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ABSTRACT
The present study investigates the influence of a trans-

verse wall oscillation on the distributions of vortex types and
the number density of vortices in a turbulent pipe flow at a
moderate Reynolds number (Reτ = 720). Transverse wall os-
cillations in a current parameter regime yield 23% skin fric-
tion drag reduction. To identify connected vortex regions in
the flow, an image processing procedure based on an analysis
of the swirling strength fields in over 1000 temporal realiza-
tions is developed. The results show significant changes to the
statistics of the vortex populations within the Stokes’ layer of
the flow created by wall oscillation. These changes result in a
suppression of formation of radially oriented vortices in a wall-
oscillated case, not only in the Stokes’ layer, but all through the
buffer and the log layer of the flow. This suppression might be
associated with a reduced turbulent momentum transfer to the
wall in the wall-oscillated case that results in drag reduction.

INTRODUCTION
Since the work of Jung et al. (1992), the reduction of skin

friction drag by wall oscillations transverse to the mean flow in
channels and pipes has been studied extensively (Ricco et al.,
2021; Leschziner, 2020). The body of evidence supports a
widely held view that suppression of the near-wall turbulent
regeneration cycle of near-wall quasi-streamwise vortices re-
sults in suppression of turbulent ejections and, consequently,
reduction of the mean velocity gradient near the wall (Ricco
et al., 2021). More broadly, the Stokes’ layer disrupts the near-
wall turbulence cycle (Leschziner, 2020).

Above the near-wall layer wall turbulence is largely gov-
erned by organization and regeneration of hairpin vortices
(Adrian, 2007). Suppression of ejections from the near-wall
layer supposedly affects the structure, strength and orientation
of these hairpins. It has been hypothesized that the rate of
production of hairpin packets by auto-generation (Zhou et al.,
1999) is reduced by the weakening of the ejections from the
near-wall layer (Kim et al., 2008). This effect further con-
tributes to drag reduction.

While a reduction in strength of ejections and sweeps
in wall-oscillated flows has been previously documented via

a statistical analysis of the shear-stress distributions (Yakeno
et al., 2014), it is unclear whether there is a visible effect of
these important statistical changes on the organization and ori-
entation of the vortex populations in such flows. Visualiza-
tions have been previously made regarding vortical structures
in wall-oscillated flows (see, e.g. Coxe et al. (2019); Kempaiah
et al. (2020)). However, no work currently exists to quantify
the effect of wall oscillation on the alignment, orientation and
organization of the vortex structures in a statistical sense. We
remark that a similar study in canonical (non wall-oscillated)
wall-bounded flows has been attempted by Wu & Christensen
(2006); Gao et al. (2011).

The current paper presents a study on the distribution of
the vortex angles under the influence of transverse wall oscil-
lations in a pipe flow. It aims to determine how the near-wall
and the log-layer vortices are manipulated, through the change
in their probable orientation angles, by the wall oscillation at a
moderate Reynolds number (Reτ = 720). The probability den-
sity functions (pdfs) of the vortex orientations and the number
density of certain types of vortices throughout the domain are
compared with and without the wall oscillations in a turbulent
pipe flow.

PROBLEM SETUP
Direct numerical simulations (DNS) were carried out at a

moderate Reynolds numbers, Reτ = uτ R/ν = 720 (R is the
pipe radius, uτ =

√
τw/ρ is the friction velocity, τw is the

mean wall shear stress, ρ is the density, and ν is the kine-
matic viscosity of the fluid) using an open-source spectral ele-
ment solver Nek5000 (Fischer et al., 2015). More details about
the simulations can be found in Coxe et al. (2019); Peet et al.
(2023). Wall oscillations are introduced via specifying a tem-
porally varying azimuthal wall velocity as:

uθ (x,r = R,θ , t) =W sin
(

2π t
T

)
, (1)

with wall oscillation parameters (in wall units) chosen to be
T+ = 100, W+ = 10 (T+ is the period, and W+ is the veloc-
ity amplitude of the wall oscillations), which were shown to
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correspond to near-optimum values for controlling near-wall
turbulence (Quadrio & Ricco, 2004). The result of this wall
oscillation is 14% increase in a bulk flow rate of the pipe at
Reτ = 720, which translates into 23% reduction of skin fric-
tion coefficient (Peet et al., 2023).

VORTEX ANALYSIS METHOD
To characterize the vortex populations in the flow, the

swirling strength (λci) is calculated for each temporal snap-
shot. The swirling strength λci is determined as the mag-
nitude of the imaginary part of the complex conjugate
pair (Chakraborty et al., 2005) of the eigenvalues of the fluc-
tuating turbulent velocity gradient tensor ∇u′′, u′′ denoting
the triply decomposed fluctuating field (Hussain & Reynolds,
1970) to remove the periodically sheared Stokes’ layer.

A vortex point is identified when a threshold of the
swirling strength is met. This threshold is given by
λci > 1.25 × ∂Ue/∂ l, where ∂Ue/∂ l is introduced as a
scaling parameter based on a characteristic velocity gradi-
ent (Gao et al., 2011). This scaling was shown to pro-
vide a good collapse of the swirling strength across dif-
ferent data sets while being less sensitive to a measure-
ment noise in a study of Gao et al. (2011). Character-
istic velocity gradient, ∂Ue/∂ l, is defined as the mean of
the tensor invariants of the velocity fluctuation gradient ten-
sor (∇u′′) when swirling is present: ∂Ue/∂ l =

(
∥⟨I1|λci >

0⟩x,θ ,t∥ +
√

⟨I2|λci > 0⟩x,θ ,t +
3
√
⟨I3|λci > 0⟩x,θ ,t

)
/3, where

I1 = Tr(∇u′′), I2 = 1
2

(
(Tr(∇u′′))2 −

(
(∇u′′)2

))
, I3 =

Det (∇u′′), and ⟨·|λci > 0⟩ denotes a conditional averaging
over the regions which have non-zero swirling strength. Uti-
lizing the above threshold, a binary field Ξ(x) is constructed:

Ξ(x) =

{
1, λci > 1.25×∂Ue/∂ l
0, otherwise

(2)

This field distinguishes the points which can be considered as
a part of a vortex (with Ξ(x) = 1) from the vortex-free points
(with Ξ(x) = 0).

Next, an image segmentation algorithm (Virtanen, 2020)
is applied to the binary field Ξ(x), sampled at streamwise-
azimuthal planes at specified radial locations, to determine the
connected regions of vortices. A connected region of vor-
tex points is identified as a vortex (Ω) if its size exceeds a
threshold of r+ =

√
Avort/(2π)> 10 (Gao et al., 2011), where

Avort is the area of the connected region at a corresponding
streamwise-azimuthal plane. For each grid point within the
identified vortex, the eigenvector (Λr) associated with the real
eigenvalue (λr) is calculated, and the mean value for each vor-
tex, Λ̄r, is obtained as the average across the vortex volume. To
determine the orientation of the vortex in a three-dimensional
space, its average eigenvector, Λ̄r, is projected onto the three
cross-sectional planes, and the corresponding inclination an-
gles in each plane are defined accordingly as:

φx,−r = arctan

(
−σ

Λ̄r
Λ̄r · êr

σ
Λ̄r

Λ̄r · êx

)
(3)

φθ ,x = arctan

(
σ

Λ̄r
Λ̄r · êx

σ
Λ̄r

Λ̄r · êθ

)
(4)

φ−r,θ = arctan

(
σ

Λ̄r
Λ̄r · êθ

−σ
Λ̄r

Λ̄r · êr

)
, (5)

where σ
Λ̄r

= sign(ω · Λ̄r), with ω being the vorticity vector
averaged over the vortex region Ω, and (êx, êr, êθ ) are the unit
vectors in the (x,r,θ) coordinate directions, respectively. Mul-
tiplication by the vorticity vector ω in the calculation of σ

Λ̄r
is

adopted to remove the ambiguity related to the fact that a math-
ematical definition of the eigenvector is sign invariant. This
allows us to distinguish between positively and negatively ori-
ented vortices in our analysis.

Lastly, to quantify the statistical effect of wall oscilla-
tion on vortex populations, we compute the probability density
function of the distribution of the vortex angles at a specified
radial coordinate as:

P[φi, j](r) = lim
w→0

N(r)|φi, j

w∑φi, j
N(r)|φi, j

, (6)

where w is the bin width in degrees, and N(r)|φi, j is the number
density of vortices with the angle φ ′

i, j lying within the interval
φ ′

i, j ∈ [φi, j −w/2,φi, j +w/2], computed as an average over a
streamwise-azimuthal cross-sectional plane across all tempo-
ral realizations at a given radial coordinate:

N(r)|φi, j =
1

2πrLNsnap

Nsnap

∑
k=1

Nk(r)|φi, j , (7)

where L is the length of the pipe, and Nk(r)|φi, j is the total
number of vortices with the corresponding condition on their
angle, identified at a given radial location at each temporal
snapshot. To calculate the probability distribution in equation
(6) numerically, we consider a bin width of w = 5◦. A total of
Nsnap = 1024 snapshots separated by ∆ t+ = 3.125 were used
in the statistical analysis.

INTERPRETATION OF VORTEX ANGLES
To provide an intuitive interpretation of the vortex angles

defined in equations (3)–(5), we invoke a well-established hair-
pin vortex model of wall turbulence (Zhou et al., 1999; Adrian,
2007). Figure 1a shows such a hairpin vortex as captured in
the visualizations (of a non-oscillated pipe flow in the cur-
rent DNS), Figure 1b offers a conceptual schematic of such
a hairpin, together with the expected vortex orientation angles
along the different parts of the hairpin structure, while Fig-
ure 1c demonstrates a view of a hairpin in a radial-azimuthal
plane. Hairpin vortices are typically formed by a pair of
counter-rotating quasi-streamwise vortices (hairpin legs) that
come close together and induce a sufficient updraft to start lift-
ing themselves up (forming the hairpin necks) that eventually
join to form a hairpin head (Zhou et al., 1999; Adrian, 2007).
The schematic in Figure 1b distinguishes between the hairpin
legs (labeled as ‘a’ and ‘e’), necks (‘b’ and ‘d’), and head (‘c’),
and illustrates the typical angles that can be expected for each
of the identified parts (taking into account their orientation,
which, e.g., is positive for the right leg ‘a’ and negative for the
left leg ‘e’). We remark that, due to its well-defined formation
mechanism, this “traditional” hairpin results in a unique, pos-
itive in the current coordinate system, orientation of its head
(aligned with the positive θ direction and corresponding to
φ−r,θ =+90◦, see panel (c) in Figure 1b), which is frequently
referred to as a “prograde” vortex (Wu & Christensen, 2006).
The oppositely-oriented, “retrograde” vortices (corresponding
to φ−r,θ = −90◦), are possible as well, but are typically less
frequent in wall-bounded flows (Wu & Christensen, 2006).
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(a) A hairpin captured from visualizations (current DNS of a
non-oscillated case).
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(b) A schematic of a hairpin and the associated angles of the
projected eigenvector at the locations ‘a’-‘e’.

(c) Hairpin vortex in a radial-azimuthal plane (head and
necks). Perspective is looking down the pipe in the direction
of flow: clockwise rotation of swirling is positive.

Figure 1: Conceptual model of a turbulent hairpin vortex. As-
sociated eigenvectors are shown as red arrows, and an asso-
ciated orientation of swirling is shown as blue curved arrows.
The schematic corresponds to a traditional (prograde) hairpin.

RESULTS
Figures 2 a,c,e show the distribution of the vortex angles

in a streamwise-radial (x,−r) plane plotted at selected wall-
normal locations given by y+ = R+ − r+. The peak in the
distribution φx,−r is centered around 11◦ at y+ = 25, 11◦ at
y+ = 50, 16◦ at y+ = 100, and 17◦ at y+ = 200 for the un-
controlled (no wall oscillation) case. These angles are con-
sistent with the growth angle of coherent vortex packets ob-
served in the literature (Adrian, 2007; Bai et al., 2024). The
shift, as a result of wall oscillation, is subtle. Figures 2 a,c,e

(a) y+ = 25 (b) y+ = 25

(c) y+ = 50 (d) y+ = 50

(e) y+ = 100 (f) y+ = 100

Figure 2: Distribution of the vortex angles as projected onto:
Left panel (a,c,e), a streamwise-radial (x,−r) plane; Right
panel (b,d,f), an azimuthal-streamwise (θ ,x) plane, at differ-
ent wall-normal locations. Black lines correspond to no wall
oscillation, and blue lines are with wall oscillation.

(a) y+ = 50 (b) y+ = 100

Figure 3: Zoomed-in view through the ‘troughs’ of the proba-
bility density functions of φx,−r.

show an increased probability of streamwise-oriented vortices
(φx,−r ≈ 0◦), while inhibiting the nearly up-right orientations
(φx,−r ≈ ±90◦) in the buffer and the log layer of the flow
(y+ ≤ 100), which can be better viewed in a zoomed-in frame
in Figure 3. These angles correspond to the up-right oriented
hairpin necks (panels (b),(d) in Figure 1b). A decreased like-
lihood of the necks formation potentially signifies weaker or
distorted quasi-streamwise vortices that are unable to produce
a sufficient amount of the mutually induced flow leading to
a lift-up, an important process in the hairpin formation and
auto-generation (Zhou et al., 1996, 1999). Since fewer of the
quasi-streamwise vortices lift up, more of them stay parallel to
the wall, thus increasing the probability of φx,−r ≈ 0◦ angles
in oscillated flow. Above the log-layer, no significant effect
of the wall oscillation on the distribution of vortices in (x,−r)
plane is observed.

We next consider the distribution of the vortex angles in
an azimuthal-streamwise (θ ,x) plane in Figures 2 b,d,f. In
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this plane, an angle of φθ ,x = ±90◦ corresponds to the vor-
tices aligned with the streamwise direction and pointing down-
stream and upstream respectively. Figures 2 b,d,f show that
most of the impact of the wall oscillation is contained within
the buffer layer (y+ = 25). At this wall normal location,
the Stokes’ layer can still have a distinct impact on vortices
since the Stokes’ layer extends to approximately y+ = 25 in
the current flow regime (Coxe et al., 2022). At this loca-
tion, the wall oscillation acts to diffuse the probability den-
sity function. A slightly higher probability of φθ ,x angles be-
tween −90◦ and +90◦, commensurate with a slight decrease
in probability of encountering purely streamwise-oriented vor-
tices (φθ ,x =±90◦) in this plane is a manifestation of the slosh-
ing effect of wall oscillations: due to an induced azimuthal
motion in the Stokes’ layer, the quasi-streamwise vortices are
skewed left and right and spend less time oriented straight.
One can see that this trend does not persist above y+ = 25,
where a direct influence of the Stokes’ layer is no longer felt.
Instead, in the log layer, one can note a decreased probability
of φθ ,x =±180◦ (corresponding to the “retrograde” azimuthal
vortices, the opposite of the panel (c) in Figure 1b) and an in-
creased probability of φθ ,x =±90◦ (streamwise-aligned struc-
tures), especially in the top part of the log layer (y+ = 100). A
decrease in the probability of the retrograde vortices in the up-
per log layer with wall oscillation is interesting. Wu & Chris-
tensen (2006) observed that retrograde vortices are the most
prominent at the outer edge of the log layer, often nesting near
clusters of prograde vortices. Their reduction by wall oscil-
lation might indirectly point to a weakening of the prograde
vortex clusters, however this phenomenon needs to be further
investigated. We remark that the effects above the log layer are
subtle.

Lastly, we present the distribution of the vortex angles in
a radial-azimuthal (−r,θ ) plane in Figure 4. To understand the
vortex organization in this plane, the reader is referred to Fig-
ure 1c. From a hairpin vortex model perspective, whose shape
can be described by a “horseshoe” type structure in the (−r,θ )
plane, the φ−r,θ angle characterizes the vortices that consti-
tute the head and necks of a hairpin. The first observation
from Figure 4 is a significantly higher probability of vortices
with φ−r,θ = 90◦ (corresponding to prograde vortices, see Fig-
ure 1) than φ−r,θ =−90◦ (retrograde vortices) at wall-normal
locations above y+ = 25. This is consistent with the observa-
tions of Wu & Christensen (2006) who reported a higher num-
ber of prograde versus retrograde vortices in turbulent channel
flows and boundary layers. While there is a clear dip in the
pdf distributions at φ−r,θ = −90◦ at these locations, the two
peaks at slightly lower and slightly higher (negative) angles
are observed: these angles are associated with the lower right
shoulder (peak between −90◦ < φ−r,θ < 0◦) and lower left
shoulder (−180◦ < φ−r,θ < −90◦) of prograde hairpins (see
Figure 1c), which are abundant in both uncontrolled and con-
trolled flows. We now turn to describe the effect of wall oscil-
lations. These effects are the most significant within the buffer
layer in the (−r,θ ) plane (Figures 4a,b). This wall-normal lo-
cation (y+ = 25) reveals the signature of the quasi-streamwise
vortices (QSVs); the hairpin necks and heads typically form
higher away from the wall. Without wall oscillation, the QSVs
are oriented predominantly in the streamwise direction, while
their inclination may exhibit small random fluctuations in both
radial and azimuthal directions. This leads to a random explo-
ration of the entire (−r,θ ) space with equal probability, exactly
what is reflected in the pdfs in Figures 4a,b. With wall oscil-
lation, transverse motions in the Stokes’ layer periodically tilt
the QSVs to the left and to the right, resulting in the occur-

(a) y+ = 25, phase-mean (b) y+ = 25, t/T = 3/4

(c) y+ = 50, phase-mean (d) y+ = 50, t/T = 3/4

(e) y+ = 100, phase-mean (f) y+ = 100, t/T = 3/4

Figure 4: Distribution of the vortex angles as projected onto
a radial-azimuthal (−r,θ) plane at different wall-normal loca-
tions. Black lines correspond to no wall oscillation, and blue
lines are with wall oscillation. Left panel (a,c,e), phase-mean
data; Right panel (b,d,f), constant phase of t/T = 3/4.

rence of preferential φ−r,θ angles (likely affected by the wall
oscillation amplitude). To further demonstrate the effect of
vortex tilting by wall oscillation, the right panel of Figure 4
(b,d,f) plots the probability density function computed during
a specific phase of the oscillation cycle, namely at t/T = 3/4,
when the wall moves counter-clockwise and the wall veloc-
ity reaches its maximum (uθ =−W ), see equation (1). Figure
4b shows a nearly symmetric distribution, enhancing a distinct
band of φ−r,θ angles with 180◦ periodicity (due to the opposite
orientation of the pairs of the counter-rotating QSVs). What is
interesting is that the probability of the vortices oriented radi-
ally (or almost radially) in both Figures 4a and 4b is signifi-
cantly reduced by wall oscillation. This reduction was already
seen in the (x,−r) plane, but is more pronounced in the (−r,θ )
plane. This effect is still felt within the log layer of the flow
(y+ = 50), where a reduction in φ−r,θ angles close to 0◦ and
close to ±180◦ is visible. This impediment of radially oriented
vortices reduces the amount of radial transfer of streamwise
momentum via ejections and sweeps and lowers the turbulent
burst activity. Both these effects potentially contribute to drag
reduction. This suppression of the up-right necks is commen-
surate with an augmentation of the tilted shoulders (see Fig-
ure 1c). However, as Figure 4d shows, this augmentation is not
symmetric in a time-dependent frame: at a given phase of the
wall oscillation, only one shoulder in the pair of the counter-
rotating vortices in enhanced. This is consistent with the hy-
pothesis that, when the wall motion is, e.g., counterclockwise,
the vortex with the counterclockwise rotation (the left shoul-
der with −180◦ < φ−r,θ < −90◦, see Figures 1c and 4d) is
enhanced, while the other is weakened; this is reversed during
the second half of the cycle (Coxe et al., 2019). This asym-
metry results in an abundance of “skewed”, or “one-legged”
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(a) Non-oscillated pipe flow.

(b) Oscillated pipe flow.

Figure 5: Contours of the normalized swirling strength,
λci/(∂Ue/∂ l) = 2.5 (twice the threshold for vortex identifi-
cation) colored by wall-normal coordinate.

hairpins, which are not as effective in reproduction. The dis-
tributions of φ−r,θ are not significantly affected at the top of
the log layer and above (Figure 4 c,f), showing that the most
significant modification of turbulence structure due to wall os-
cillations is confined to the buffer and the log layer, commen-
surate with our previous observations (Peet et al., 2023).

To further illustrate the effect of wall oscillation on the
vortical structures, we present a three-dimensional visualiza-
tion of the normalized swirling strength, λci/(∂Ue/∂ l), taken
at the same oscillation phase of t/T = 3/4 as in the previous
analysis in Figure 5. The red ovals highlight, in Figure 5a
(non-oscillated case), hairpin packets. The reader’s attention
is brought to this because such a phenomenon is not readily
apparent in the wall-oscillated case (Figure 5b). The signa-
ture of one can be seen near the left wall in the oscillated case.
However, the characteristic succession of larger hairpins is not
readily visible. It is conceivable however, that this might be a
local feature of a given realization. It is also easy to notice that
there is a large number of tilted hairpins in the oscillated case,
some of them are highlighted by red ovals in Figure 5b. Since
the wall motion at the presented phase (t/T = 3/4) is counter-
clockwise, the vortices are predominantly tilted to the right, as
expected. It can also be seen that such tilted vortices mostly
appear as one-legged, and the number of perfectly formed hair-
pins is significantly reduced in the oscillated case as compared
to the non-oscillated case.

The last portion of our analysis provides a vortex count
for the vortices with different orientations in both flows. To
this end, and informed by previously shown distributions, we
classify each vortex into one of the three categories, depending
on its orientation in each of the three principle planes:
1. Streamwise-oriented vortices (legs):

Ωx,+ ∈
{
(−20◦ ≤ φx,−r ≤ 20◦)∩ (70◦ < φθ ,x < 110◦)

}
Ωx,− ∈

{
(160◦ < φx,−r ∪φx,−r > 160◦)∩ (−70◦ > φθ ,x >−110◦)

}

(a) Quasi-streamwise vortices (b) Radial vortices

(c) Azimuthal vortices

Figure 6: Number density of vortices counted in the flow.
Black lines correspond to no wall oscillation, and blue lines
are with oscillation. The squares indicate the negative orien-
tation, and the circles indicate the positive orientation of the
vortices.

2. Radially-oriented vortices (necks):

Ωr,+ ∈
{
(20◦ < φx,−r < 160◦)∩−45 < φ−r,θ < 45

}
Ωr,− ∈

{
(−160◦ < φx,−r <−20◦)∩ (−135◦ > φ−r,θ ∪φ−r,θ > 135◦)

}
3. Azimuthally-oriented vortices (heads):

Ωθ ,+ ∈
{
(−70◦ < φθ ,x < 70◦)∩ (45◦ < φ−r,θ < 135◦)

}
Ωθ ,− ∈

{
(−110◦ > φθ ,x ∪φθ ,x > 110◦)∩ (−135◦ < φ−r,θ <−45◦)

}
We note that the above three categories are mutually exclusive,
i.e. each vortex is counted only once, thus preserving the total
number of vortices in the domain. We further distinguish be-
tween the positive (+, clockwise if looking from the inlet down
the pipe) orientation, and negative (−, counter-clockwise), re-
fer to Figure 1. The vortex number density in each group,
Π(r)|Ωi,± = N(r)|Ωi,± , with N(r)|φi, j defined by equation (7),
is plotted in Figure 6 for positively and negatively oriented
“legs”, “necks” and “heads”, respectively.

The main conclusion from Figure 6 is a mild increase in
the number of streamwise oriented vortices accompanied by
a decrease in the number of radial vortices, especially in the
buffer layer. This observation is consistent with our previous
results that showed a reduction in the probability density of the
radially-oriented vortices (necks). A lower number of necks
persists not only in the buffer layer but also in and above the
log layer, consistent with our previous observations. For the
azimuthal vortices, as expected, we see more positively ori-
ented, prograde, vortices (hairpin heads) than negatively ori-
ented (retrograde) vortices, above the buffer layer. Close to
the wall, the azimuthal vortices do not represent the hairpin
heads and are not formed by ejections (which would give them
a prograde orientation), but rather by a random reorientation
of QSVs, sweep events, or tilting by wall oscillations. Tilt-
ing/sloshing effects explain a higher number of azimuthal vor-
tices near the wall in the wall-oscillated case.
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DISCUSSION
The probability density distributions of vortex inclination

angles show only marginal differences in (x,−r) and (θ ,x)
planes, while differences are quite significant in (−r,θ ) plane,
especially if clipped at a certain phase angle. This is due to the
fact that the pdfs in (x,−r) and (θ ,x) planes are strongly dom-
inated by streamwise-oriented vortices, showing large peaks
at their corresponding orientation angles, so that all other ef-
fects are obfuscated. In a transverse plane, to the contrary, the
changes related to a tilting and reorientation of vortices due to
wall oscillation is strong.

The main effect of wall oscillation on the vortex popula-
tions at this Reynolds number is manifested as a reduction in
a probability of the radially-oriented vortices, typcially associ-
ated with the mutual lift-up of closely-positioned QSVs. The
steep vortex growth angles in turbulent wall-bounded flows has
been linked to the legs of the Π type vortices (de Silva et al.,
2016) and the hairpin necks (Adrian, 2007). The reduction of
these steep angles in wall-oscillated flows has two important
consequences: 1) It reduces turbulent momentum transfer to
the wall; 2) It reduces turbulent burst activity that has previ-
ously been linked with the formation of new hairpins (Zhou
et al., 1999; Adrian, 2007). Both these effects are conducive
to drag reduction. Another interesting effect of wall oscillation
is a reduction in a probability of retrograde azimuthal vortices
in the log layer of the pipe visible in φθ ,x distributions (reduc-
tion of φθ ,x = ±180◦ angles). Since retrograde vortices are
often found on top of the clusters of prograde vortices (Wu
& Christensen, 2006), their reduction should theoretically evi-
dence towards the inhibition of the haiprin packets.

The results of the total vortex count observed for the entire
time period of t+ ∈ [0,3200] give a direct evidence to the re-
duction in the number of radially-oriented vortices all through-
out the top of the log layer, and especially in the buffer layer.
The number of streamwise vortices, however, is slightly in-
creased all through the top of the log layer. This could be either
due to a suppression of lift up that consequently leaves more
vortices oriented in a predominantly streamwise direction, or
tearing of the long vortices by oscillatory motions causing
them to appear as multiple vortices. The number of azimuthal
vortices, while increased in the Stokes’ layer due to sloshing,
is essentially unchanged at the top part of the log layer. This
is despite an indirect evidence that the hairpin packets must
weaken (as judged by the suppression of the necks that should
inhibit auto-generation, and by the reduction in retrograde vor-
tices), and a direct evidence of weaker packets from visualiza-
tions. This can be explained by the fact that while the oscil-
lated flow may contain more vortices per se, they appear to be
more broken, more ill-formed, less coherent, and potentially
less capable of inducing organized transfer of energy and mo-
mentum towards the wall, which is the cause of drag increase
in turbulent flows. Indeed, while the current method counts the
number of vortices, it does not differentiate between their size,
strength and coherence, and counts all the vortices as equal,
as long as their size and strength exceed a certain threshold.
Future work will develop the methodologies, which will ac-
count for these aspects of vortex organization while analyzing
the vortex population statistics.
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