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ABSTRACT 
Machine learning (ML) techniques have been employed in 

subgrid scale (SGS) stress modeling in the context of large 
eddy simulation (LES) recently. However, many of the current 
ML-based models include limitations associated with 
practical applications, such as incompatibility with 
unstructured meshes and limited applicability of the model. In 
the present study, a graph neural network (GNN) is employed 
to overcome those limitations while achieving high prediction 
performance by considering the adjacent features through 
convolution. Direct numerical simulation (DNS) data of 
various types of turbulent flow fields are used in the process 
of training, validation, and testing of the model. The GNN-
based SGS stress model is assessed in a priori manner in both 
non-reacting incompressible turbulent flows and reacting 
combustion fields. The result of a priori testing in 
incompressible turbulent flows shows that the correlation 
coefficient surpasses 0.8 in all test cases. Furthermore, the 
model exhibits good agreement with the filtered DNS of 
variable-density turbulent combustion fields within the 
reaction zones, although the errors are slightly larger in the 
diagonal components due to dilation. Future work includes the 
improvement of prediction performance in regions with large 
density fluctuations by incorporating turbulent combustion 
fields in the training dataset. 
 
 
INTRODUCTION 

With the increase in computational capabilities, LES is 
becoming a valid tool for fluid equipment design. LES 
requires less computational costs compared with DNS due to 
resolving only grid-scale (GS) components, while the 
contributions from subgrid-scale (SGS) ones are modeled by 
the SGS stress model. In recent years, machine learning has 
been employed in wide range of fields such as image 
recognition (Krizhevsky et al., 2012) and language processing 
(Sutskever et al., 2014), and SGS stress modeling is no 
exception. Reportedly ML-based models outperform 
conventional models in terms of a priori testing (Nikolaou et 

al., 2020; Liu et al., 2022). However, the ML-based modeling 
approach has the following potential limitations when it comes 
to practical applications: feature sampling incompatible near 
the physical boundary regions and for non-uniform meshes, 
and models trained specific to single flow configuration. For 
example, convolutional neural network (CNN) postulates 
uniform Cartesian mesh in feature sampling, which may not 
be always applicable to complex meshes such as unstructured 
mesh or non-uniform mesh. Moreover, a part of the CNN 
kernel subdomain could be outside the flow area near the 
physical boundaries. ML-based models trained on single flow 
configuration may be significantly less accurate in other flow 
configurations or the flow configuration that is physically 
identical to the one from which the model is trained but 
translated or rotated due to lack of physical invariants. 

In the present study, the SGS stress model is developed 
based on GNN to resolve above-mentioned limitations in the 
context of LES using DNS data as training dataset. In creating 
training dataset, data augmentation is applied to satisfy the 
rotational invariant. First, a priori assessment is performed for 
a range of turbulent flow configurations. Subsequently, the 
prediction performance of the developed model is further 
tested in two different types of variable-density turbulent 
combustion fields in a priori manner. The details of the neural 
network architecture, input/output quantities, and training 
dataset are introduced in the next section, followed by the 
results of the model assessment and discussion. 
 
 
SGS STRESS MODELING 

The SGS stress tensor appearing in the filtered Navier-
Stokes equation needs to be modeled: 
 
 

𝜏քօ = 𝜌ि̅𝑢֖𝑢֗ज − 𝑢̃ք𝑢̃օी, (1) 
 
 
where the overline and the tilde denote spatial filtering and 
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Favre filtering, respectively. Here, compressible flows are 
considered in the SGS stress tensor for generality since 
reacting flow conditions are also considered as later described. 
In the present study, the SGS stress model is developed based 
on graph neural network (GNN). GNN is a type of deep neural 
network architectures suited for data structured as graphs. A 
graph consists of nodes and edges, and the computational 
mesh on which the flow field is discretized can be regarded as 
a graph data in the context of computational fluid dynamics. 
Therefore, GNN does not require uniform Cartesian mesh as 
input/output quantities. 

The spatial convolutional GNN based on SplineCNN 
(Fey et al., 2018) is employed as the neural network 
architecture, which takes into account the relative positions of 
the adjacent nodes by the edge feature constructed as 
 
 

𝑒(𝑖, 𝑗) =
1

𝑁րΔ
ि𝑥ք − 𝑥օ, 𝑦ք − 𝑦օ, 𝑧ք − 𝑧օी +

1

2
, (2) 

 
 
where 𝑁ր is the normalizing factor to satisfy ‖𝑒‖ ≤ 1, and Δ 
is the filter size considered in the model. A total of thirteen 
quantities adopted in the previous study (Abekawa et al., 
2023) are fed into the input layer, 
 

 
 
where ⟨⋅⟩း denotes the mean value at the reference point and 
its adjacent points. The output quantities are six SGS stress 
tensor components. Among the inputs, the velocity gradient is 
typically used in traditional SGS models such as the 
Smagorinsky model (Smagorinsky, 1963) and the gradient 
model (Clark, 1979; Vreman et al., 1996). It was shown that 
the wall distance 𝑑Ѐ͘ΰΰ  improves the model performance for 
turbulent channel flow (Gamahara and Hattori, 2017). 
However, the direct incorporation of the wall distance into the 
model causes a feature scaling issue. Eq. (4) is introduced so 
that the value ranges between 0 and 1 for 0 ≤ 𝑑Ѐ͘ΰΰ < ∞. Eq. 
(5) mimics the velocity fluctuation used in scale-similarity 
model (Bardina, 1983). 

The neural network structure is shown in Figure 1. The 
input layer is followed by two SplineCNN layers, whose 
outputs are aggregated by the scatter mean layer. 
Subsequently, two fully-connected (dense) layers precede the 
final output layer. The SplineCNN layers are denoted as 
SConv(𝑘,𝑀ք։, 𝑀֊֐֏) , where 𝑘 = (𝑘φ, 𝑘ϵ, 𝑘ϯ)  is the multi-
dimensional kernel size, 𝑀ք։ is the size of the input feature 
map, and 𝑀֊֐֏  is the size of the output feature map. The 
details of the GNN architecture are as follows. The degree of 
the B-spline basis 𝑏ֈ is taken as 1 based on the parametric 
study in Fey et al., and 𝑘φ = 𝑘ϵ = 𝑘ϯ = 𝑏ֈ + 4 for Cartesian 
coordinate. The aggregation in the GNN layers is achieved by 
calculating the mean value of the corresponding graph nodes. 
Thus, the performance of the model is not substantially 
influenced by the variations in the number of adjacent points. 
As activation functions, the exponential liner unit (ELU) 

activation function is employed except for the second fully-
connected layer, where the rectified linear unit (ReLU) 
activation function is employed. In addition, ReLU function is 
applied only to the diagonal components of the six output 
tensor components after the last fully-connected layer to 
enforce general 𝜏քք > 0 constraint. 

 Incompressible DNS results of homogeneous isotropic 
turbulence (HIT) (Tanahashi et al., 1999), turbulent channel 
flow (CH) (Tanahashi et al., 2004; Kang et al., 2007) and 
temporally developing turbulent mixing layer (TML) 
(Tanahashi et al., 2001; Itoh et al., 2018) are used in the 
process of training and testing of the GNN model. These 
turbulent flow fields are shown in Figure 2 in terms of the 
isosurface of the second invariant of the velocity gradient 
tensor. The numerical conditions of the DNS data are 
summarized in Table 1, where Reynolds number is based on 
Taylor microscale for HIT, friction velocity for CH and the 
 
 

Table 1. Numerical conditions of the DNS dataset 

𝜕𝑢̃ք/𝜕𝑥օ, (3) 

exp(−𝑑Ѐ͘ΰΰ/Δ), (4) 

𝑢̃ք − ⟨𝑢̃ք⟩း, (5) 

Flow 𝑅𝑒 𝐿֓ × 𝐿֔ × 𝐿֕ 𝑁֓ × 𝑁֔ × 𝑁֕ 

HIT 60 2𝜋 × 2𝜋 × 2𝜋 128ϯ 
 97 2𝜋 × 2𝜋 × 2𝜋 256ϯ 
 120 2𝜋 × 2𝜋 × 2𝜋 324ϯ 
 141 2𝜋 × 2𝜋 × 2𝜋 400ϯ 

CH 180 4𝜋𝛿 × 2𝛿 × 𝜋𝛿 192 × 193 × 160 
 400 2𝜋𝛿 × 2𝛿 × 𝜋𝛿 256 × 385 × 192 
 800 2𝜋𝛿 × 2𝛿 × 𝜋𝛿 512 × 769 × 384 
 1295 2𝜋𝛿 × 2𝛿 × 𝜋𝛿 864 × 1239 × 648 

TML 500 4Λ × 6Λ × 8/3Λ 216 × 325 × 144 

 1100 4Λ × 6Λ × 8/3Λ 360 × 541 × 240 

 1300 4Λ × 6Λ × 8/3Λ 384 × 577 × 240 

 1900 4Λ × 6Λ × 8/3Λ 480 × 721 × 320 

PF 60 5 × 2.5 × 2.5 mm3 513 × 128 × 128 
VF 97 10 × 5 × 5 mm3 769 × 385 × 385 

 

 
 

Figure 1. The structure of the GNN model. Note that the ReLU 
function is additionally applied to the diagonal components at 
the output layer. 
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initial vorticity thickness for TML. Such DNS data are 
preprocessed through filtering operation and mapped onto 
much coarser LES mesh to emulate LES fields using Gaussian 
filter kernel for the training process. The filter size Δ is set as 
ranges Δ/𝜂 = 1.6 − 86. Here, 𝜂 denotes Kolmogorov length 
scale in each flow field. In addition to those LES dataset, data 
augmentation is applied since the rotated input/output data is 
a completely unknown flow configuration for neural network 
models even though the data is physically identical to the 
original data, while the Galilean or translation invariants are 
naturally considered. The input/output quantities in each 
dataset are multiplied by the rotation matrix around an axis 
incrementing by 𝜋/4  to satisfy the rotational invariant 
discretely. 20% of the training data is used for validation and 
the model is saved when the minimum validation loss is 
reached. 

The GNN-based SGS model is additionally tested in 
stoichiometric hydrogen-air turbulent premixed combustion 
fields. Conventionally, SGS stress models developed for non-
reacting incompressible flows have been applied to variable-
density reacting flows with assumed validity. Here, two 
turbulent combustion configurations are tested. One is 
statistically planar flames where the flames freely propagate 
in homogeneous isotropic turbulence (PF in Table 1) (Shim et 
al., 2011), and the other is turbulent V-flame (VF in Table 1) 
(Minamoto et al., 2011), where turbulent V-flame anchored 
by the presence of a hot rod produces shear layers with large 
shear stress. For these two cases, the Reynolds number is 
defined based on the inlet Taylor microscale. Both combustion 
DNS data are also preprocessed in the same way as the 
incompressible data, and the filter size is set as Δ = 0.25𝛿֏փ, 
where 𝛿֏փ is the flame thermal thickness. 
 
 
MODEL ASSESSMENT 

 The prediction performance of the GNN-based SGS 

stress model is assessed in a priori manner for incompressible 
turbulent flow configurations. Figure 3 shows joint probability 
density functions of the target values created from the filtered 
DNS and predicted SGS stress tensor components 𝜏φφ, 𝜏φϵ, 𝜏φϯ. 
The predicted values by the GNN-based model show positive 
correlations with the target values, although the relatively 

(c) 

(a) (b) 

Figure 2. Typical instantaneous field of the second invariant of 
the velocity gradient tensor 𝑄 = 0.02max(𝑄) for (a) HIT120, 
(b) TML1300 and 𝑄 = 0.005max(𝑄) for (c) CH800. 
 

 

Figure 4. Correlation coefficients for each stress tensor 
component of HIT. 

 

Figure 5. Correlation coefficients for each stress tensor 
component of CH. 

 

Figure 6. Correlation coefficients for each stress tensor 
component of TML. 
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large variation is observed in turbulent channel flows. The 
correlation coefficients for each SGS stress tensor component 
of all the test cases considered are shown in Figure 4-6. In fact, 
the correlation coefficient for HIT ranges 0.92-0.93, for CH 
0.84-0.93 and for TML 0.91-0.97, and the value averaged over 
all six stress components is well over 0.8 in each test flow 
condition. The root mean squared error for HIT and TML is 
approximately 0.2 and for CH approximately 0.6 at most in 
each stress tensor component. 

Furthermore, the GNN-based SGS stress model is tested 
in turbulent combustion fields. The output of the model is 
conditioned by the reaction progress variable 𝑐յ̃  based on the 

mixture GS temperature defined as  𝑐յ̃ = (𝑇̃ − 𝑇֐)/(𝑇ս −

𝑇֐), where 𝑇֐ is the preheated temperature of the reactant and 

𝑇ս  is the burnt temperature. Figure 7 shows the joint 
probability density functions of the target and predicted values 
for the reaction zones (0.2 ≤ 𝑐յ̃ < 0.4). While the presence 
of significant density fluctuations inside the reaction zones 
due to combustion exists, the overall trends exhibited in the 
PDF are close to those observed in the result of the testing in 
incompressible turbulent flows. The correlation coefficient 
ranges between 0.74-0.96 for the planar flame and 0.92-0.97 
for the V-flame for all six stress tensor components inside the 
reaction zones. In the unburnt side, the correlation coefficients 
range between 0.93-0.97 and in the burnt side they range 0.76-
0.97 for both combustion cases. The prediction accuracy is 
slightly lower in diagonal components of the SGS stress tensor 
inside the reaction zones, and it can be found that 

overprediction of the stress in diagonal components is much 
less for V-flame than planar flame. This is because there exist 
large density fluctuations caused by combustion inside the 
reaction zones while the model is trained only on 
incompressible flows.  
 
 
CONCLUSIONS 

In the present study, the ML-based SGS stress model is 
developed in a way that resolves the potential limitations 
appearing in the current ML-based SGS stress models or their 
practical applications in LES. The training dataset includes 
fundamental incompressible turbulent flows; homogeneous 
isotropic turbulence, turbulent channel flow and temporally 
developing turbulent mixing layer with different Reynolds 
numbers. The result of a priori testing on incompressible 
turbulent flows showed that the GNN-based model yields 
reasonable prediction performance, regardless of flow 
configurations and Reynolds numbers. In addition, the model 
is assessed in turbulent combustion fields, which showed 
relatively strong positive correlations overall between the 
filtered DNS and the output of the model inside the reaction 
zones for both planar flames and V-flame. The model 
overpredicted the SGS stress in the diagonal components due 
to large density fluctuations since the model does not consider 
dilation. Outside the reaction zones, where density fluctuation 
is smaller, the model performance is satisfying overall as well, 
although the prediction of the SGS stress model in those 
regions is less important than the reaction zones in turbulent 
combustion LES. Future work includes considering 

Figure 3. Joint probability density functions of the target (horizontal axis) and predicted (vertical axis) values. The predictions are 
shown for 𝜏φφ (a), (d), (g), 𝜏φϵ (b), (e), (h), and 𝜏φϯ (c), (f), (i), for HIT (a)-(c), TML (d)-(f), and CH (g)-(i). The color is in a 
logarithmic scale. 
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compressible flows in the training dataset in order to improve 
the performance inside the reaction zones. 
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