
13th International Symposium on Turbulence and Shear Flow Phenomena (TSFP13)
Montreal, Canada, June 25–28, 2024

SPARSITY-PROMOTING METHODS FOR ISOLATING DOMINANT LINEAR
AMPLIFICATION MECHANISMS IN TURBULENT FLOWS

Scott T. M. Dawson
MMAE Department

Illinois Institute of Technology
Chicago, Illinois, 60616 USA

scott.dawson@iit.edu

Jaime Prado Zayas
MMAE Department

Illinois Institute of Technology
Chicago, Illinois, 60616 USA
jpradozayas@hawk.iit.edu

Barbara Lopez-Doriga
MMAE Department

Illinois Institute of Technology
Chicago, Illinois, 60616 USA

blopezdorigacostales@hawk.iit.edu

ABSTRACT
This work proposes a method to identify and isolate the

physical mechanisms that are responsible for linear energy
amplification in turbulent flows. This is achieved by apply-
ing a sparsity-promoting methodology to the resolvent form
of the governing equations, solving an optimization problem
that balances retaining the amplification properties of the orig-
inal operator with minimizing the number of terms retained in
the simplified sparse model. This results in simplified opera-
tors that often have very similar pseudospectral properties as
the original equations. The method is demonstrated on both
incompressible and compressible wall-bounded parallel shear
flows, where the results obtained from the proposed method
are shown to be consistent with known mechanisms and sim-
plifying assumptions, such as the lift-up mechanism, and (for
the compressible case) Morkovin’s hypothesis and the strong
Reynolds analogy. This provides a framework for the applica-
tion of this method to problems for which knowledge of perti-
nent amplification mechanisms is less established.

INTRODUCTION
Despite the fact that turbulence exhibits highly nonlin-

ear dynamics, there is strong evidence that linear mechanisms
play a key role in both the formation of coherent structures
within, and the overall statistics of, such flows. This is par-
ticularly true for shear-driven turbulence, where spatial gradi-
ents of the mean velocity field and the non-normality of the
linearized equations can drive very large linear amplification
(Trefethen et al., 1993; Schmid & Henningson, 2012; Hwang
& Cossu, 2010). Indeed, several recent works (Abreu et al.,
2020; Tissot et al., 2021; Nogueira et al., 2021; Pickering
et al., 2021; Symon et al., 2023) have demonstrated agreement
between coherent structure prediction via resolvent analysis
of the mean-linearized equations (McKeon & Sharma, 2010),
and the highest-energy structures identified directly from data
via spectral spectral proper orthogonal decomposition (Towne
et al., 2018).

In configurations that have been comprehensively stud-
ied, there is broad understanding of both the characteristics
of coherent structures that form in turbulent flows, and the
mechanisms that lead to their formulation. In canonical wall-
bounded turbulent flows, the Orr (Orr, 1907) and lift-up (Lan-
dahl, 1975) mechanisms play a key role in the generation and

evolution of features such as near-wall streaks (Kline et al.,
1967), and large- and very-large-scale motions (Zhou et al.,
1999; Hutchins & Marusic, 2007). In particular, the mecha-
nisms giving rise to such structures can be understood through
the action of a small number of terms within the governing
equations. The development of a similar level of understand-
ing for a broader class of more complex, non-canonical ge-
ometries can be accelerated through methods that can automat-
ically identify the terms within the governing equations that
are primarily responsible for the dominant coherent features
observed in such systems.

The present work develops a method to automatically
extract such minimal-physics mechanisms from the govern-
ing equations. This is achieved through utilizing ideas from
compressive sensing (Candès et al., 2006), which allows for
such problems to be solved with convex methods, by formu-
lating optimization problems involving the L1 norm. Such
sparsity-promoting methods have been used for a range of
data-driven problems in fluid mechanics, such as the identi-
fication of sparse reduced-order models (Loiseau & Brunton,
2018; Rubini et al., 2020), and in using data to identify ac-
tive terms in the governing equations (Callaham et al., 2021).
By contrast, the present approach is largely data-free, apply-
ing sparsity-promotion directly upon the governing equations.
This work focuses on analysis of the resolvent form of the
mean-linearized Navier–Stokes equations. Sparsity-promotion
has previously been applied in such analyses for the purposes
of identifying spatially (Foures et al., 2013; Skene et al., 2022)
or spatio-temporally localized (Lopez-Doriga et al., 2024)
structures. Here, rather than seeking sparsity in the structures
corresponding to linear amplification mechanisms, we instead
seek to sparsify the underlying linear operator, in order to iden-
tify the components of the operator that are primarily respon-
sible for the leading linear energy amplification mechanisms
identified through resolvent analysis.

METHODOLOGY
Resolvent Analysis

We describe the resolvent methodology in the context of
incompressible parallel shear flow, formulated in wall-normal
velocity (v) and vorticity (η) coordinates. After performing
Fourier transforms in the streamwise (x) and spanwise (z) di-
rections and in time (t), the Navier–Stokes equations may be
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written in resolvent form as (Rosenberg & McKeon, 2019)

(
v̂
η̂

)
=

(
HOS 0

ikzHSQUyHOS HSQ

)
︸ ︷︷ ︸

H

(
f̂v
f̂η

)
(1)

HOS =

(
−iω +∆

−1
[

ikxU∆− ikxUyy−
1

Re
∆

2
])−1

(2)

HSQ =

(
−iω + ikxU−

1
Re

∆

)−1
(3)

where H is the resolvent operator, expressed in terms of the
resolvent Orr-Sommerfeld (HOS) and Squire (HSQ) compo-
nents. Here ω is a the temporal frequency, kx and kz are
streamwise and spanwise wavenumbers, ∆ is the Laplacian
operator, and U , Uy and Uyy are the mean streamwise veloc-
ity and its first and second derivatives in the wall-normal (y)
direction. The ·̂ notation indicates that we are working with
Fourier-transformed variables in the x, z, and t dimensions.
The incompressible turbulent mean profiles are obtained by
assuming an eddy viscosity model. The quantities f̂v and f̂η
denote forcing terms in the v and η components respectively,
which here can incorporate the effect of unmodeled nonlinear
terms. To explore the broader applicability of our proposed
method, we will also consider here equivalent formulation for
the compressible Navier–Stokes equations, though for brevity
we delay a description of the equivalent compressible operator
to the results section.

The resolvent methodology proceeds by considering a
singular value decomposition (SVD) of H , with the leading
left (ψi) and right (φ1) singular vectors giving the resolvent
response and forcing modes corresponding to largest ampli-
fication (quantified by the leading singular value, σ1). This
work will be focused on developing a method that can dis-
cover which blocks of the resolvent operator, as formulated in
equation 1 for the incompressible case, are primarily respon-
sible for the emergence of this leading mode, describing the
dominant linear amplification mechanism. The numerical dis-
cretization of the resolvent operator is obtained using a Cheby-
shev collocation method.

Block-Sparsification of the Resolvent Operator

Here, we describe the methodology developed and ap-
plied in the present work. Before applying the method to the
specific linearized operator described in the previous section,
we first describe our approach in more general terms. Suppose
we have a system of equations for the spatiotemporal dynamics
of a quantity uuu(xxx, t) (e.g. a velocity field) that have the general
form

fff (uuu(xxx, t),∂t ,∂xxx) := ∑
j

fff j (uuu(xxx, t),∂t ,∂xxx) = 000 (4)

Each of the terms fff j can include partial derivatives in time
and space (∂t and ∂xxx), so that equation 4 represents the par-
tial differential equations describing the system of interest.
The main idea underpinning the proposed methodology is that
many physical phenomena can be understood without needing
to consider all of the terms in this sum. Mathematically, first

define generalized equations

fff a (uuu(xxx, t),∂t ,∂xxx;c,d) := ∑
j

c j fff j (uuu(xxx, t);∂t ,∂xxx)

The central idea is to set a portion of coefficients c j to 0, while
requiring that fff a and fff behave similarly by some predefined
measure. While not considered here, additional terms could
also be introduced to replace some of the eliminated terms in
the original sum, if they are more efficient (from a sparsifica-
tion perspective) at approximating the physics.

We now apply this general approach within a resolvent
analysis framework. If we introduce coefficients c j within
each sub-block of equation 1, we can seek a reduction of this
equation by finding a simplified operator Ha that minimizes
the cost function

J(c) = ‖H −Ha(c)‖2 +λ ‖c‖1 (5)

where ‖ · ‖2 refers to the operator norm, c = (c11,c21,c22)
T ,

and Ha is given by

Ha =

(
c11Hos 0

c21ikzHsqUyHos c22Hsq

)
(6)

Note that the operator 2-norm has a direct connection with the
leading singular value, as ‖H ‖2 = σ1(H ). The first term
on the right-hand side of equation 5 represents a measure of
the difference between the original and sparsified equations,
and the second term penalizes the L1-norm of the coefficient
vector c, which promotes a solution where some components
of c are zero. The parameter λ controls the tradeoff between
the sparsity of c and accuracy of the approximation Ha, with a
larger λ giving a more sparse approximation. Here the 1-norm
is being used rather than the 0-pseudonorm (i.e. penalizing
the number of nonzero coefficients) so that the optimization
problem is convex, and tractable to be solved using standard
convex optimization methods, such as those available in the
CVX package (Grant & Boyd, 2014).

RESULTS
Incompressible turbulent channel flow

We first apply the methodology developed in the previous
section to incompressible turbulent channel flow, focusing on
structures at a specified set of spatio-temporal scales (roughly
corresponding to the largest coherent structures expected to
arise is such flows). In figure 1 the results of optimizing equa-
tion 5 are shown as a function of the sparsification parameter,
λ . The left plots show the resulting coefficients (top), as well
as the error in the approximation (lower left subplot). We con-
sider two forms of error, the relative error in the estimation of
the leading singular value, and the relative error ε given by

ε =
‖H −Ha‖2

‖H ‖2
(7)

For very small and large λ the approximate operator comes
out to be either the original operator or 000. However, there
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Figure 1: Results obtained from optimizing equation 5 for various values of the sparsification parameter, λ . sparsifying
resolvent operator Analysis is for incompressible turbulent channel flow at a friction Reynolds number Reτ = 1000,
streamwise and spanwise wavenumbers kx =

π

6 and kz =
2π

3 , and a wavespeed (in inner units) c+ = ω/kx = 20.

is a region for intermediate λ where one or two of the ci j’s
have been set to zero, but where the approximate operator pos-
sesses similar properties to the full system. The right plots
show a comparison between the amplitude of the velocity com-
ponents of the leading resolvent response modes for the true
and sparsified operators, for two choices of λ , plotted over the
wall-normal extent of the domain. For the larger λ , only a sin-
gle nonzero block is retained. In both cases, we observe that
the sparsified operators accurately capture the streamwise (u)
and spanwise (w) components of the response, which both re-
late to the wall-normal vorticity η̂ = ikzû− ikxŵ. The terms
that are truncated are consistent with previous studies, where
it has been established that for three-dimensional disturbances
of large streamwise extent, the dominant linear amplification
mechanism arises to the off-diagonal c21 term (Jovanović &
Bamieh, 2005; Illingworth, 2020; Jovanović, 2021). This can
be explained intuitively by considering the form of equation
1, where the off-diagonal (2,1) block features a composition
of two operators. This gives two opportunities for amplifica-
tion: through HOS which maps forcing in f̂v to a response v̂,
and through HSQ which here maps this output of HOS to a
response in η̂ .

To test the application of this method over a broader range
of scales, we now apply this sparsification method over a
broader range of streamwise (kx) and spanwise (kz) wavenum-
bers. Note that for the blockwise 2× 2 operator considered
in equation 1, there are seven possible sparsification outcomes
(excluding the trivial case where all blocks are set to zero),
which are enumerated in figure 2(a). In figure 2(b-c), we show
the sparsification that is identified for a range of (kx,kz) pairs at
two different Reynolds numbers, each logarithmically spaced
between 10−3 and 102. For simplicity, we keep the wavespeed
fixed at c+ = ω/kx = 20, which means that the critical layer
(where the mean velocity equals this wavespeed) is also fixed.
For the results in figure 2, the sparsification parameter λ is de-
creased until it first produces a relative error ε < 0.1. We see
that there are several distinct regions identified in both cases.
In the top left of figures 2(b-c), we tend to identify a mech-
anism that was also observed in figure 1, when only the off-
diagonal block of H is retained. Conversely, in the lower right
of the figures 2(b-c), we instead find that both diagonal blocks
are retained, which corresponds to amplification via the inde-

pendent effects of Hos and Hsq. This distinction can be ex-
plained in part by the fact that the off-diagonal block is propor-
tional to kz, so is expected to be most important when kz� kx,
and less important for amplification when kz� kx In between
these two regions is a diagonal band when other combinations
of these blocks are selected, most notably the case where no
blocks are omitted (case 7), indicating that there is no way to
eliminate blocks of the original operator while still maintain-
ing a close approximation. At the lower Reynolds number, in
addition to this, diagonal band, case 7 is also identified for very
large kz.

To give a sense of the relative importance of the different
length scales considered in figure 2(b-c), in figure 2(d-e) we
plot the proportion of the total energy captured by the lead-
ing two resolvent modes compared to the total energy across
all modes at the specified wavenumbers. This quantity, which
gives a measure of how close the resolvent is to being a low-
rank operator, has been shown to align with the turbulent ki-
netic energy spectra obtained from direct numerical simula-
tions (Moarref et al., 2013; Bae et al., 2020). Equivalently,
regions in these subplots where the contour levels are close
to unity indicate that there is a large spectral gap in singu-
lar values after the leading two, meaning that one mechanism
is dominant (we expect for singular values to often come in
pairs, due to the symmetry of channel flow). We observe that
the low-rank region approximately coincides with the case 2
region, where only the off-diagonal block of H is retained in
the sparsification procedure. This block maps forcing in wall-
normal velocity to response in wall-normal vorticity, via an
intermediate response in wall-normal velocity. We see in fig-
ure 2 that the streamwise velocity is the largest component of
the overall response, and thus also the dominant component of
the wall-normal vorticity. This off-diagonal block is thus asso-
ciated with the lift-up mechanism, where wall-normal velocity
fluctuations transfer streamwise momentum towards and away
from the wall.

Compressible Couette flow
To explore the broader applicability of the proposed

methodology, we now consider laminar compressible Couette
flow at a Mach number of 2. This flow has been the subject of
several previous studies that utilize a range of linear analysis
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Another interesting plot is the one shown in Figure 10. It represents, analogously to what 
is done in [2], a quantity defined as (𝜎12 + 𝜎22)/∑ 𝜎𝑗2∞

𝑗=1 . This measure is an indicative of 
the amount of energy captured by the two first singular values. As we will observe in this 
case and in the following subsections, the plot representing the cases of sparsification 

Figure 10. Indicative of the amount of energy captured by the two first singular values through the (𝜎12 +
𝜎22)/∑ 𝜎𝑗2∞

𝑗=1  quantity for 𝑅𝑒 = 100. 

Figure 9. Possible simplifications of the resolvent operator 𝐻  for different combinations of the 
wavenumbers 𝑘𝑥  and 𝑘𝑧. 𝑅𝑒 = 100. 
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Regarding the (𝜎12 + 𝜎22)/∑ 𝜎𝑗2∞
𝑗=1  quantity, note that Figure 14 shows an increase in the 

region where the two first singular values capture most of the energy of the system. This 
increase seems to go hand in hand with the uptick of the region where Case 2 is the 
preferred simplification of the resolvent operator. 

 

Figure 14. Indicative of the amount of energy captured by the two first singular values through the (𝜎12 +
𝜎22)/∑ 𝜎𝑗2∞

𝑗=1   quantity for 𝑅𝑒 = 1000. 

Figure 13. Possible simplifications of the resolvent operator 𝐻  for different combinations of the 
wavenumbers 𝑘𝑥  and 𝑘𝑧. 𝑅𝑒 = 1000. 

(c)

Trabajo Fin de Máster   Jaime Prado Zayas 
 

   
26 

 

most simplified version of the operator out of all the cases that have appeared. 
Consequently, a lower rank representation for Case 2 in comparison to the other cases 
is coherent. Contrary to this, the blue regions in Figure 18.correspond to situations in 
which there are more singular values with a similar relevance. This means that very low 
rank simplifications might not be possible, something that translates into the algorithm 

Figure 18. Indicative of the amount of energy captured by the two first singular values through the (𝜎12 +
𝜎22)/∑ 𝜎𝑗2∞

𝑗=1   quantity for 𝑅𝑒 = 10000. 

Figure 17. Possible simplifications of the resolvent operator 𝐻  for different combinations of the 
wavenumbers 𝑘𝑥  and 𝑘𝑧. 𝑅𝑒 = 10000. 
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region where the two first singular values capture most of the energy of the system. This 
increase seems to go hand in hand with the uptick of the region where Case 2 is the 
preferred simplification of the resolvent operator. 
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Figure 13. Possible simplifications of the resolvent operator 𝐻  for different combinations of the 
wavenumbers 𝑘𝑥  and 𝑘𝑧. 𝑅𝑒 = 1000. 
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most simplified version of the operator out of all the cases that have appeared. 
Consequently, a lower rank representation for Case 2 in comparison to the other cases 
is coherent. Contrary to this, the blue regions in Figure 18.correspond to situations in 
which there are more singular values with a similar relevance. This means that very low 
rank simplifications might not be possible, something that translates into the algorithm 

Figure 18. Indicative of the amount of energy captured by the two first singular values through the (𝜎12 +
𝜎22)/∑ 𝜎𝑗2∞

𝑗=1   quantity for 𝑅𝑒 = 10000. 

Figure 17. Possible simplifications of the resolvent operator 𝐻  for different combinations of the 
wavenumbers 𝑘𝑥  and 𝑘𝑧. 𝑅𝑒 = 10000. 

Figure 2: (a) The seven possibilities for simplifying the resolvent operator in wall-normal velocity and vorticity form,
where the blue entries denote retained (non-zero) blocks. Subplots (b-c) show the results of sparsifying this operator
via equation 5 at friction Reynolds numbers of (b) 1,000 and (c) 10,000 across a range of streamwise (kx) and spanwise
(kz) wavenumbers. Subplots (d-e) show the extent to which the (full) resolvent operator is low rank for the parameters
considered across subplots (b-c)

methods (Duck et al., 1994; Malik et al., 2006; Bhattachar-
jee et al., 2023), making it a convenient choice for testing our
methodology in the compressible regime. While this config-
uration is laminar, for linearized analyses many findings are
qualitatively similar when comparing laminar and turbulent
mean profiles. Here, the resolvent operator is formulated in
terms of the velocity, density, and temperature, giving a state
vector with five components, qqq = (u,v,w,ρ,T ). We use a com-
pressible flow energy norm first formulated by Chu (1965).
This means that there are 5×5 blocks in the resolvent operator,
substantially increasing the dimensionality of the optimization
problem in equation 5. Further details concerning the formula-
tion of the compressible resolvent used can be found in Daw-
son & McKeon (2019b, 2020); Bae et al. (2020).

Sample results obtained from applying the proposed
methodology are shown in figure 3. This figure shows the
form of the optimization problem for the compressible regime
in the top left, where we now have the ability to set to zero any

of the blocks corresponding to componentwise forcing and re-
sponse pairs between all of the five state variables. The results
of performing the optimization for a range of values of the
sparsity parameter λ are shown on the right, with the form of
the approximate operator for λ = 0.02, and the corresponding
true and approximate leading resolvent response mode com-
ponents, shown in the bottom left. As was the case in the
incompressible regime, we again find values of λ with small
approximation error, but where several of the coefficients ci j
have been set to zero. For λ = 0.02, we observe that a number
of the coupling terms between the dynamic (first three compo-
nents) and thermodynamic (remaining two components) of the
resolvent operator are set to zero. In particular, we find zeros
in the last two columns of the first three rows of the resolvent
operator. This indicates that the response in the velocity com-
ponents has become independent of forcing in the density and
temperature variables. This is consistent, for example, with
the Morkovin hypothesis (Morkovin, 1962), which suggests

4



13th International Symposium on Turbulence and Shear Flow Phenomena (TSFP13)
Montreal, Canada, June 25–28, 2024

Figure 3: Results from optimizing equation 5 for compressible laminar Couette flow, with Re = 1000, M = 2, kx = kz = 10,
and c = 0.5, showing the elimination of several blocks coupling the dynamic and thermodynamic variables with small
error in the approximate operator.

that the dynamics of the velocity field fluctuations are largely
the same as those observed in the incompressible regime. This
is also consistent with previous findings that the streamwise
velocity component of the leading resolvent mode for com-
pressible flow can often be accurately captured from incom-
pressible analyses about the compressible mean field (Dawson
& McKeon, 2020). While the density equation (correspond-
ing to the fourth row of H ) in the approximation shown in
figure 3 retains all terms, the streamwise and spanwise veloc-
ity components of the temperature equation are set to zero.
The retention of the wall-normal velocity component (H52)
can be reasoned by considering the similarity of the dynam-
ics between the temperature and streamwise velocity fields, as
consistent with the strong Reynolds analogy (Morkovin, 1962;
Smits & Dussauge, 2006). As observed in the previous sec-
tion, it is typical for large energy amplification to be associated
with forcing in wall-normal velocity and response in stream-
wise velocity. Therefore, if the dynamics of the fluctuating
temperature field are similar, then a forcing in wall-normal ve-
locity is also expected to be important for the temperature field,
as is identified. For the modes plotted, we find that the veloc-
ity components are all accurately captured by the approximate
operator, however the thermodynamic variables have their am-
plitudes reduced in comparison to the true modeLooking at
the coefficients ci j , this is likely due to several of them tak-
ing nonzero values less than one. While not shown here, it is
possible that improved performance could be obtained by set-
ting all nonzero coefficients to take a value of unity, indicating
that the non-zero blocks are identical to those of the original
operator

CONCLUSIONS
This work has introduced a novel methodology for identi-

fying which terms within a given set of equations are the most
important for retaining the properties of the original equa-
tions. This provides a framework for simplifying these equa-
tions through a sparsification procedure, where terms within
the original equation are set to zero. This method was applied
in the context of resolvent analysis, to identify simplified oper-

ators that possess similar leading singular values and vectors,
corresponding to dominant linear energy amplification mech-
anisms.

For both incompressible and compressible wall-bounded
shear flows, the method identified mechanisms that are con-
sistent with mathematical and physical understanding of these
systems. For incompressible channel flow, we find that a sin-
gle block of the governing equations captures the majority of
the response across a range of scales for which the resolvent
operator is approximately low rank. This block is associated
with forcing and response in the wall-normal velocity and vor-
ticity components, respectively, and is associated with the lift-
up mechanism. An alternative method to arrive at this conclu-
sion could involve performing componentwise analysis of each
block, as performed by Jovanović & Bamieh (2005). For com-
pressible flow, we find (for one set of wavenumbers) a partial
decoupling between the velocity components and thermody-
namic variables, meaning that the velocity response is largely
driven by forcing in the velocity components, rather than via
the thermodynamic variables. The response in the density and
temperature, however, are coupled to the dynamic variables for
the case considered. In particular, we find that the temperature
response requires forcing in wall-normal velocity, consistent
with its dynamical similarity to the streamwise velocity field
via the strong Reynolds analogy.

Here, the sparsification procedure was performed in a
blockwise manner. Further work will look to extend this tech-
nique such that individual terms within each block can each be
isolated and potentially removed. While the physical mecha-
nisms for the flow configurations considered here are already
relatively-well understood, further work will apply this auto-
mated sparsification methodology to cases where the under-
lying physics are not as well known. As well as obtaining
physical insight, identifying simplified operators can allow for
further theoretical analysis, such as the prediction of leading
resolvent mode shapes (Dawson & McKeon, 2019a, 2020).
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