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ABSTRACT
Direct numerical simulations (DNS) have been conducted

to analyze the flow within a compressor cascade, where both
the suction-side and pressure-side boundary layers exhibit un-
steady separation phenomena. The current investigation pri-
marily focuses on the frequency characteristics, exploring hy-
drodynamic instabilities and acoustic features. Identified with
dynamic mode decomposition (DMD) analysis, the laminar
(case L) and turbulent (case T) scenarios present different
dominant frequencies. Based on classical linear stability anal-
ysis (LSA) and forced Navier-Stokes simulations (Jones et al.,
2010), it has been observed that the dominant frequencies are
mainly affected by suction-side events. Moreover, case L ap-
pears to be under the control of an acoustic feedback loop and
near-wake instability, whereas case T is probably impacted by
inviscid inflectional instabilities. Additionally, the pressure-
side boundary layer likely experiences the influence of scat-
tered waves originating from the suction side. Furthermore,
the dissimilar frequency responses of case T are attributed to
the self-sustaining turbulence due to the mode-B instability.

INTRODUCTION
In light of adverse pressure gradients, the compressor

boundary layers frequently exhibit unsteady separated flows
(Zaki et al., 2010), leading to an increase in kinetic losses
(Sandberg & Michelassi, 2022). Consequently, predicting the
frequency response of the unsteady separation proves invalu-
able for optimizing separation control strategies. Moreover,
aerofoils experiencing unsteady separation may result in tonal
noise emissions, which are particularly unwanted. Therefore,
gaining deeper insights into the mechanisms driving noise gen-
eration can facilitate the development of effective strategies for
noise elimination (Pröbsting et al., 2015). Nonetheless, the
intricate interplay between various hydrodynamic instability
mechanisms and acoustic behaviours is still ambiguous, re-
quiring further elucidation.

Characterized by the superposition of multiple secondary
tones 𝑓𝑛 (𝑛 = 1,2, · · · ) and a dominant tone 𝑓𝑛max , the acoustic
spectrum of tonal noise reveals a ladder-type pattern (Paterson

et al., 1973). In order to make clear these phenomena, Pater-
son et al. (1973) drew an analogy with the wake shedding of a
bluff body, but failed to explain secondary tones. Based on the
acoustic feedback model pitched by Tam (1974), the ladder-like
structure can be qualitatively explained, whereas the average
evolution of 𝑓𝑛max is not account for. Subsequently, Fink (1975)
put forward an unstable boundary-layer model and posited that
𝑓𝑛max is instigated by Tollmien–Schlichting instabilities from
upstream. Nevertheless, no experiment was conducted to sup-
port the assertion. Afterwards, Longhouse (1977) argued that
the receptivity region of the feedback resides within the bound-
ary layer rather than in the wake region as proposed by Paterson
et al. (1973). Conversely, Arbey & Bataille (1983) pointed out
that the feedback stems from the maximum velocity point on the
aerofoil. Besides, it was observed that 𝑓𝑛max closely aligns with
the broadband center frequency 𝑓𝑠 , which can be estimated by

𝑓𝑠 ≈ 0.011
𝑈

3/2
∞

(𝑐𝜈∞)1/2 . (1)

Additionally, denoting the length of the feedback loop as 𝐿, 𝑓𝑛
can be derived incorporating the phase relationship

𝑓𝑛 =
1
𝐿

(
𝑛+ 1

2

)
1

1/𝑐𝑟 +1/(𝑐∞ −𝑈∞) . (2)

Here, 𝑐𝑟 and 𝑐∞ are the phase velocities of unstable and acous-
tic waves, respectively.

Although the revised acoustic feedback model has pro-
vided satisfactory explanation on secondary tones, the deter-
mining factor of dominant frequency remains open. Initially
ascribed solely to boundary layer instability, the selection of the
dominant frequency has been linked to various factors ranging
from the Kelvin–Helmholtz instability within detached shear
layers (Pauley et al., 1990) to inviscid Rayleigh inflectional
instabilities (Desquesnes et al., 2007), chosen based on their
highest total amplification rates. Nevertheless, local stability
analysis on boundary layers does not always lead to an accurate
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estimation (Jones et al., 2008), prompting subsequent studies
to propose that the dominant frequency is predominantly de-
termined by the absolute instability of the laminar wake (Ikeda
et al., 2012; Tam & Ju, 2012). However, the absence of sec-
ondary frequencies has hindered the widespread acceptance
of these findings. In contrast to the localized perspective,
Jones et al. (2010) introduced a global mechanism, noting that
the frequency contents of the initial wave-packet tend to con-
verge towards the vortex shedding frequency following several
feedback-loop cycles.

In addition, some controversies still exist on the concrete
process of acoustic feedback loop, especially the respective sig-
nificance of pressure- and suction-side events, along with their
interaction. Experiments conducted by Nash et al. (1999) indi-
cated that acoustic tones primarily stemmed from pressure-side
boundary layer instabilities, while Jones et al. (2010) claimed
that feedback occurred purely on the suction side. Apart from
pressure-side events, Desquesnes et al. (2007) proposed a sec-
ondary feedback loop existed on the suction side. Subsequent
studies clarified that tonal noise generation is dominated by
suction-side events at low Reynolds number and shifts towards
pressure-side events at high Reynolds number (Pröbsting et al.,
2015). Afterwards, Arcondoulis et al. (2019) proposed a dual
acoustic feedback model, where feedback acted independently
on the pressure and suction surfaces.

The above-mentioned studies underscore the substantial
influence of boundary layers attributes on tonal noise pro-
duction, suggesting that more abundant separation phenom-
ena in compressor cascades may yield more intricate findings.
Nonetheless, the realization of a highly resolved DNS for com-
pressor cascades became feasible not until a dozen years ago
due to computational constraints (Zaki et al., 2010), with ear-
lier studies predominantly centered on transition mechanisms
(Mao et al., 2017).

In the present study, employing multiple analytical ap-
proaches, we investigate the mechanisms responsible for the
frequency response in the flows of compressor cascades, fo-
cusing on the effects of both hydrodynamic and acoustic insta-
bilities.

METHODOLOGY
Direct numerical simulation

Two three-dimensional DNSs are performed to explicate
the fluid dynamics within a linear compressor cascade, and the
inlet Mach number is Ma = 0.15 and the axial Reynolds number
is Rec = 138,500. In the absence of external perturbations, one
simulation is labeled as case L, representing a laminar flow. For
comparison, case T is initiated from case L but with an extra
small-amplitude stochastic disturbance imposed only at the first
time step, and it undergoes a laminar-turbulent transition in the
suction-side boundary layer.

The non-dimensionalized three-dimensional compressible
Navier–Stokes equations in a conservative form

𝜕

𝜕𝑡
𝑄𝑖 +

𝜕

𝜕𝑥 𝑗
(𝐸 𝑗𝑖 −𝐹 𝑗𝑖) = 0 (3)

are solved by the high-order finite difference solver HiPSTAR
(Sandberg et al., 2015). Here, the index 𝑖 represents a free
variable, whereas 𝑗 = 1,2,3 serve as a dummy variable indi-
cating three spatial dimensions. Besides, 𝑄𝑖 , 𝐸 𝑗𝑖 and 𝐹 𝑗𝑖 are
conservative variable vectors, inviscid and viscous fluxes, re-
spectively.

Dynamic mode decomposition
As a generalization of global instability analysis, DMD

has potential to elucidate the global behaviour of the overall
flow, whereas requiring much smaller computational resources
(Schmid, 2010).

Concentrating on the time-resolved flow field within the
boundary layers, a dataset comprising 600 spanwise-averaged
snapshots collected over a non-dimensional temporal extent of
2.4 serves as the foundational basis for analysis.

Classical linear stability analysis
In the present study, a compressible spatial LSA is con-

ducted to examine the stability properties of the base flow, with
emphasis on the frequency response.

LSA assumes that the disturbance is linear, which is thus
modelled as two-dimensional travelling waves in the shape of

𝜓 = 𝜓̂(𝑛) exp[i(𝛼𝑠+ 𝛽𝑧−𝜔𝑡)] . (4)

Here, 𝑠 represents the arc-length from the leading edge, and the
eigenfunction 𝜓̂(𝑛) solely relys on the wall-normal coordinate
𝑛 owing to a parallel assumption. Besides, 𝛽 represents the real
spanwise wavenumber and 𝛼 = 𝛼𝑟 + i𝛼𝑖 is the complex stream-
wise wavenumber. The real component𝛼𝑟 specifies the stream-
wise wavelength 𝜆 = 2𝜋/𝛼𝑟 , while the imaginary part (−𝛼𝑖)
corresponds to the exponential spatial growth rate. In addition,
𝜔 denotes the real circular frequency, leading to the frequency
𝑓 = 𝜔/(2𝜋). Substituting mean profiles and formula (4) into
the linearized Navier–Stokes equations, a spatial eigenvalue
problem is formulated, then (−𝛼𝑖) is acquired by searching
for the most unstable eigenvalue. Moreover, the 𝑁-factor can
be numerically approximated by 𝑁 =

∫ 𝑠

𝑠0
−𝛼𝑖 (𝜉, 𝑓 )d𝜉, which

offers a suitable estimation for the most amplified instability
wave within the boundary layer (Jones et al., 2010).

Forced Navier-Stokes equations
By relaxing the linear and parallel assumptions, a com-

prehensive analysis of the absolute and convective stability
features can be conducted through DNS incorporating forcing
terms, namely the forced Navier-Stokes equations (Jones et al.,
2010). This method is equivalent to a two-dimensional linear
stability analysis, and a brief overview of the methodology is
provided.

The forcing terms are represented by

𝜕

𝜕𝑡
𝑄𝑖

����
𝑡=0

= − 𝜕

𝜕𝑥 𝑗
(𝐸 𝑗𝑖 −𝐹 𝑗𝑖), (5)

where the overline signifies time- and spanwise-averaged quan-
tities. These terms are stored at the first step and subsequently
subtracted in each Runge-Kutta substep of equation (3). Thus
the forced Navier-Stokes equations can be written as

𝜕

𝜕𝑡
𝑄𝑖 = − 𝜕

𝜕𝑥 𝑗
(𝐸 𝑗𝑖 −𝐹 𝑗𝑖) −

𝜕

𝜕𝑡
𝑄𝑖

����
𝑡=0

. (6)

Since the initial base flow is preserved by forcing terms,
the introduction of a perturbation within the initial flow allows
for an investigation of its evolution as the simulation progresses,
including discerning absolute and convective stability charac-
teristics (Jones et al., 2010).
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Figure 1. Instantaneous overview of the flow field of (𝑎) case
L and (𝑏) case T, where contours of the spanwise vorticity𝜔𝑧 in
the cross-spanwise plane 𝑧 = 0 are presented. Moreover, yellow
lines represent the recirculation zones, and large separation
bubbles are denoted by the black arrows.
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Figure 2. Frequency response 𝐸𝑢′𝑡𝑢
′
𝑡

along the blade surface
of case L on the (𝑎) suction side and (𝑏) pressure side, case T
on the (𝑐) suction side and (𝑑) pressure side.

UNSTEADY FLOW FIELD ANALYSIS
Overview of the flow field

Figure 1 depicts the flow structures for both cases L and
T. As shown in figure 1(𝑎), case L reveals a pronounced re-
circulation area dominating the suction side. Divorced from
its rear portion, a minor recirculation zone can be discerned,
associated with the shedding of clockwise-rotating vortices.
For comparison, the scenario of case T in figure 1(𝑏) portrays
the disintegration of the shear layer, leading to the subsequent
breakdown of cohesive separation regions, indicative of the
transition. Conversely, boundary layers on the pressure side in
both scenarios manifest as enclosed separation bubbles.

Fluctuations within the boundary layer
Given the periodic nature of separation phenomena, we

explore the frequency response within blade boundary layers.
Firstly, an analysis of the frequency spectra of streamwise ve-
locity fluctuations 𝐸𝑢′𝑡𝑢

′
𝑡

is conducted. As illustrated in figure
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Figure 3. Fourier transform in space and in time for a pres-
sure signal extracted of case L within the (𝑎) suction side and
(𝑏) pressure side, case T within the (𝑐) suction side and (𝑑)
pressure side, where log of the modulus of coefficients ℱ is
presented. Besides, dashed lines highlight the hydrodynamic
fluctuations and sound waves.

2(𝑎), downstream the suction side of case L exhibits a pro-
nounced periodicity when 𝑠 ≥ 0.75. The spectral analysis un-
veils a peak frequency at 𝑓 = 4.24, aligning with the shedding
frequency of vortices. Additionally, notable responses are de-
tected at two- and three-fold dominant frequency, accompanied
by the presence of multiple discrete frequencies. Conversely,
on the pressure side, although the same dominant frequency
is observed, no discrete frequencies are evident, as portrayed
in figure 2(𝑏). Notably, the primary energetic contributions
reside in lower frequency range, attributed to the amalgama-
tion of discrete separation bubbles. In contrast, on the suction
side of case T, a singular dominant frequency is identified at
𝑓 = 7.10, as depicted in figure 2(𝑐). Besides, the absence of
discrete frequencies may be linked to the boundary layer tran-
sition. Moreover, the frequence response of case T presents
an analogous result to that of case L on the pressure side, as
illustrated in figure 2(𝑑).

Apart from velocity signals, we also investigate near-wall
pressure fluctuations, which are intrinsically linked to wave
propagation. Thus a frequency-wavenumber analysis is exe-
cuted on the fluctuating pressure fields 𝑝′ (𝑡, 𝑠), with outcomes
detailed in figure 3. In each graph, there are two distinct
types of waves (Desquesnes et al., 2007), which are denoted
by dashed lines. The first set of waves, characterized by a
steep negative slope, correspond to upstream-travelling acous-
tic waves, owing to their proximity in speed to 𝑐∞. Conversely,
the second wave category embodies unstable convective waves
propagating downstream.

Tonal noise in the near wake
The unsteadiness is further examined through the assess-

ment of sound pressure levels (SPL) employing five strategi-
cally positioned probes in the near wakes.

As illustrated in figure 4(𝑎), the SPL of case L showcases
a sequence of evenly spaced discrete frequencies, inclusive of
the dominant tone and its harmonics. These frequencies exhibit
pronounced responses within a confined frequency band. The
observed similarities between this depiction and earlier findings
detailed by Desquesnes et al. (2007) imply that case L emits
tonal noise, indicative of the presence of acoustic feedback. In
contrast, as depicted in figure 4(𝑏), the SPL in case T presents
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Figure 4. SPL calculated from five probes located in near-
wakes of (𝑎) case L and (𝑏) case T. For case L, the dominant
tone and its multipliers are marked.
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Figure 5. The dominant DMD mode of case L on the (𝑎)
suction side and (𝑏) pressure side.
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Figure 6. The dominant DMD mode of case T on the (𝑎)
suction side and (𝑏) pressure side.

a turbulent state devoid of distinct discrete frequencies, thus
negating the existence of tonal noise.

Dynamic mode decomposition analysis
Given the presence of self-sustained oscillations, a global

mode is inferred to exist (Jones et al., 2010; Fosas de Pando
et al., 2014), thus the DMD technique is employed.

Focusing on the spanwise-averaged normal velocity com-
ponent ⟨𝑢𝑛⟩, two cases unveil significantly different dominant
frequencies, with corresponding spatial configurations eluci-
dated in figures 5 and 6. Roughly speaking, patterns repre-
senting unstable hydrodynamic waves are observed to emerge
from the unsteadiness commencement in both the suction and
pressure sides, indicating that the dominant mode originates
from separation events.

HYDRODYNAMIC INSTABILITY ANALYSIS
Classical linear stability analysis

To delve deeper into the intricate flow dynamics, a lo-
cal stability analysis is employed to scrutinize the instability
mechanisms, with a particular focus on the 𝑁-factor.

Approximating the dominant frequency closely, the selec-
tion of the most unstable frequency is typically predetermined
before the inception of unsteadiness, as indicated by dashed
black lines in figure 7. The encirclements depicted in figures
7(𝑎) and 7(𝑐) indicate that the frequency corresponding to the
peak closely aligns with the separation frequency observed in
case T, presenting a stark contrast to the characteristics exhib-
ited in case L. Further scrutiny of figures 7(𝑏) and 7(𝑑) exposes
a convergence of unstable modes on the pressure side towards
𝑓 = 7.10 prior to separation. It seems that the dominant fre-
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Figure 7. Spatial stability analysis results of case L on the (𝑎)
suction side and (𝑏) pressure side, case T on the (𝑐) suction
side and (𝑑) pressure side, where contours of the 𝑁-factor are
displayed. Here, green circles mark the maximum 𝑁-factor at
different streamwise locations, and dashed black lines indicate
the inception of unsteadiness.
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Figure 8. Velocity deficit profiles in the near-wakes of (𝑎)
case L and (𝑏) case T. Here, circles mark the half-width loca-
tions of wakes, and dashed black lines represent 𝑢 = 0.

quency at 𝑓 = 7.10 for case T is presumably induced by the
boundary layer instability, while the frequency responses for
case L are governed by other mechanisms.

Near-wake instability
In addition to boundary layer instability, our investigation

extends to the study of near-wake instability, aimed at unravel-
ing the origins of the dominant mode.

Figure 8 shows mean profiles of the horizontal velocity
𝑢, where local reverse flow suggests the potential influence of
the near-wake instability (Ikeda et al., 2012). Based on the
minimum half-width 𝑏min, Tam & Ju (2012) claimed that the
most amplified frequency can be well-characterized by a fit-
ting of 2𝜋 𝑓 𝑏min/𝑈∞ ≈ 0.43. For case L, the predicted value
𝑓 ≈ 4.12 agrees with the dominant tone observed in figure
4(𝑎), albeit notably lower than the estimation from LSA. This
discrepancy suggests that the dominant frequency being pre-
dominantly governed by the near-wake instability. Conversely,
given the absence of prominent tones in case T as depicted
in figure 4(𝑏), the near-wake instability appears not to be the
primary mechanism in this instance.

TWO-DIMENSIONAL LINEAR STABILITY ANAL-
YSIS
Convective and absolute instabilities

Through forced Navier-Stokes simulations, stability traits
and emergent acoustic behaviours are investigated by monitor-
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Figure 9. Time histories of d𝑝/d𝑡 of forced case L, with the
initial impulse are introduced at (𝑎) 𝑠 = 0.4 and (𝑏) 𝑠 = −0.1.
Here, negative streamwise location 𝑠 denotes the pressure side,
while positive 𝑠 denotes the suction side. Besides, dashed blue
arrows indicate the propagation of the initial disturbances, and
dashed red arrows mark the scattering waves from the trailing
edge.
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Figure 10. Acoustic source near the trailing edge for forced
case L, which is shown by contours of 𝜕𝜌/𝜕𝑡. Here, the initial
impulse are introduced on the (𝑎) suction side at 𝑠 = 0.4 and
(𝑏) pressure side at 𝑠 = 0.1.

ing the evolution of signals, as depicted in figure 9. Here, only
results obtained from the mean flow of case L are exhibited,
since case T give the same conclusions.

As illustrated in figure 9(𝑎), upon the introduction of stim-
ulation on the suction side, a sustained disturbance downstream
suggests the presence of absolute instability within the suction-
side boundary layer (Huerre & Monkewitz, 1990). In contrast,
as depicted in figure 9(𝑏), when the stimulation is applied on
the pressure side, the flow ultimately reverts to an undisturbed
state, indicative of the convective instability. Furthermore, as
the initial disturbance pasts the trailing edge, the emergence of
an upstream-travelling acoustic wave emphasized by red lines
signifies the phenomenon of trailing-edge scattering.

Trailing-edge scattering
The stimulation on the suction side results in a sustained

perturbation marked by vortex shedding, demonstrating at-
tributes of absolute instability, as shown in figure 10(𝑎). Con-
currently, an array of annular acoustic waves incessantly em-
anates in the vicinity of the trailing edge. In contrast, owing to
the convective instability, there is only one conspicuous acous-
tic wave emerging, and the snapshot is captured in figure 10(𝑏).
These findings underscore the presence of trailing-edge scat-
tering, with acoustic feedback predominantly governed by the
suction side.
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Figure 11. Discrete frequencies in the near-wake and predic-
tions of the acoustic feedback’s model based on formulas (1)
and (2), which are nondimensionalized with reference quanti-
ties of 𝐿∞ and 𝑈∞.

Acoustic feedback loop
Based on the above-mentioned discussion, the concrete

acoustic feedback loop can be summarized as: unstable waves
originated from the unsteady separation progress downstream
and ultimately traverse the trailing edge. This sequential pro-
cess gives rise to the generation of acoustic waves through
scattering phenomena, leading to their omnidirectional radia-
tion. Subsequent interactions between the generated acoustic
waves and the downstream-traveling unstable waves engender
the establishment of a robust acoustic feedback loop primarily
driven by the absolute instability, resulting in the emergence of
equidistant discrete frequency components. The graphical rep-
resentation provided in figure 11 exhibits a consonance between
the observed discrete frequencies and the analytical predictions
derived from equations (1) and (2), thereby substantiating the
proposed theoretical framework.

SELF-SUSTAINING TURBULENCE
Furthermore, we undertake an investigation to elaborate

the absence of tonal noise in case T, which is probably due
to the chaotic phase of pressure fluctuations caused by three-
dimensional structures (Gelot & Kim, 2020). Commencing
with case L, a stochastic disturbance is seed at 𝑠 = 0.4 on the
suction side, spanning across the spanwise domain, and the
resulting transitional structures are focused on.

Under the influence of absolute instability, the coherent
spanwise structures of vortices identified by the 𝑄-criterion
(Hunt et al., 1988) gradually undergo a distortion over tempo-
ral evolution. As presented in figure 12, both Λ-shaped and
hairpin-like vortices are discernible, emblematic of transition
phenomena. Additionally, iso-surfaces of scaled streamwise
vorticity 𝜔∗

𝑡 exhibit intricate patterns, showcasing alternating
sign regions within and enveloping the vortices, characterized
by spanwise-periodic variations. The spanwise wavelength
𝜆𝑧 = 𝐿𝑧/3≈ 0.67 approximately aligns with the core dimension
of the vortices 𝐷 = 0.5 ∼ 0.6, hinting at a probable association
with mode-B instability dynamics (Williamson, 1996).

CONCLUSIONS
Two three-dimensional DNS simulations are performed

for the flow in a compressor cascade in the present study, one
is an laminar case namely case L, and the other refers to case
T. Employing DMD and LSA techniques, as well as forced
Navier-Stokes simulations, we concentrate on the frequency
response and underlying instability mechanisms.

The suction-side boundary layer is characterized as shed-
ding separation, while the pressure side is manifested as closed
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Figure 12. Flow structures undergoing the transition taken
at four phases of the vortex shedding cycle, where the initial
impulse are introduced on the suction side at 𝑠 = 0.4. Here,
red iso-surfaces represent 𝜔∗

𝑡 = 0.5, while blue iso-surfaces
represent 𝜔∗

𝑡 = −0.5. The vortical structures are presented by
the green iso-surfaces of 𝑄 = 500.

separation bubbles. Noteworthy is the manifestation of mul-
tiple frequencies detected on the suction side within case L,
concomitantly discernible within the PSD analysis in the near
wake region. Nevertheless, case T undergoing a transition only
reveals a single frequency, coupled with turbulent behavior
within the near wake region. Moreover, dominant frequencies
of two cases are different. Within case L, the frequency re-
sponse on the suction side is attributed to the acoustic feedback
occurring between the inception of unsteady separation and the
trailing edge, with the dominant tone further selected by the
near-wake instability. Conversely, a self-sustained turbulence
occurs in case T due to the mode-B instability weakens the
feedback loop. Affected by boundary layer instability, a single
dominant frequency manifests in case T, which is different from
that in case L and can be predicted by the LSA method.
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