are equivalent to the eigenvalues of the

matrix multiplied by its conjugate transpose and 2) B−1∗Q∗
0
L∗

multiplied by its conjugate transpose is the identity.

Recently, a similar objective of estimating transient growth

from data was pursued by Dotto et al. (2022). Our approach

differs in one important way from this work: Specifically,

Dotto et al. (2022) found the initial disturbance with the largest

growth rate at C = 0, then evolved this disturbance forward in

time, computing its growth along the way. However, this is

not the optimal growth �>?C – the optimal growth is not the

evolution curve of any particular disturbance. Rather, it is the

envelope of all initial disturbance curves, and the method we

have described above reflects this fact.
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Application to transitional boundary layer
We apply the data-driven method described above to tran-

sitional boundary layer data from the Johns Hopkins Turbu-

lence Data Base (Li et al., 2008; Zaki, 2013). We show, by ap-

plying the data-driven algorithm, that while very large growth

is possible, it is not realized and �<40= is a rather modest

1.4 when integrated over V and l. The transitional boundary

layer lends itself to a spatial, rather than temporal, transient

growth analysis. We briefly introduce this concept next, then

describe the boundary layer data and results of application for

the data-driven method to it.

Spatial transient growth So far, we have dis-

cussed transient growth within a temporal framework, i.e., the

flow is disturbed at a particular time C = 0, and the disturbance

evolves through time. Transient growth may also be studied in

a spatial framework wherein disturbances occur at G = 0, then

evolve downstream without further forcing to the equations.

Whereas in the temporal context, the governing equations were

transformed in G and I corresponding to U and V, now the

equations are transformed in C and I. Thus, we have a tem-

poral frequency l in addition to the spanwise wavenumber V.

The governing equations are now taken to be (Herbert, 1997;

Towne & Colonius, 2015; Zhu & Towne, 2023)

m

mG
@@@(G, V,l) = A(G, V,l)@@@(G, V,l) (19)

In a parallel flow, A is independent of G, but this dependence

must be retained in nonparallel flows. The operator to be

approximated MG (V,l) maps @@@(G = 0, V,l) to @@@(G, V,l).

Data description and computational consid-
erations The data we use are from a DNS of a transitional

boundary layer over a flat plate with a semicircular leading

edge and plate thickness !? (Zaki, 2013). The domain to

which we have access begins a small streamwise distance from

the beginning of the boundary layer and extends well into the

turbulent region in G and the free stream in H. It is periodic in

the spanwise direction. The data consist of 4701 snapshots of

dimension =G = 3320, =H = 224, =I = 2048. We downsample

by a factor of 2 in all spatial directions and limit the calculations

to the non-turbulent part of the domain because the method,

which is built on the assumption of linear evolution, breaks

down once nonlinearity becomes important to the dynamics.

The inner product, defined by W, is based on the kinetic energy

of disturbances.

To build the data matrices needed for the algorithm, many

realizations of the flow at the G, V, and l values of interest are

needed. To generate multiple realizations at the same tempo-

ral frequency l, the data, a single long time series, must be

partitioned into < (possibly overlapping) smaller time series

(Welch, 1967). The temporal FFT of each block is then taken,

and the result at each frequency is stored as one realization in

the corresponding data matrix (see Towne et al. (2018) for a

schematic).

Optimal growth and output mode The results

of the data-driven method at l = 0 are shown for three values

of VXG0 in Figures 4 and 5, where XG0 is the displacement

thickness of a Blasius profile at the initial G-location. The

optimal growth, shown in Figure 4, is quite large for all three

VXG0 , and as is expected, structures at nonzero V are capable

of more growth than those at V = 0. The VXG0 = 0.263 curve

reaches a local maximum at '4G = 5.5×104, though all three

curves attain higher values outside of the domain plotted.

We believe this is due to nonlinearities becoming prominent

downstream of the streamwise domain shown. The results

for the growth are somewhat preliminary – they are sensitive

to the choice of the regularization parameter W, and further

investigation is required to remove this sensitivity.

'4G

�

×104
0 1 2 3 4 5

0

100

200

300

Figure 4: �>?C obtained from the data-driven method for

three wavenumbers at l = 0. There is a potential for

large-scale growth, and the largest occurs for finite V.

In Figure 5, the streamwise velocity components of the

output modes are shown for the three values of VXG0 at

'4G = 5.8× 104. Here, H is scaled by the local displacement

thickness at the output location. The structures are very sim-

ilar for the two non-zero values of V and match the shape

of those in Andersson et al. (1999) and Luchini (2000). For

the V = 0 case, the mode resembles a Tollmien-Schlichting

wave (Schmid & Henningson, 2001), which is likely the fastest

growing mode at V = 0. Also, we note that these structures are

insensitive to W, unlike the �>?C results.

Comparison of �<40= and �>?C for the
boundary layer The rather large growth reported above

can be compared to �<40= for the boundary layer. It is rela-

tively straightforward to calculate�<40= given data —�<40=

is simply the ratio of the average energies at two streamwise

locations in the flow. The average can be computed as a func-

tion of V, or can be averaged over V. Specifically �<40= as a

function of VXG0 is

�<40= (G, V) =
E[‖@@@(G, V)‖2]

E[‖@@@(0, V)‖2]
(20)

H/X

|D
1
|

0 2 4 6 8
0

0.05

0.1

0.15

0.2

Figure 5: The output modes D1 at '4G = 5.8×104, which

is near the peak G-location for VXG0
= .263
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Figure 6: Mean energy amplification as a function of VXG0

and G. While very large growth is possible (see Figure 4),

little growth is realized on average at any wavenumbers.

'4G

�
<
4
0
=

×105
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Figure 7: Mean energy amplification as a function of

G. There is little growth, on average, despite the large

potential for it.

and as a function of just G is

�<40= (G) =
E[

∫ ∞
−∞
‖@@@(G, V)‖2 3V]

E[
∫ ∞
−∞
‖@@@(0, V)‖2 3V]

(21)

�<40= (G, VXG0 ) is shown in Figure 6. The largest values

shown are for G-locations where the nonlinearity is substan-

tial, and the largest �<40= (G, VXG0 ) is orders of magnitude

lower than �>?C (regardless of the regularization parameter).

Figure 7 shows �<40= (G), i.e., the turbulent kinetic energy

(TKE) ratio of the flow at streamwise locations G and 0. The

TKE drops initially before ascending just above unity, fur-

ther underscoring the fact that the optimal growth can vastly

overpredict the mean growth. An initial drop in �<40= was

reported in Frame & Towne (2024) for all initial correlations

used, but more work would be required to determine whether

the initial drop here is due to the same mechanism.

Conclusions
We have introduced two augmentations to the standard

transient growth theory. The first is a statistical lens through

which to view transient growth that goes beyond the standard

optimal-disturbance approach, and the second is a method for

determining the level of optimal transient growth without di-

rect access to the LNS operator using flow data. We demon-

strated the statistical framework on Poiseuille flow and used

it to show that 1) long structures in the wall-normal direction

tend to grow by more, 2) the mean growth scales linearly with

Reynolds number in contrast with the quadratic scaling of the

optimal growth, and 3) that the PDF of the growth is nearly

exponential, meaning that large-growth events (ones more than

a small multiple of the mean) are quite rare. More broadly, we

showed that, when various factors are taken into account, the

level of transient growth is likely to be much smaller than the

optimal value. We used the data-driven method to calculate

the optimal growth and optimal output modes for a transitional

boundary layer. The optimal growth structures were similar in

shape to those found in Andersson et al. (1999) and Luchini

(2000), and the optimal growth level was on the order of 102,

though there is uncertainty in the growth result due to depen-

dence on the regularization parameter. We also calculated the

mean energy amplification for the same flow and found it to be

order unity, supporting our view that the optimal growth is an

insufficient metric for quantifying the importance of transient

growth.
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