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ABSTRACT

An unsupervised-machine-learning-based sub-grid scale
(SGS) model for very coarse large-eddy simulations (vLES) is
proposed. A prohibitive issue with vLES is that, because even
the energy-containing eddies are not appropriately resolved,
the resulting flowfield shows nonphysical features such as en-
larged turbulent structures. Therefore, conventional SGS mod-
els which assume the resolved eddies to be physically accurate
fail to make accurate predictions from the vLES flowfields. As
a countermeasure to this issue, in addition to the typical super-
vised conditional GAN model, the proposed machine-learning
pipeline has the unsupervised cycleGAN model preceding the
conditional GAN model. The cycleGAN model converts the
input vLES flowfield to be of filtered direct numerical simu-
lation (DNS) quality so that the cycleGAN-produced filtered
DNS data can be appropriately super-resolved by the super-
vised model. The predicted small-scale eddies are then ex-
tracted from the super-resolved flowfield to obtain the SGS
stress components. The proposed unsupervised method is
shown to be effective for accurate predictions of the mean
streamwise velocity in vLES of a turbulent channel at the
friction Reynolds number of Reτ ≈ 1000, while the typical
supervised-only methodology without the cycleGAN model
shows discrepancies with the DNS profile, similar to other
conventional SGS models. The budget analyses of the resolved
Reynolds stresses revealed that the proposed SGS model pre-
dicts dominant SGS backscatter in the spanwise direction. The
produced spanwise Reynolds stress is then redistributed to the
wall-normal component of the Reynolds stress via the pressure
term, where it gives rise to the increased Reynolds shear stress
in the near-wall region. This kind of mechanism is not ob-
served by the conventional SGS model. The results show that
the prediction of SGS backscatter is crucial for accurate pre-
dictions in vLES and that the proposed unsupervised-learning-
based pipeline is an effective method to achieve such predic-
tions.

INTRODUCTION
Large-eddy simulation (LES) is considered to be a good

compromise between the fidelity of the simulated turbulence
and computational cost. To further reduce the computational
requirements in LES, the development of a sub-grid scale
(SGS) model for very coarse computational grids is desired.
In regular LES, the SGS model is able to make accurate pre-
dictions of the SGS stress components from the well-resolved
LES flowfields. However, in very coarse LES (vLES) consid-
ered in this study, the energy-containing eddies of turbulence
are not fully resolved. The under-resolution of the energetic
eddies causes the resolved turbulence structures to be non-
physically distorted and enlarged, resulting in a nonphysical
energy increase near the cut-off wavelength. Therefore, exist-
ing SGS models based on known physics of turbulence fail to
accurately predict the SGS components, resulting in inaccurate
turbulence statistics.

The recent advances in machine learning have allowed
various novel approaches to long-standing problems in fluid
dynamics, including SGS modeling (Duraisamy (2021)). As
machine learning is known to be successful at finding hidden
relationships in data, it may be suitable for SGS modeling in
vLES in which insights based on known physics of turbulence
are not applicable.

An SGS model can be regarded as a function that takes
the LES flowfields as the input and outputs the corresponding
SGS stresses. A common method for training a machine learn-
ing model as an SGS model is to use the filtered DNS (fDNS)
flowfields as the input and the corresponding SGS stresses as
the output in the training data (supervised training). In other
words, during training, the fDNS flowfields are used as substi-
tutes for the LES flowfields which are the actual inputs to the
model in the LES solver. The assumption with this method is
that the LES flowfields closely resemble the fDNS flowfields
used in training, that is, LES ≈ fDNS. While the assumption
holds for well-resolved LES, it does not for vLES because the
energetic eddies are not fully resolved by the coarse compu-
tational grid, that is, vLES ̸= fDNS. Therefore, the disagree-
ment between the training data (fDNS) and the testing data
(vLES) prevents the machine learning model from making ac-
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Figure 1: Schematic of the proposed unsupervised machine-learning pipeline.

curate predictions of SGS stresses. As a result, both the mean
velocity and the Reynolds stresses are negatively affected lead-
ing to inaccurate prediction of turbulence. It is known (and
shown in this work) that in vLES of wall turbulence, the in-
sufficient prediction of the Reynolds shear stress leads to the
over-prediction of the mean streamwise velocity.

In this work, we attempt to develop a machine-learning-
based SGS model for vLES. The primary objective of this
study is to obtain the accurate mean streamwise velocity pro-
file of wall turbulence by introducing the appropriate SGS
stresses and inducing the appropriate amount of Reynolds
shear stress to the vLES flowfields. The proposed machine
learning pipeline is constructed in such a way that allows accu-
rate prediction of SGS stresses from vLES flowfields which is
impossible with typical supervised-learning-based SGS mod-
eling approaches. Both the a priori validation and the a pos-
teriori test of the proposed SGS model are conducted using a
fully-developed turbulent channel at a friction Reynolds num-
ber of Reτ ≈ 1000.

METHODOLOGY
Machine learning pipeline

As mentioned above, a conventional supervisedly-trained
machine learning model is unable to make accurate predic-
tion of the SGS stresses from vLES flowfields. To alleviate
this problem, we propose the unsupervised machine-learning
pipeline as shown in Figure 1. In the proposed pipeline, the
first model (blue in figure) transforms the input vLES flow-
field to be statistically similar to an fDNS flowfield. The trans-
formation allows the second model (green in figure) which
is trained on fDNS data to perform accurate super-resolution
and predict the SGS velocity components. In short, the two
models together perform unsupervised super-resolution of the
vLES flowfields. Finally, the SGS stress components are ex-
tracted from the super-resolved high-resolution flowfields and
returned to the LES solver. To train the first vLES-to-fDNS
model, supervised training cannot be utilized because the cor-
responding instantaneous fDNS flowfield for a given vLES
flowfield does not exist. In this regard, we adopt the unsuper-
vised cycle-consistency generative adversarial networks (cy-
cleGAN) (Zhu et al. (2020)) which do not require pairs of the
input and the expected output as the training data. The second
super-resolution model is trained by a supervised conditional
GAN Mirza & Osindero (2014) using fDNS flowfields and the
corresponding DNS flowfields.

Computational setup
The proposed machine-learning-based SGS modeling

methodology is trained and tested using a fully-developed tur-
bulent channel at a friction Reynolds number of Reτ ≈ 1000
and a bulk Mach number of Mb ≈ 0.1. To train the machine
learning models, the DNS and vLES of the turbulent channel

are performed. The grid resolutions in wall units (∆x+,∆z+)
are approximately (9.0,4.5) and (72,36) for DNS and vLES,
respectively. Both walls of the channel are non-slip walls,
and the flow is periodic in the streamwise and spanwise direc-
tions. The second-order kinetic energy and entropy preserving
scheme (Kuya et al. (2018)) is employed for the spatial dis-
cretization. For time integration, the third-order TVD Runge–
Kutta method (Gottlieb & Shu (1998)) is employed. The se-
lective mixed-scale (SMS) model (Lenormand et al. (2000)) is
used as the SGS model in the vLES to generate the training
data. In the a posteriori test, the same computational grid as
the vLES is used.

We note that to stabilize the simulation in the a posteriori
test, the predicted SGS stress τi j,SGS is clipped according to
the following equations:

τ
clip
i j,SGS ≡

{
τi j,SGS if µeff > µclip,

τi j,SGS +
(

µclip
µeff

−1
)

µeffSi j otherwise.
, (1)

Si j =
∂ui

∂x j
+

∂u j

∂xi
− 2

3
∂uk

∂xk
δi j, µeff ≡

∑i j τi j,SGS
∂ui
∂x j

∑i j Si j
∂ui
∂x j

.

(2)

Here, µclip ≡ −2µw, where µw is the viscosity coefficient at
the wall, is given as the simulation parameter.

VALIDATION
Here, to validate that the proposed machine-learning

pipeline can learn to predict the SGS stresses, the pre-
computed vLES flowfield is used as the input to the proposed
machine-learning-based SGS model to test the prediction ac-
curacy. The predicted mean SGS stress components normal-
ized using the bulk density ρb and velocity ub are shown in
Figure 2. Compared to the typical supervised-only machine
learning model without the unsupervised cycleGAN (dashed
lines in the figure), the proposed unsupervised pipeline more
accurately predicts the mean SGS stress components (solid
lines in the figure). The over-prediction by the supervised-
only model is the result of the differences between its fDNS
training data and the vLES testing data. Because the vLES
flowfield shows a non-physical increase near the cut-off wave-
length compared to fDNS flowfields (vLES ̸= fDNS), super-
resolution learned from fDNS over-predicts the strength of the
small sub-grid scale eddies which leads to discrepancies in the
extracted SGS stresses. The result suggests that the unsuper-
vised cycleGAN model is effective for a more accurate SGS
modeling in vLES.
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Figure 2: Profiles of predicted SGS stress components in
a priori validation. Solid lines, proposed unsupervised
pipeline; dashed lines, typical supervised-only model;
circles, reference DNS. Blue, streamwise component;
orange, wall-normal component; green, spanwise com-
ponent; red, shear component.

RESULTS
Here, a posteriori test is performed by using the proposed

unsupervised-machine-learning-based SGS model in the LES
solver to assess its performance in LES simulations. Figure
3 shows the obtained instantaneous streamwise velocity dis-
tributions at y+ ≈ 15 with those of the vLES using the SMS
model and the reference DNS for comparison. Compared to
the DNS flowfield, the SMS model shows nonphysically en-
larged streaky structures as mentioned in the introduction. In
comparison, such enlarged structures are broken down by the
proposed SGS model, creating finer turbulent structures which
resemble more of the DNS flowfield.

Figure 4 shows the predicted mean streamwise velocity
profiles and Reynolds shear stress profiles. The figure also
shows the result for the typical supervised-only model (with-
out the unsupervised cycleGAN model in Figure 1) for com-
parisons. The proposed model shows good agreement of the
mean velocity with the reference profile, while the SMS model
shows a significant over-prediction. Notably, the proposed
model shows good agreement of the Reynolds shear stress in
the buffer layer (5 ≲ y+ ≲ 30) whereas the conventional SMS
model predicts a significantly weaker Reynolds shear stress in
this region, as mentioned in the introduction. From the shear
stress balance of the equilibrium boundary layer, the near-
wall rise in the Reynolds shear stress determines the amount
of viscous shear stress, yielding the mean velocity profile.
Therefore, the proposed SGS model with the correct near-wall
Reynolds shear stress predicts the accurate mean velocity pro-
file while the SMS model with its under-predicted Reynolds
shear stress leads to the over-prediction of the mean velocity.
These discrepancies predicted by the SMS model are also ob-
served for the supervised-only model, showing the necessity of
the unsupervised model in the proposed pipeline for accurate
predictions. It is inferred that the small turbulent structures
near the wall predicted by the proposed SGS model (observed
in Figure 3) create the additional near-wall shear stress.

The obtained Reynolds normal stresses are shown in Fig-
ure 5. While there are only small differences between the
proposed model and the SMS model for the streamwise com-
ponent in the near-wall region, significant differences are ob-
served for the wall-normal component. Considering that the
Reynolds shear stress is the covariance between the stream-

Figure 3: Instantaneous streamwise velocity distribu-
tions at y+ ≈ 15. Top, proposed unsupervised pipeline;
middle, SMS model; bottom, reference DNS. Regions
shown correspond to (L+

x ,L
+
z )≈ (4600,2300).
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Figure 4: Obtained mean streamwise velocity (top) and
shear stress (bottom). Blue lines, proposed model; green
lines, typical supervised-only model; red lines, conven-
tional SMS model; black circles, reference DNS.

wise and wall-normal components of the velocity in incom-
pressible flows, the differences in the shear stress profiles ob-
served in Figure 4 originate from the differences in the wall-
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Figure 5: Obtained streamwise (top), wall-normal (mid-
dle), and spanwise (bottom) Reynolds stresses. Blue
lines, proposed model; green lines, typical supervised-
only model; red lines, conventional SMS model; black
circles, reference DNS.

normal Reynolds stress. It is also notable that the spanwise
stress is over-predicted by the proposed model. However, be-
cause the primary focus of this study is to obtain the accurate
profile of the mean streamwise velocity as stated in the intro-
duction, we do not consider this to be a failure of the proposed
model.

To clarify how the different SGS models contribute to
the predicted Reynolds stresses and the streamwise velocity,
the budget analyses of the Reynolds normal stresses are con-
ducted. A particular focus is placed on how the differences
in the SGS stresses contribute to the increase in the wall-
normal Reynolds stress, which leads to increased shear stress
and better prediction of the mean streamwise velocity. As the
supervised-only SGS model was observed to perform simi-
larly to the SMS model, in the following, we will compare the
proposed unsupervised-learning-based method and the SMS
model.

The budget equation for each component of the resolved
Reynolds normal stresses reads

∂

∂ t
ρ ũ′′i u′′i =C+P+T +Dv +DSGS +Dp, (3)
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Figure 6: Streamwise (top), wall-normal (middle), and
spanwise (bottom) components of Reynolds stress bud-
get. Solid lines, pressure redistribution; dashed lines,
SGS dissipation. Blue, proposed model; red, conven-
tional SMS model. Black circles represent pressure re-
distribution of reference DNS. Horizontal dotted lines
denote values of 0 in the vertical axes.

where C,P,T,Dv,DSGS, and Dp denote the convection term,
production term, transport terms, viscous dissipation term,
SGS dissipation term, and pressure redistribution term, respec-
tively. In this study, the SGS dissipation DSGS and the pressure
redistribution Dp are investigated in detail as the other terms
show qualitatively similar tendencies across the different SGS
models (not shown in this paper for brevity). Here,

DSGS =−τ ′i j,SGS
∂u′′i
∂x j

, Dp = p′
∂u′′i
∂xi

(4)

with the sum taken for the subscript j.
The profiles of the SGS dissipation and pressure redistri-

bution terms for each directional component are shown in Fig-
ure 6. The SGS dissipation term DSGS (dashed lines in figure)
shows the contribution of the SGS stress to the total Reynolds
normal stress in the turbulent channel, with the positive val-
ues signifying the production of Reynolds stress and negative
values dissipation. In the wall-normal component, both the
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proposed SGS model and the SMS model predict predomi-
nantly negative values and there are only minor differences in
the profiles. In the spanwise component, on the other hand,
the proposed SGS model predicts a primarily positive contri-
bution of the SGS dissipation term whereas the SMS model
predicts negative values throughout the channel. The positive
contributions of this term represent the backscatter of turbu-
lent kinetic energy, where the energy in the small unresolved
eddies is transported to the larger resolved eddies. The energy
backscatter in the spanwise direction explains the increased
spanwise stress by the proposed SGS model observed in Fig-
ure 5. The SGS backscatter is also the cause of the energetic
fine structures observed in the instantaneous flowfield (Figure
3).

The pressure redistribution term Dp of the three compo-

nents satisfy ∑i p′ ∂u′′i
∂xi

= 0 for incompressible flows and thus
represents the transfer of Reynolds stress among the three di-
rections; for example, from the streamwise component to the
spanwise component. The profiles of the spanwise component
reveal that, while the SMS model predicts a primarily positive
contribution of this term, the proposed model predicts negative
contributions in the buffer layer region (5 ≲ y+ ≲ 30). As the
negative values occur at around the same height as the peak of
the SGS backscatter (y+ ≈ 20 ∼ 30), it shows that some of the
spanwise Reynolds stress created by the SGS backscatter is
redistributed to the other two components. Correspondingly,
the wall-normal component by the proposed model shows a
positive contribution at the same wall distance. This sug-
gests that the backscattered spanwise stress is redistributed
to the wall-normal component, which leads to the increased
wall-normal stress predicted by the proposed model. The in-
creased wall-normal Reynolds stress then leads to the increase
of the near-wall Reynolds shear stress and the better predic-
tion of the mean streamwise velocity. In contrast, the SMS
model predicts a weaker redistribution of Reynolds stress to
the wall-normal component. Furthermore, the peak of the re-
distribution occurs further away from the wall at y+ ≈ 70.
The resultant under-predicted near-wall shear stress leads to
the over-prediction of the streamwise velocity. The results
show that the strong redistribution predicted by the proposed
unsupervised-machine-learning-based SGS model occurs be-
cause of the SGS backscatter in the spanwise direction, while
the redistribution is significantly weaker in the SMS flowfield
which does not predict the necessary spanwise SGS backscat-
ter.

The above observations are compared with the mecha-
nism of DNS discussed in detail by Lee & Moser (2019).
In DNS, which resolves all relevant scales of turbulence, the
streamwise Reynolds stress created by the near-wall produc-
tion term P is first redistributed to the spanwise component.
Then, the spanwise component is redistributed to the wall-
normal component which gives rise to the near-wall shear
stress. In the proposed SGS model, the predicted wall-normal
Reynolds stress is produced mainly by the SGS backscatter in
the spanwise direction. We note that because the goal of this
study is to obtain accurate predictions of the mean streamwise
velocity profile, the accurate prediction of the Reynolds shear
stress is crucial. On the other hand, accurate predictions of the
Reynolds normal stresses and their budget terms are out of the
scope of this study. However, the above analyses have shown
that while the proposed SGS model and DNS exhibit differ-
ent turbulence mechanisms in the flowfields, they both lead to
similar near-wall wall-normal stress. Therefore, the stream-
wise and wall-normal normal stresses together yield the accu-
rate prediction of the shear stress, and the resulting streamwise

velocities show good agreement.
Interestingly, a recent study on non-machine-learning-

based SGS modeling for coarse-grid LES revealed that the
successful SGS models for coarse grids also well predict the
redistribution term of the wall-normal Reynolds stress bud-
get (Inagaki & Kobayashi (2020)). This suggests that for very
coarse grids that do not accurately resolve the energetic eddies,
the accurate redistribution of the Reynolds stresses among the
three directions is crucial to obtain the accurate mean velocity
profile.

CONCLUDING REMARKS
In this study, we proposed an unsupervised machine-

learning pipeline for sub-grid scale (SGS) modeling in coarse-
grid large-eddy simulation (LES). The pipeline is composed
of an unsupervisedly-trained cycleGAN model which converts
the LES flowfields to filtered DNS quality and a supervisedly
trained conditional GAN model which super-resolves the fil-
tered DNS-quality flowfield to obtain the DNS-quality flow-
fields. The SGS stresses are extracted from the SGS scales
of the resultant super-resolved flowfield. The a priori vali-
dation of the proposed approach shows that the unsupervised
pipeline accurately predicts the SGS stresses for the turbulent
channel, whereas the typical supervised-only approach shows
large discrepancies with the reference profile. The a posteri-
ori test performed using the proposed unsupervised-machine-
learning-based SGS model in an LES simulation showed that
the proposed SGS model predicts good agreements of the
mean streamwise velocity with the reference DNS, whereas
the conventional SMS model and the supervised-only model
show significant over-predictions. The budget analyses of the
Reynolds stresses revealed that the near-wall SGS backscat-
ter in the spanwise direction predicted by the proposed SGS
model gives rise to the increased near-wall spanwise Reynolds
stress, which is redistributed to the wall-normal component to
enable accurate predictions of the Reynolds shear stress and
the resulting mean streamwise velocity profile. Such a mech-
anism was not observed for the conventional SMS, model,
which suggests that the SGS backscatter is crucial for accu-
rate predictions in coarse-grid LES.
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