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ABSTRACT
Gaining accurate awareness of the global dynamical state

from sparse measurements is an overarching challenge in
science and engineering. This challenging inverse prob-
lem becomes especially complicated for small-scale mod-
ern air vehicles that fly in extreme aerodynamic conditions.
This study shows that real-time situational awareness can be
achieved even under extremely gusty conditions by leverag-
ing an observable-augmented machine-learning technique. We
further find that nonlinear machine learning offers a low-
dimensional, physically-interpretable manifold space that cap-
tures the essence of high-dimensional extreme aerodynam-
ics. The proposed data-driven techniques can support next-
generation air vehicles that are required to fly in operating ex-
treme environments encountered in urban canyons and moun-
tainous areas in severe weather.

INTRODUCTION
Small-scale air vehicles are tasked to navigate in complex

airspace such as urban and mountainous areas as well as tur-
bulent wakes created by ships in adverse weather to support
search, transport, and defense operations. Under such condi-
tions, small air vehicles encounter extremely strong gusts that
have traditionally been avoided due to their inability to sustain
flight operations (Jones et al., 2022). Extreme aerodynamics
related to gusts are characterized by a large number of parame-
ters, which makes parameter sweeps with expensive numerical
simulations and experiments impractical. Furthermore, theo-
retical analyses face a significant challenge due to the strongly
nonlinear nature of the extreme aerodynamics (Fukami et al.,
2024).

To tackle this challenge, we develop a data-driven ap-
proach for real-time situational awareness under extremely
unsteady flight environments, while identifying a physically-
interpretable low-dimensional manifold of high-dimensional
aerodynamics. The present observable-augmented neural net-
work can be leveraged not only to understand the rich physics
of extreme aerodynamic flows on the identified manifold but
also to compress high-dimensional physics into a very small
number of variables, which is critical towards real-time con-
trol of the vehicle.

METHODS
The goal of the present study is to reconstruct extreme

aerodynamic flows from sparse measurements in a computa-
tionally efficient manner while also providing a low-rank and

interpretable description of high-dimensional complex wake
physics. The overview of the present study is illustrated in fig-
ure 1(a). The present formulation is composed of three steps:
1. identification of a low-dimensional manifold using a lift-
augmented convolutional autoencoder, 2. estimation of latent
vectors in the manifold space from sparse pressure measure-
ments using a multi-layer perceptron, and 3. reconstruction
of extreme aerodynamic flows from these sparse pressure sen-
sors. In what follows, we provide details for each step of the
present approach.

As a model of extreme aerodynamic problems, we con-
sider a severe gust-vortex wing interaction, causing strong
nonlinearities in a flow field. This can emulate challenging
flight conditions observed in a wide range of realistic flow sit-
uations. We generate numerical data sets covering a variety
of wake patterns around a NACA0012 airfoil at a Reynolds
number Re = 100 using an incompressible flow solver (Ham
& Iaccarino, 2004; Ham et al., 2006). The simulated flows are
validated with previous studies (Zhong et al., 2023; Kurtulus,
2015; Liu et al., 2012; Di Ilio et al., 2018). Representative
vortical flows and time series of lift forces are shown in fig-
ure 1(b). We consider angles of attack α ∈ [20◦,60◦]. For the
undisturbed cases shown in the dotted boxes for each angle in
figure 1(b), the wakes at α ≤ 20◦ present steady (no-shedding)
flow, while those for α ≥ 30◦ exhibit periodic shedding behav-
ior that correspond to periodic limit cycles.

In addition to the undisturbed cases, the present data set
includes a large number of extreme aerodynamic cases as-
sociated with strong vortex disturbance interacting with the
wing. A single vortex gust modeled by a Taylor vortex (Tay-
lor, 1918), uθ = uθ ,max(r/R)exp[1/2− r2/(2R2)], where the
radius of the vortex is R, is initially introduced upstream
of the wing at (x0/c,y0/c) with x0/c being -2. This can
model an extreme vortex disturbance hitting a wing during
flight. The present disturbance vortex is parameterized by
the gust ratio G ≡ uθ ,max/u∞ ∈ [−10,10], its diameter D ≡
2R/c ∈ [0.5,2], and the vertical position of the disturbance
Y ≡ y0/c ∈ [−0.5,0.5]. Here, u∞ is the free-stream velocity
and c is the chord length. It is worth pointing out that the
conditions of G ≳ 1 are traditionally considered difficult for
stable flight (Jones et al., 2022). Hence, the presently consid-
ered conditions of G ≳ 1 are extremely challenging to sustain
flight. Vortex gusts appearing in the actual atmosphere can be
more complex due to a higher Re than our consideration here.
Note, however, that the current setup captures the dominant
interaction dynamics between large vortex core and the airfoil
in a two-dimensional manner since the large vorticity source
from the surface under local flow acceleration can be resolved.

1



13th International Symposium on Turbulence and Shear Flow Phenomena (TSFP13)
Montreal, Canada, June 25–28, 2024

…… …
…

ξ

… … CL

Lift decoder

Input ω Output ω

Step 1: Lift-augmented
nonlinear autoencoder 

Step 2:  Pressure-based estimator 
for extreme aerodynamic latent vector 

ξ1 ξ2

ξ3

p1 p2
p3
p4

p5

p6
p7p8

……

ξ

Step 3:  Combining pressure-based estimator and decoder

ξ

…

…

…

…

s Flow field

(a)

(b)

(c)

(d)

Manifold identification

(d)

(a)

(c)

(b)

Figure 1. Overview of the present study. We first extract a low-dimensional representation of high-dimensional extreme aerodynamics
as the latent vector ξξξ using a lift-augmented nonlinear autoencoder (step 1). We then construct another network to estimate latent vectors
on the identified manifold from pressure measurements on the airfoil surface (step 2). The decoder part in step 1 and the pressure-based
estimator in step 2 are finally combined to reconstruct a high-dimensional flow state ω from sparse sensors (step 3).

We simulate 40 cases of disturbed flows for each angle
of attack with randomly sampled parameters composed of the
aforementioned three variables shown at the bottom right in
figure 1(b). For the present analysis, we use 20 cases per angle
of attack for training of models while the remaining 20 cases
are used for testing. Furthermore, the time history of the lift
coefficients CL is prepared, which will be used for the present
physics-inspired model design. The present training data set is
comprised of 1.26×105 snapshots from 100 extreme aerody-
namic cases and 5 undisturbed wake cases. Each case includes
1200 snapshots, resulting in an extremely large spatiotemporal
degree of freedom of O(109). We develop in this study a uni-
versal approximator that estimates the high-dimensional and
rich aerodynamic flows from sparse surface pressure sensors.
This is achieved while identifying a three-dimensional coordi-
nate that captures extremely violent aerodynamic effects in a
tractable manner.

The first step of the present approach is to find appro-
priate low-dimensional coordinates that best describe high-
dimensional extreme aerodynamic vortical flows ω . How-
ever, traditional linear dimensionality reduction techniques
have difficulty in compressing transient physics observed in
the present data. Hence, this study considers nonlinear com-
pression assisted with a convolutional autoencoder (Hinton
& Salakhutdinov, 2006; LeCun et al., 1998). An autoen-
coder outputs the same data as the given input through a low-
dimensional subspace using nonlinear activation functions.
The latent vector ξξξ (purple circles in figure 1(a)) can be re-
garded as a low-dimensional representation of the given data if
the model successfully provides the output data that accurately
approximates the input data. Here, we found the optimal latent
variable size to be 3.

While efficient data compression can be achieved with a
naı̈ve nonlinear autoencoder (Milano & Koumoutsakos, 2002;
Murata et al., 2020), this study seeks coordinates that express
the disturbed wake dynamics in a physically-interpretable sub-
space. For this reason, we propose a lift-augmented autoen-

coder which includes additional layers based on multi-layer
perceptron (MLP) (Rumelhart et al., 1986) to produce the lift
response CL as an augmented output from the latent vector ξξξ ,
as illustrated in figure 1(a). Since the present model needs to
compress the high-dimensional vortical flows ω while produc-
ing the lift coefficient CL, we can promote the identification
of the appropriate latent variable coordinates that respect the
correlation between ω and CL. We note that this choice of
CL for the model augmentation is inspired by our theoretical
knowledge that vorticity field and its spatial arrangement are
responsible for exerting lift on a wing.

The optimization of the present autoencoder is expressed
as

www∗
a = argminwwwa

[
||ω − ω̂||2 +β ||CL −ĈL||2

]
, (1)

where wwwa denotes the weights inside the autoencoder model
and β balances the reconstruction loss and the lift-based loss.

Next, we estimate the identified latent space mani-
fold ξξξ (t) from pressure sensor measurements sss(t), in step 2
of figure 1(a). We place 8 sensors around a wing in an eq-
uispaced manner. Since this estimation is a transformation of
R8 → R3, we here use an MLP. The weights wwwp of the MLP-
based manifold estimator Fp are optimized through

www∗
p = argminwwwp

||ξξξ −Fp(sss;wwwp)||2. (2)

A combination of the decoder Fd of the autoencoder and the
manifold estimator Fp enables us to directly estimate a high-
dimensional vortical flow ω̂p(t) from pressure sensors sss(t)
without necessitating the retraining of machine-learning mod-
els. The present manifold identification promotes robustness
against unseen (testing) data in reconstructing extreme aero-
dynamic flows since the present lift-augmented autoencoder
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Figure 2. Extreme aerodynamic data sets. All lift responses for angles of attack of α ∈ [20◦,60◦] are shown. Representative vorticity
fields ω are shown at three time instances (□, ◦, and ⋄). The vorticity field surrounded by the dotted line is the undisturbed reference
flow for each angle of attack. The red circles in the parameter spaces correspond to the representative cases chosen for the vorticity
visualization.

can map a variety of wake features that commonly appear in
vortical flows into a low-order space. This reconstruction stage
(step 3 in figure 1(a)) can be expressed as

ω ≈ ω̂p = Fd(Fp(sss;wwwp);wwwA). (3)

The present formulation offers a physically guided process of a
machine-learning-based flow estimation, avoiding a black-box
learning process.

RESULTS
Let us first discuss the low-dimensional manifold iden-

tification via the lift-augmented autoencoder. The three-
dimensional feature space and decoded variables are shown in
figure 1(c1-c3). For comparison, we additionally consider lin-
ear PCA (Jolliffe, 2002) and a regular autoencoder. As shown,
the low-dimensional PCA subspace is unable to distinguish the
undisturbed wakes and the projections of all disturbed cases
(gray lines). In fact, the PCA encounters difficulty in recon-
structing the flow state, yielding almost 100% error. This
clearly indicates that the three coefficients produced by the
linear technique are not enough to express the entire physics
covering a huge parameter space of extreme aerodynamics.

This issue of data compressibility can be mitigated with a
nonlinear autoencoder, exhibiting drastically improved recon-
struction, as shown in figure 1(c). However, the latent vector of
this autoencoder for disturbed flows appears unorganized, be-
cause the model uses the latent space to distinguish a variety
of the wake scenarios in minimizing the reconstruction loss.

Next, let us consider the present lift-augmented autoen-
coder which discovers a physically coherent low-dimensional
expression while reconstructing the flow variables well, as
shown figure 1(c). The latent vectors of the undisturbed base-
line flows highlighted in color capture the hierarchical rela-
tionship of the induced angle of attack in the ξ3 direction.

While the case of α = 20◦ is expressed as a single dot, the
cases with unsteady periodic shedding of α ≥ 30◦ are mapped
as circles. This represents the steady and unsteady limit-cycle
oscillations in a high-dimensional state. Further, the radius
of the circles for the cases of α ≥ 30◦ increases with the an-
gle, corresponding to the increment in the fluctuations from
the mean state for each case of the angle of attacks. Note that
the disturbed wake can be expressed about the undisturbed or-
bit, as shown in figure 1(c). This suggests that the discovered
manifold expresses how the extreme disturbance affects the
undisturbed baseline dynamics in a low-order manner.

The latent vector ξξξ on the discovered manifold can be es-
timated from sparse pressure sensors through the MLP-based
estimator Fp. These estimated latent vectors Fp(sss) can be
then provided to the decoder Fd of the aforementioned lift-
augmented autoencoder to reconstruct extreme aerodynamic
flows. Examples of reconstructed flows are depicted in fig-
ure 1(d). A variety of wake patterns can be accurately recon-
structed from only eight sensor measurements. The present
results suggest that real-time situational awareness under ex-
treme aerodynamic conditions can be achieved by leveraging
a physics-inspired data-driven approach.

CONCLUDING REMARKS
We presented an observable-augmented machine-learning

technique. In particular, this study considered a lift-augmented
autoencoder and a manifold estimator, which achieves real-
time flow reconstruction from sparse measurements even un-
der extreme aerodynamic flight conditions. Furthermore, we
found that such seemingly complex extreme aerodynamics
can be compressed into only three variables in a physically
tractable manner. The present approach, which couples data-
driven sensing with physically-interpretable manifold identi-
fication, has exciting potential to enable flight even under
the most extreme aerodynamic conditions. Additional details
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Figure 3. Three-dimensional latent space obtained by (a) PCA, (b) a regular autoencoder, and (c) the lift-augmented autoencoder.
The undisturbed cases are highlighted in color. All disturbed wake cases used for training are also exhibited with light gray curves.
The purple dotted line in each space corresponds to an example of the extreme aerodynamic flows with the parameter of (α,G,D,Y ) =
(60◦,−2.8,0.75,0). (d) Lift response and (e) reconstructed vorticity fields of the example case are also shown. The value on each
contour reports an L2 error norm ε = ||ω − ω̂||2/||ω||2. (f) Examples of reference vortical flows ω and reconstructed vorticity fields
ω̂p = Fd(Fp(sss;wwwp),wwwA) from pressure sensors. Examples of the extreme aerodynamic flows with the parameter of (α,G,D,Y );
(f1) = (20◦,1.8,2,0.1) at t = −0.725, (f2) = (30◦,−2.8,0.5,−0.3) at t = −0.125, (f3) = (40◦,−3.4,1.5,0) at t = −0.125, and (f4)
= (50◦,−1.2,2,−0.1) at t =−0.045 are shown. The value on each contour reports an L2 error norm εp = ||ω − ω̂p||2/||ω||2.

on manifold identification are presented in Fukami & Taira
(2023).
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