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ABSTRACT
We describe a detailed numerical study of stability in

the so-called oblique Couette-Poiseuille flows, which com-
prise simple examples of three-dimensional boundary layers.
Through comparison with the Orr-Sommerfeld operator for
the more familiar aligned case, we show that an effective wall
speed completely characterizes modal stability. We leverage
this to succinctly explain trends in the critical Reynolds num-
ber, which, at sufficiently large wall speeds, becomes exclu-
sively dependent on the direction of wall motion. An analysis
of transient growth reveals that three-dimensionality is detri-
mental to energy amplification, reminiscent of turbulent three-
dimensional boundary layers, where a similar decline in the
energy production is a commonly observed feature. The as-
sociated optimal perturbation is found to develop via a lift-up
effect enhanced by an Orr-like mechanism.

INTRODUCTION
Current turbulence theories rely heavily on observations

in flows that are, in a mean sense, two-dimensional. In con-
trast, many boundary layer flows are often three-dimensional,
with skewed mean velocity vectors and flow angles that vary
non-trivially with the wall-normal coordinate. Here, we sys-
tematically analyze the stability of a class of internal flows that
generalize the traditional Couette-Poiseuille configuration by
allowing for a misalignment – prescribed by an angle of skew-
ness θ – between the pressure gradient and the wall velocity
vectors. We refer to these as oblique Couette-Poiseuille flows
(OCPfs), and cite wind-water interactions, turbo-machinery,
tribology, and geo-physical flows as immediate applications.

Oblique Couette-Poiseuille flows have remained rela-
tively underexplored in the literature, and, in fact, to the best
of our knowledge, this work is the first to exhaustively investi-
gate their linear stability. In contrast, the aligned case, θ = 0,
abbreviated hereafter as ACPf, has been studied more exten-
sively, with Potter (1966) and Reynolds & Potter (1967) pro-
viding most of the initial work in this regard. Described by
the non-dimensional wall speed ξ (typically scaled with the
center-line maximum for simple Poiseuille flow), the parallel

superposition of a Couette component is, in general, stabiliz-
ing, at least in terms of a critical Reynolds number Rec below
which eigenvalue instability is absent. Furthermore, beyond
the threshold value ξ ≈ 0.7, the base flow achieves complete
linear stability against infinitesimal perturbations. Meanwhile,
for non-modal disturbances, Bergström (2004) reported gener-
ally large algebraic growth, albeit heavily dependent on the rel-
ative influences of the Poiseuille versus Couette components.

Interestingly, studies on turbulent OCPfs appear to be
more common, and in this community, these flows form pro-
totypical examples of the so-called “viscous-induced” three-
dimensional boundary layers. Unfortunately, however, al-
most all relevant work to date has focused exclusively on wall
motion that is precisely orthogonal to the pressure gradient,
θ = π/2, with almost no attention devoted to intermediate
regimes. Coleman et al. (1996) and Le et al. (2000), for exam-
ple, examined the turbulent statistics of two-dimensional chan-
nel flows perturbed by impulsive (orthogonal) spanwise wall
motion. Extending this work, Kannepalli & Piomelli (2000)
displaced only a finite section of the wall so as to contrast the
initial response of the flow with its subsequent relaxation to
a two-dimensional equilibrium turbulence. A common theme
within these investigations, and indeed within the general con-
text of three-dimensional boundary layers, is the unusual re-
duction in turbulent stresses (and, by extension, turbulent en-
ergy production) relative to the two-dimensional case, which
occurs despite the addition of mean shear (Moin et al., 1990;
Lozano-Durán et al., 2020). Thus, it is of particular interest to
see whether a similar phenomenon might remain relevant here.

PROBLEM FORMULATION
Figure 1 summarizes a typical OCPf. Here, the governing

equations are standard for incompressible fluid flow

∂uuu
∂ t

+(uuu ·∇)uuu =−∇p+
1

Re
∇

2uuu (1)

and we non-dimensionalize length with the channel half-width
h, velocity with the center-line value Up for Poiseuille flow,
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Figure 1. A sketch of the flow geometry for oblique Couette-
Poiseuille flows. The wall at y = h translates with a velocity
Uw at an angle θ ̸= 0 to the streamwise direction, inducing a
three-dimensional shear flow.

time with h/Up, and the pressure with ρU2
p , where ρ denotes

the fluid density. The Reynolds number is Re =Uph/ν , where
ν is the kinematic viscosity, and the base profile can be de-
scribed by UUU =

(
U (y) 0 W (y)

)
, where

U (y) = 1− y2 +
ξ

2
(1+ y)cosθ (2)

W (y) =
ξ

2
(1+ y)sinθ (3)

and ξ =Uw/Up is the non-dimensional wall speed. Assuming
now a set of infinitesimal fluctuations, we linearize Equation
(1) around UUU . Converting to a formulation involving perturba-
tions in the wall-normal velocity/vorticity

(
v′ η ′), we adopt a

normal mode ansatz(
v′ (x,y,z, t)
η ′ (x,y,z, t)

)
= χχχei(αx+β z)

χχχ =

(
v(y, t)
η (y, t)

)
(4)

which yields a system of the form

Lχχχ =− ∂

∂ t
Mχχχ =⇒ ∂ χχχ

∂ t
= Sχχχ (5)

Here, denoting D≡ d/dy and k2 = α2 +β 2, we have defined

L=

(
LOS 0

iβDU − iαDW LSQ

)
M=

(
D2 − k2 0

0 1

)
(6)

where the Orr-Sommerfeld and Squire operators, LOS and LSQ
respectively, are given by

LOS = (iαU + iβW )(D2 − k2) (7)

− iαD2U − iβD2W − 1
Re

(D2 − k2)2

LSQ = iαU + iβW − 1
Re

(D2 − k2) (8)

The spectrum Λ(S) dictates the stability of the system in Equa-
tion (5), and for asymptotic stability, we require λr < 0 for
λ = λr + iλi ∈ Λ(S). The manifold of neutral growth is then
given by

λr (α,β ,Re,ξ ,θ) = 0 (9)

Figure 2. The critical Reynolds number Rec, normalized
with the equivalent value Rep for Poiseuille flow (ξ → 0), for
angles θ in (a), Θ1 and (b), Θ2. In the second panel, the arrow
denotes the direction of increasing θ from θ = 30◦ to θ = 90◦

in increments of 10◦.

However, since the stability equations for shear flows are typ-
ically non-self-adjoint, S is, in general, highly non-normal
(Trefethen et al., 1993). Thus, one must account for the pos-
sibility of finite-time non-modal energy growth that cannot be
quantified purely by a spectral analysis. Here, we consider the
gain G of the state transition operator Φ(t,0) for the linear sys-
tem in Equation (5). We adopt the energy norm ∥·∥E , where

∥χχχ∥2
E =

∫ 1

−1
v†v+

1
k2

(
η

†
η +

∂v†

∂y
∂v
∂y

)
dy (10)

so that G = ∥Φ(t,0)∥2
E can be computed via a weighted sin-

gular value decomposition. Physically, this gain represents an
optimization of the energy amplification at time t over all pos-
sible initial states having unit norm; see Schmid & Henning-
son (2001) for more information. Our numerical experiments
were conducted in Python using a standard Chebyshev pseu-
dospectral method, and we scaled our parameter sweeps using
the open-source module Ray (Moritz et al., 2018).

MODAL ANALYSIS
First, we summarize an investigation of modal stability in

OCPfs. We begin by introducing the critical Reynolds number
Rec, which represents the minimum Reynolds number below
which the flow remains asymptotically stable, λr < 0. The
associated critical wavenumbers are defined as (αc,βc), and
evoke a neutrally stable mode, λr = 0. Thus, beyond this
threshold, at least one disturbance must become unstable, that
is, λr > 0. Since OCPfs are not amenable to Squire’s The-
orem, the spanwise wavenumber β becomes a relevant sta-
bility parameter and cannot be set to zero a priori. On the
other hand, the Squire modes remain damped as in the case
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Figure 3. The asymptotic values of (a–b), the critical streamwise and spanwise wavenumbers and (c), the critical Reynolds number
versus θ . The solid lines denote the theoretical estimates derived from Equation (13).

of two-dimensional flows, and it suffices to consider only the
Orr-Sommerfeld operator when investigating modal stability.

We limit our attention to pairs (ξ ,θ) ∈ [0,1]× [0◦,90◦].
For various OCPf configurations, Figure 2 provides plots
of Rec normalized with the critical Reynolds number for
Poiseuille flow, Rep ≈ 5772.73 (Schmid & Henningson, 2001).
Two regimes of interest can be identified, demarcated, respec-
tively, as Θ1 ≡ (0,20◦] and Θ2 ≡ (20◦,90◦]. Within the former,
a typical Rec-curve is qualitatively similar to that for ACPf: a
short range of stabilization is followed by an inflection point
and then further growth. We see that increasing obliqueness
is, in general, destabilizing (relative to ACPf), an effect that
is prevalent even in Θ2. In the latter regime, we also note a
stronger departure from the stability features of ACPfs, as ev-
idenced, for example, by the Rec-curves forgoing their inflec-
tional nature. Interestingly, we see in Figure 2 that non-trivial
(θ ̸= 0) OCPfs remain linearly unstable for all wall speeds ex-
plored here. This is evidently in stark contrast to ACPf, which
is well-known to become unconditionally linearly stable after
the so-called “cut-off” ξ ≈ 0.7 (Potter, 1966). Furthermore,
regions of ξ -space appear to emerge where Rec (and the asso-
ciated critical wavenumbers, not shown here) approach asymp-
totic values; in other words, the flow stability becomes inde-
pendent of the strength of wall motion for sufficiently large
ξ . This is most pronounced for θ = 90◦, for which the crit-
ical triplet at all ξ is found to be exactly the same as for the
Poiseuille flow, ξ = 0, that is,

(αc,βc,Rec)θ=90◦ ≈
(
αp,βp,Rep

)
= (1.02,0,5772.73) (11)

By extension, the streamwise and wall-normal component of
the associated eigen-function also precisely match those of
the Poiseuille Tollmien-Schlichting wave (with the addition of
a non-zero spanwise component, however, due to the mean
spanwise shear).

In order to rationalize these observations, we first note
that D2W = 0, so that the Orr-Sommerfeld operators for OCPf
and ACPf can be made equivalent by defining

ξeff (α,β ,Re,ξ ) = ξ

(
cosθ +

β

α
sinθ

)
(12)

as an “effective” wall speed for the aligned problem. The
immediate consequence is that the stability of any OCPf can
be fully characterized by comparison with the appropriate

ACPf configuration(s). In particular, Potter (1966) showed that
ACPfs are most unstable (in the sense of Rec) when ξ → 0,
that is, in the limit of the Poiseuille flow. Therefore, to “maxi-
mize” destabilization, the Orr-Sommerfeld problem for OCPfs
at criticality must degenerate into the two-dimensional analog
for Poiseuille flow, that is, following an application of Squire’s
Theorem. This will happen if and only if

ξeff = 0 α
2 +β

2 = α
2
p αRe = αpRep (13)

The system in Equation (13) can be solved exactly (assuming
non-negative α) and Figure 3 highlights that these theoretical
values agree excellently with our numerical findings for the
asymptotic critical parameters (notice, in particular, that the
prediction for θ = 90◦ in Figure 3 matches Equation (11)).
An intriguing implication of this analysis arises for the asymp-
totic eigen-function; specifically, in wave theory, the direc-
tion of wave motion is encoded within the wavenumber vector
kkk =

(
α β

)
so that a wave with wavenumber vector kkk will prop-

agate at an angle ψ to the positive streamwise direction, where
tanψ = β/α . From the first expression in Equation (13), it is
then possible to conclude that the asymptotic eigenmode prop-
agates at an angle ψ = θ −π/2 to the pressure gradient, that
is, exactly perpendicular to the wall motion.

TRANSIENT GROWTH ANALYSIS
We now focus on the potential for transient (algebraic)

energy growth in the initial-value problem, Equation (5). For
an arbitrary OCPf configuration (ξ ,θ), we consider Gmax, de-
fined as the output of the following optimization

Gmax (Re,ξ ,θ) = max
α,β ,t

G(α,β ,Re,ξ ,θ , t) (14)

Thus, physically, Gmax represents the maximal amplification
admissible across time and wavenumber space. Figure 4 out-
lines the findings of a large parameter sweep for Gmax at Re =
1000. For simple ACPf, we immediately observe a monotonic
increase in Gmax with ξ . The introduction of a weak misalign-
ment maintains this trend, even allowing marginally greater
amplification throughout the full range of wall speeds, an ef-
fect that evidently peaks at θ = 4.5◦. At even larger angles of
skewness, two different regimes can be identified. In particu-
lar, while Gmax continues to grow with θ , albeit nominally, for
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Figure 4. Curves of Gmax, the maximal energy gain experienced by OCPfs across time and wavenumber space, for some representative
θ . All values have been normalized with Gmax (ξ = 0) ≈ 196. A dashed line indicates ACPf, θ = 0. The largest amplification is
generally realized for small but non-zero angles, most notably for θ ≈ 4.5◦. At high levels of obliqueness, energy amplification
evidently suffers, particularly for modest to large wall speeds.

0 < ξ ⪅ 0.15, it decreases quite rapidly for ξ ≥ 0.2. Further-
more, no “asymptotic” behavior akin to our modal results was
resolved for Gmax.

Interestingly, within the framework of unforced algebraic
growth, it is evident that a greater degree of misalignment is
typically more “stable”, with θ = 90◦ providing the strongest
reduction in Gmax for a wide range of wall speeds. Of course,
this sharply contradicts the predictions of the earlier eigen-
value analysis, which claims that a perfectly orthogonal OCPf,
in fact, minimizes Rec in the (ξ ,θ)-plane. Thus, on the fi-
nite time scales along which transient mechanisms operate,
an antagonistic effect suppressing non-modal energy growth
seems to be at play. This is especially notable since, individ-
ually, both the ACPf and the standard Couette flow support
strong transient responses, yet for sufficiently skewed OCPfs,
Gmax can drop to as low as 46% of the equivalent value for the
Poiseuille flow (Gmax ≈ 196) at this Reynolds number.

Such a dampening of the perturbation energy is remark-
ably reminiscent of fully turbulent three-dimensional bound-
ary layers, where increasing skewness is known to similarly
impair the production of turbulent kinetic energy, despite the
addition of a secondary source of shear. Numerous hypotheses
have attempted to explain this phenomenon, and the most typ-
ical explanation suggests a deviation of momentum-carrying
eddies from their “optimal” alignment by the mean spanwise
strain (Bradshaw & Pontikos, 1985). In the context of laminar
OCPfs, as treated here, such an ideal configuration can poten-
tially be quantified by considering the θ maximizing Gmax at a
given ξ , here denoted as θmax. Figure 5(a) illustrates that this
quantity decays primarily as a power law, but what is more
important is that the associated cross-stream component W is
quite weak, as highlighted in Figure 5(b). In a similar vein,
the flow direction φ , defined as

φ = arctan
(

W (y)
U (y)

)
(15)

and plotted in Figure 5(c), also generally collapses throughout

Figure 5. (a), the variation in ξ of θmax, the angle maximiz-
ing Gmax. For select pairs of (ξ ,θmax), the associated cross-
flow and flow angle profiles have been highlighted with the
appropriate color in (b) and (c), respectively. An inset in (c)
shows the y-averaged deviations φ̃ from the streamwise direc-
tion; see Equation (16).

most of the channel, experiencing rapid variation only near the
upper wall. This is further emphasized in the inset provided in
the same panel, which shows the average skewness φ̃ , where

φ̃ =

∫ 1
−1 φ (y) dy∫ 1
−1 111dy

=
1
2

∫ 1

−1
φ (y) dy (16)

We see that φ̃ remains small (≈ 6◦ at worse) for all ξ . Thus,
the optimal configuration appears to be roughly universal in ξ ,
comprising what is effectively a collateral boundary layer with
an approximately constant flow direction in y.

At ξ = 0.25, Figure 6 presents for various θ the initial
condition that realizes Gmax as well as the associated response
field at the optimal time. In two-dimensional flows such
as ACPf, this energy-optimal pair is characterized by weak
counter-rotating streamwise vortices, infinitely elongated in
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Figure 6. The optimal initial condition (left) and response at optimal time (right) for some values of θ at ξ = 0.25. The color and
quiver arrows represent, respectively, the streamwise and cross-stream velocity perturbations.

the streamwise direction, that intensify through a redistribution
of mean momentum by the wall-normal perturbations. Orig-
inally proposed by Ellingsen & Palm (1975), this process is
commonly referred to as the lift-up effect, in which a linear
amplification in time proportional to the streamwise shear can
be achieved for a streamwise-independent disturbance, at least
to the linear order when viscosity is taken into account. Al-
though the three-dimensionality of our flow introduces addi-
tional nuance, Ellingsen & Palm (1975) had suggested that the
lift-up process could remain viable even in skewed boundary
layers, arguing, however, that streak growth would substan-
tially decrease, particularly in the case of OCPfs because the
streamwise shear itself decreases as θ approaches exact or-
thogonality.

Therefore, it is not surprising that the optimal initial con-
ditions in Figure 6 comprise weak streamwise vortices whose
amplification at the optimal time decreases in response to an

increase in flow obliqueness, consistent with Figure 4. How-
ever, as captured by both Blesbois et al. (2013) and Hack &
Zaki (2015) for their base flows, these vortices also initially
oppose and eventually tilt in the direction of the spanwise
mean shear, analogous to the classic down-gradient mecha-
nism proposed by Orr (1907). Interestingly, then, because we
can expect the crossflow to only enhance the additional non-
modal energy gain provided by this process, it is likely that the
trends observed in Figure 4 are a consequence of a decrease in
the overall effectiveness of the lift-up process.

CONCLUSIONS
We have performed a comprehensive parameter sweep

exploring modal and non-modal stability in oblique Couette-
Poiseuille profiles. By introducing an angle of skewness θ

between the pressure gradient and the wall velocity vectors,
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these flows generalize the more commonly explored ACPfs,
θ = 0. We show that this misalignment is generally destabi-
lizing, at least as far as Rec is concerned. Furthermore, it is
found that criticality eventually becomes a function of only
the direction of wall movement (that is, θ ), which is explained
by identifying an effective wall speed that maps the stability
equations to those for ACPf. The exact values of the critical
parameters are thence derived in this asymptotic regime and
shown to agree well with our numerical findings. Separately,
algebraic growth is determined to be highly suppressed as θ

increases, replicating the energy dampening prevalent in tur-
bulent three-dimensional boundary layers. In a similar vein,
the base flow configuration that maximizes the energy gain
at any wall speed ξ is found to be an approximately collat-
eral – effectively two-dimensional – boundary layer. Finally,
the most energetic initial perturbations seem to develop via a
lift-up process enhanced by an Orr-like mechanism, the latter
arising from the cross-stream shear.
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